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1. Introduetion

Let E be a closed subset of R* and K(E) the space of all functions in SH(R"),
vanishing in some neighborhood of E. ZLY(R") is the Banach space of Fourier
transforms of functions in LY{R"). $(R") c ZLY(R"), and we denote by K(E)
the closure of K(E) in ZLYR"). The well-known concept of sets of spectral
synthesis can be defined as follows: E is a set of spectral synthesis if K(#) contains
every element in FLY{(R") that vanishes on E.

C. Herz [3] has proved that S'c R? is a set of spectral synthesis. His proof
can unfortunately not be extended to obtain the corresponding result for more
general curves. It is however possible to use a different approach to get the desired
extension of the result of Herz (cf. [2]). We shall here apply basically the same
method to investigate a still more general problem.

As was discovered by L. Schwartz [9], the sphere §"-1 ¢ R® is not of spectral
synthesis, if » > 3. N. Th. Varopoulos [10] has investigated this question in more
detail, using methods related to the Herz method for n = 2. Let us denote, for
any closed set E and any positive integer m, by Ja.(E) the space of functions in
P(R"), n > 2, vanishing on E together with all their partial derivatives of order
<m — 1. Taking closures in ZLY(R"), we have then

TS D JH(8" 1) D ... D Ty (8™ = K(8"T), (1.1)

where all inclusions are strict. It is very easy to understand from this why there
is a fundamental difference between the case n =— 2 and the case n > 3 in this
context.

The cited paper of Varopoulos does however contain a considerably more precise
description of the situation than the one given above. Let us by Bn(S"1), m > 1,
denote the linear space spanned by all measures on S*1 with infinitely differentiable
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density function and by all partial derivatives of order << m — 1 of those measures
when considered as distributions on R". It is possible to show that B.(S"1) isa
subspace of the dual of ZLYR"), if m < (n + 1)/2, and in that case we define
I,(S"1) as the annihilator of B.(S"1) in FLY(R"). It is illuminating to regard
I,(8"1) as a subspace of FLYR") characterized by the vanishing on 8", ina
generalized sense, of the elements together with their partial derivatives of order
< m — 1. This notion of vanishing is then the same as ordinary vanishing, if the
element belongs to C™ in a neighborhood of 8”-1. It follows from Theorem 3 in
[10], that

Ln(8™ 1Y) = Ju(8™1), (1.2)

for 1 <m < (n-4 1)/2. In the case n = 2, (1.1) and (1.2) together imply the
result of Herz.

Our aim is to generalize (1.1) and (1.2). The generalization is two-fold. In the
first place we replace L'(R") by the more general space L.(R"), n > 2, « real,

of Lebesgue measurable functions f with the norm

/|f<s)| (1 + |&))*de.
K4

Secondly, and this is more important since it creates the need for a method different
from the one developed by Herz and Varopoulos, we consider sets & on an arbitrary
(n — 1)-dimensional manifold M in R®, infinitely differentiable, without multiple
points and with non-vanishing Gaussian curvature. The sets E are assumed com-
pact and, in the main theorem, satisfying the restricted cone property (Definition
3.3). K(E) and J.(E) are then well defined, and for 1 <m <« + (n + 1)/2,
spaces I.(E) can be defined as in the case E = 8" (Definition 2.5 and Definition
2.8). Our results are formulated in Theorem 2.9 and Theorem 3.4, of which the
second theorem is the most important.

For sets B satisfying the restricted cone property it is possible to express some
consequences of our results by generalizing some concepts from the theory of spectral
synthesis. Thus it is natural to say that E is of spectral synthesis with respect
to Ly(R"), if I(H) = K(E). By our theorems this is true, if [x 4 (n+ 1)/2]=1,
that is to say if 1 << 2« 4 » << 3. Adopting a notion introduced by Herz [4] one
can say that F is a smooth set with respect to Ly (R"), if I;(E) = J,(E)). This
is always true if 2x 4+ n» > 1.

There are various possibilities for further generalizations. The spaces L (R"),
n > 2, can thus be replaced by spaces LE(R®), 1 < p << oo, defined by the norm

N lp
[/lf(f)l” (1 + [&)*dé|
R™
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and similar results hold for these spaces. The infinite differentiability of the mani-
fold M can be exchanged to differentiability up to a certain order, as was the
assumption made in the study [2]. In the cases when the Gaussian curvature of
M vanishes in some subset of ¥, or when the manifold M is of lower dimension
than » — 1, the corresponding problems can be stated but are in general still open.

2. Preliminaries

The following lemma of van der Corput type is of fundamental importance for
our investigation. The lemma is essentially due to W. Littman [5].

Lemma 2.1. Let ¢ € B(R™), m > 1, be a function with its support contained in
an open set B. Let vy be real-valued and infinitely differentiable in B and such that

o2y |
the inverse of the Hessian determinant E» ;;; | exists and is bounded in B.
i0Yi |
Then there exists, for every real number A, a positive constant D such thal
. ! —
/ev(<y’n>+w(y)§) <p(y)dy; < DA + ¢y <1 + In| ) , (2.1)
1+ [
Rm

for every n € R™, ( € R. For fixed m ,p,B and A, the same constant D can be
chosen for all functions v for which we have uniform bounds on the absolute values
of the functions, on the absolute values of each of their partial derivatives and on the
inverse of the Hessian of .

Proof of Lemma 2.1. 1t is possible to write ¢ as a finite sum of functions in
S%(R™), each of them with its support included in some closed sphere included in
B. Hence it is allowed to assume from the beginning that B is a sphere.

For any set of (n,{) such that |5]/(1 + |¢]) is uniformly bounded, the
inequality follows from the above-mentioned paper of Littman. The only thing
that needs to be checked, since it is not explicitely stated by Littman, is the claimed
uniformity property of the constant D. An examination shows, however, that
this is a direct consequence of his proof.

Hence we can restrict our attention to the case when

Inl > 2(1 + [Z])(1 4 sup |grad ]) .

0
We can then integrate partially p timesin the direction ¢ for which E Ly, =lnl,
and this procedure gives that the left hand member of (2.1) is dominated by
D'(Inl + 12DP (In] — [El(sup |grad p))*F < D"[n|*,

where D’ and D" are constants with the same uniformity properties as those
claimed for D. Choosing p > m/2 + 4, we obtain (2.1).
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We are going to study distributions on a fixed space R". Later on we assume
that n > 2, but the case n» = 1 can as well be accepted in this introductory dis-

cussion. Functions and distributions on the dual R™ are denoted by f, i, etc., in
order to distinguish them from functions and distributions f, u, etc.on the original
R".

Definition 2.2. For every real o, L.(R") denotes the Banach space of all Lebesgue

measurable functions f on (the dual) R* with a finite norm

AL = / F@)1 + (&) de,
Rn

and L7(R") denotes the Banach space of all Lebesgue measurable functions f
on (the dual) R* with a finite norm

Il = ess. sup. fi@)I(1 + 1)
fER”
We observe that any function f in Ly(R") or LY(R") can be considered as

a distribution in the space S’'(R"). Hence such a function f\ has, in ordinary
distribution sense, a Fourier transform f, and we prefer to normalize the Fourier
transformation in a way that corresponds to the formal relation

o = [ fgrae,
Rn
x € R*. We adopt the convention that whenever pairs of functions or distributions

s f or , b etc. are mentioned in the same context they denote pairs of Fourier
B Yy P

transforms.
Definition 2.3. FLL(R*) and ZLZ(R") denote the Banach spaces of Fourier

transforms f of elements f in LL(R") and L>(R") with the norms [|fi} and
[iflle, respectively, defined by

AL = 1AL 11 = 1A .

L7 (R™) can be considered as the Banach space of bounded linear functionals
on L;(R"), the corresponding is thus true for L®(R") and ZL.(R"), and we
define

(fr9)=(f.9) = ff(f)s?(—é)df,
R™

whenever f € 7L (R"), g € 7L?(R"). It should be observed that S(R") is a subspace
of L(R") and L*(R") as well as of the transform spaces, and that, by our definition
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(f>9) = @a)yf, 9>, (2.2)

whenever f or g belongsto S(R"), where {,> has the usual distribution meaning.

We need some simple properties of the space ZL.(R") and they are collected in
the following lemma. All that is stated in it is known, but we shall give the proofs
in order to avoid too many trivial references.

Levma 2.4.

1°. Let g € 7LZ(R") and suppose that (f,g) = 0 for some family of f€S(R"),
such that the family of f is translation invariant. Then the support of g 1is contained
in the set of common zeros of the functions f.

2°. B(R") is a dense subspace of FL,(R").

3°. Multiplication with a fized ¢ € S(R™) is a bounded linear transformation
from LL(R") to itself and from LT (R") to itself.

©. (fp.9)=(f.99), if fETLLRY, g€TLI(R"), ¢ €SRY).

5°. Every f€FLLR") can be approximated arbitrarily closely in FL.(R")
by elements of the form qf, where ¢ € D(R").

Proof of Lemma 2.4. 1° follows from (2.2) and elementary distribution theory.
Applying 1° to the family H(R") we find that g has empty support, hence g = 0.
Thus 2° holds by the Hahn-Banach theorem.

To prove 3° we observe that if f€ 7L (R"), ¢ €S(R"), then

fole) = / 7E — ez,
Rn

£ € R*. Hence by an easy application of Fubini’s theorem

Ifgl < 1AL g, (2.3)

and

Il < 1Az el .

and 3° follows.

4° is a direct consequence of 3° and Fubini’s theorem.

For the proof of 5° we choose a function ¢ € H(R") such that ¢(x) = 1, when
x belongs to some open set which contains 2 = 0. Then we define ¢, € H(R"),
e¢> 0, by the relation ¢,(x) = @(ex), = € R", and observe that |fp, — f|, — 0,
as ¢— 0, for every f € D(R"). By 2° it is thus enough to show that the operator
norm of ¢, when this function is considered as multiplier on “L}(R"), is uni-
formly bounded, as ¢-—0. By (2.3) this norm is

< / BERIL + £ ends < Il
J

if 0 <e< 1. 5°is thus proved.
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In the following we assume that » > 2, and that M isan (n — 1)-dimensional
infinitely differentiable manifold in R, without multiple points and with non-
vanishing Gaussian curvature. E is a compact subset of M and E° denotes its
interior with respect to M.

We shall introduce some spaces of distributions supported by XK. They are
needed in order to characterize different degrees of vanishing on £° for elements
in ZLy(R").

Definition 2.5. B,(E) denotes the space of all measures on R which can be
obtained from the uniform mass distribution on E° by multiplying it with functions
i S(R"), vanishing on E\ E° together with all their derivatives. For m > 2,
B.(E) is the linear space spanned by the measures in B,(Z) together with their
partial derivatives of order <m — 1.

The elements in B,(£) are obviously bounded and regular Borel measures.
The assumptions on M have moreover the following consequence. For every
x, € M there exists a neigborhood U, of x, with respect to M which, denoting
one of the coordinates in R* by z and the remaining (n — 1)-dimensional co-
ordinate vector by y, can be written in the form

{2z =wly), y €V},

where V is a closed ball in R"!, and where y is real and infinitely differentiable
with non-vanishing Hessian in V. Hence, if 4 € By(#) has its support in U, ,
its Fourier transform & can be represented in the form

fa(n , £) = (2m)™ / glom v g(y)dy
Rn—l
n € R™1, { € R, where ¢ € B(R*1) has its support in V°. It follows from Lemma
2.1, choosing 24 = m =n — 1 in (2.1) that |u(&)|(1 + &))"~ is bounded for
& € R*. Taking an arbitrary u € Bi(E), it can by a standard compactness argument
be partitioned into a finite sum of measures of the above type, and we obtain there-
fore the following lemma.

Lemma 2.6. (&)(1 4 |E)™D2 is bounded for &€ R", if u € B,(K).
Let us now assume that u € B,(¥) and that Dy is a partial derivative of u

of order p > 0. Then l/)\,u = Pp, where P is a monomial of degree p. Thus
D@ (1 + e
is bounded for & € R*, by Lemma 2.6. For u € B,(#) we can thus conclude that
(&) (1 - g

is bounded, for & € R®, and this proves the following lemma.
n+ 1
5 -

LemMA 2.7. Ba(E)c PLY(R™), of m <o +
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We are now prepared to introduce the subspaces of L.(R") which shall be the
objects of our investigation.

Definition 2.8.

1°. K(E) is the space of all functions in $(R"), which vanish in a neighborhood
of E with respect to R".

2°. For every integer m > 1, J.(H) is the space of all elements in SH(R"),
which vanish on F together with all their partial derivatives up to the order
m — 1.

3°. For « > — (n — 1)/2 and forevery integer m,1 <m <o + (n + 1)/2, L.(H)
is the annihilator in 7L,(R") of the subspace B.(E) of ZL®(R") (cf. Lemma 2.7).

4°. For every integer m > 1,Cn,(E) is the annihilator in FLY(R") of the
space Jn(E) in FLLR").

The following theorem contains some preliminary results on the relations between
the spaces introduced in Definition 2.8. The theorem is not entirely new and the
methods used in the proof are known. Cf. Reiter [7, pp. 37—39] and Varopoulos
[10] for results of a similar kind.

THEOREM 2.9.

1° TL(R") D L(E)D...D Iy wiymy(B), if = —

2°. FL(R™ o J (B )'_‘)J( )=

3°. Let g(&) = o(1 + |&))~=D2 as |&| — co, and let g have its support included
in E. Then g=0. Asaconsequence x << — (n — 1)/2 implies that K(E) = 7L, (R").

4°, Let g(&) = o(1 + &))"~ C=D2 as |&] — oo, when m is an integer > 1, and
let g have its support included in E. Then {f,g> =0 for every f € Jn(E). As
a consequence « > — (n — 1)/2 vmplies that K(H) = Jiyq@mi1y2(E).

5° Let a>—(n—1/2, 1 < m<ox-+ (n-+1}/2, and suppose that
SEYL RN C™YR"). Then f€IL.(E) if and only if f vanishes on E° together
with its partial derivatives of order S m — 1.

Proof of theorem 2.9. 1° and 2° are immediate consequences of Definition 2.8.

To prove 3° and 4° we shall use a method due to A. Beurling [1] and H. Pollard
[6] (cf. also Herz [3]). Let the distribution ¢ have its support contained in E,
and let f € P(R"). Choose ¢ € H(R") so that it vanishes outside {z||x| < 1} and
such that

n—1
2

(2m)—" /(p(x)dx =1.
R®
For every &> 0 we define ¢, by the relation ¢(x), = e "p(z/¢), « € R", and put
J=7f +f., where f, =f on E, = {z|dist(z, ) <2} and f =0 on CEK,,.
We define fx ¢, by the relation

@) = (@) /f — B, ()
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z € R*, and define f, +¢, and f ¢, in the corresponding way. We find
frop, €EBMRY, f +¢p, €HR") and f, * ¢, € K(E), and form

Sopd=—Fro, .0 +<{foxo. .00+ xp. . 9.

The last term vanishes and hence

@y Kf 5 90! S/ F&1 11— p(e8)]1§(— &)l + fiﬁ(E)H@(sE)ll?l(— £)ld¢ .
R" R"

fe S(R") and hence the first term of the right hand side tends to 0, as ¢ — 0,
by dominated convergence. The second term is, by Schwarz’ inequality, for any
real f,

\ R 12 . . 12
< o ( / i© m) ( / PG (— fe) lzdé) <
Rn

R"
12

12
=< 8""’2_’3<(2ﬂ)“"‘/§fs(96)&21196) (/K(P(E)\z(l + [ENPIG(— &le) (L + lE/Sl)'Zﬂdé:)
Rn Rn
The second factor of the last expression tends to 0, by bounded convergence,
if (§(&)] = o(1 + |£|)?, as |&| — co. Hence the geometric properties of E, show
that {f,g> =10, if
im g=2=71% sup |f(x)]
;:0 xEE2£
is finite.
Choosing g = — (n — 1)/2, wehave {f,g> =0, for every f € $H(R"), hence
g = 0. The annihilator of K(¥) in LY(R") is by Lemma 2.4, 1° and elementary
distribution theory the subspace of all g € LY(R") with support included in E.
If « < — (n—1)/2, theonly such ¢ is the element g = 0. Hence 3° is proved.
4° is proved in the same way.
In order to prove 5° we use a method of L. Schwartz [8]. If u € Bj(E) and if
D is a partial derivation operator of order p, 0 < p <m — 1, we obtain by »
partial integrations

(f» Du) = (22)™(f , Dpy = (2m)™(— 1)}XDf , py -

It follows from this that (f, Du) vanishes for every u € Bi(E) if and only if Df
vanishes on E°. Varying p and D we obtain from this the property 5°.
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3. The main theorem

We assume in the following that « > — (n — 1)/2.

It is a consequence of Theorem 2.9, 5°, that if E° is non-empty, then all I.(%)
are different whenever they are defined. Another consequence is that if E° is non-
empty, then Jn(Z) is included in I.(E), but J,_;(E) is not included in I.(E),
whenever the spaces are defined. Since I,(E) is closed, we can conclude that all
Ju(E) are different, if 1 <m <« 4 (r + 1)/2 and E° is non-empty. As for the
inclusion J.(E) C I.(E) it is easy to see that if the boundary of E in M is too
irregular, then the inclusion may be strict. This is for instance the case if « = 0
and E contains an isolated point. We shall however in this section introduce a regu-
larity condition on E which guarantees that J.(E) = I.(E), 1 <m <« 4+ (n 4 1)/2.
We shall in fact prove a slightly stronger result, namely that every g € C..(E) is
the limit in o(FLY(R") , 7Ly(R™) of a sequence {g,}7 , g, € Bu(E).

We shall use the following simple localization lemma, where the notion of weak
convergence refers to o(7 LY (R™) , 7LL(R™)).

LemmA 3.1. Every g € Cu(E), 1 <m <& + (n + 1)/2, 1is the weak limit of a
sequence {gn}y, gn € Bu(H), if every point x € E has an open neighborhood U,.C R"
such that every g € Co(E N U,) is the weak limit of a sequence {g,}7, ¢, € Bu(E).

Proof of Lemma 3.1. The neighborhoods U, cover the compact set B and we
can therefore select a finite subcovering (U,){. There exist functions ¢, € H(R™),
p=1,...,q,suchthat the support of ¢, isincludedin U, and such that Xp, =1
in an open set, containing E. By Lemma 2.4, 3°, ¢,g € 7L7(R") and, by Lemma
2.4, 4°, @,0 €Cu(EN T,). Now g = ZT¢,g, and since every ¢pg is a weak limit
of the desired kind, the same holds for g¢.

The regularity condition is introduced by the following two definitions.

Definition 3.2. A closed set F € R* issaid to have the restricted cone property
at a point y, € R*1, if there exists a neighborhood V, of y, and a cone K defined

by
K={yeR*|(1 -9yl <<y.y»> <9},
where 0 <6 <<1,y, €R*, |y,| =1, such that

y—KcF, (3.1)

for every y € F N V,.

Definition 3.3. The set Ec M is said to have the resiricted cone property,
if for every x € E and every sufficiently small neighborhood V of 2 with respect
to R®, the orthogonal projection of EN V onto the tangent hyperplane at «
has the restricted cone property at the point . '

We are now in a position to formulate our main theorem.

THEOREM 3.4. If E has the resiricted come property, then every g € Cu(E),
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n+ 1
2
of elements in Bn(E). In particular, this implies that Ju(E) = I.(K).

The projection onto the hyperplane in Definition 3.3 can obviously be substituted
by a projection onto a suitably chosen coordinate hyperplane. Using such a modi-
fication of Definition 3.3 and applying the localization lemma 3.1, we see that
Theorem 3.4 is proved, if we can prove the following proposition.

ProrositioN 3.5. Let F, Vy and K be subsets of R, satisfying the properties
requested in Definition 3.2, and let V, and V, be open sets in R** such that

1<m<a+ , 18 the limit in o(ZLT(R™), ZLLR™) of a sequence (g,)7

VocVic VicV,
and such that
yo—KcV,,yy — KcCV, (3.2)

for every y, € Vo9, €7, . _
Let v be real and infinitely differentiable with non-vanishing Hessian tn V,.
We define in R* the sets

My ={y,2) |y €V,, z =19y}
B, ={y,?) ly€FNV,, 2=y}
By ={ly,?) ly€FNV,, z=y)}.
My isthen an (n — 1)-dimensional manifold with the same properties as those requested

for M. E, and E, are considered as subsets of M,.

n -1
Let 1 <m <« -+ — 9 € Cu(E,). Then there exists a sequence (g9,)1,
g, € Bu(E,), which converges in o(FL2(R™) , ZLL(R")) to g¢.

4. Proof of Proposition 3.5

This entire section is devoted to the proof of Proposition 3.5, which as we have
remarked earlier implies our main result, Theorem 3.4.

We shall first introduce two auxiliary functions g and y. g€ DH(R"1) is a
function with its support contained in K, and satisfying

(2ﬂ)“‘"""/ﬁ(y)dy =1. (4.1)
Rn-—l

y = S(R"1) is assumed to take the value 1 in a neighborhood of ¥, and to vanish
outside V,. We use the notation y as well for the function on R™ with values
y(y) for every (y,z) € R"
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We put
Wo={y,») |y€V,, z€R}
Wi={ly,2)|lye€V,, z€R}
We={(y,2)|ly€V,, z€R},
and introduce a bijection § of W, onto itself by the definition

S(y,Z)Z(y,Z—’lp(y)),

(y ,2) € W,. Obviously S and its inverse S~ are infinitely differentiable on W,.
For every differentiable function ¢, defined in a subset @ of W,, @8 and
@oS1 are infinitely differentiable functions defined in S-4Q) and S(Q)
respectively. For a distribution », supported by a subset @ of W, we can in
an analogous way define distributions »o 8 and »o 871, supported by S-4Q)
and S(@), respectively.

For any h, 0<<h<C1l, we denote by pfr the measure supported by
{(y,2) |y €ER™L, 2=0} and with density A~ ""D8(y/h), y € R™1. pBF denotes
the measure supported by the same hyperplane, but with density hA=""Yg(— y/h),
y € R™L

Defining convolution between function and measure in the usual way, we see
that if ¢ isinfinitely differentiable on W,, then by (3.2) there exists a differentiable
function on W,, obtainable by convoluting ¢ and fi.. We call this function
@ fr. I v is a distribution, with support included in W,, then by (3.2) » = f¥
has its support included in W,. Using this we can give the following definition,
where ¢ is a distribution, satisfying the conditions of Proposition 3.5.

Definition 4.1. For every h, 0 < h <1, we put

Tig=(geoS™)=p)o8
and, for every f€ 9(R"), the function 7T,f is defined by

Tufly »2) = y@((fo 87) = Bu) o SNy , 2), if (y,2) €Wy,
Thf(y,Z)ZO, if (y,z)ﬁWl
It is easy to see that these definitions make sense. We have use for the following
lemma, where we assume 0 << A << 1:
Lemua 4.2,
1°. Ti¥g € Bu(Ey) .
2°. For every f€ H(R") we have T.f € HB(R") and
ITf — 3flly—0, as h—0.
3°. There exists a constant C, independent of h, such that

ITfle < Cllflly

if f€ DR
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We postpone the proof of the lemma and show first how the lemma can be
used to prove Proposition 3.5.

By Lemma 4.2, 3°, T, can be extended to a bounded linear operator from
ZL(R") into itself, with operator norm < C, for every h. We call its adjoint As.
For every f€ H(R"), elementary distribution theory gives

2m)(f, Arg) = )" (Twf , 9) = YL((fe 8 % Bu) o8], 9> =
= {((fe SN xp)eS,g>={f,((go8 ") xpF)o8) =
= {f, T¥g> = 2n)(f, T¥g)

where the symbol {, > refers to distributions on W,. Hence A.g = Tjyg.

Now it is easy to conclude that TjFg tends to ¢ weakly, as h-> 0. For the
norm of the operator A, counsidered as a bounded linear transformation from
FLP(R™) to itself is < C, hence the elements Ay have uniformly bounded
norm in ZLP(R"). Hence it suffices to show, that (f, 4wg) = (f,9), as h—0,
for every f€ S%(R"). But for such elemnts f

(f,Ahg)—(f,g)=(Thf—)/f,g),

and the right hand member tends to 0, by Lemma 4.2, 2°

And since, by Lemma 4.2, 1°, we have Tjg € B,(E,), for every k, 0 << h < 1,
Proposition 3.5 is proved.

Proof of Lemma 4.2.

1°. We know that the support of ¢ is included in E, hence g oS! has its
support included in the orthogonal projection of E, into the coordinate hyper-
plane {(y,z2) |y € R*, 2 = 0}, in the following called the y-hyperplane. By (3.1)
and (3.2) and by the definitions of E, and E; we find that (g0 S-1) = g, for
every h with 0 <<k <1, has its support included in the orthogonal projection
of E, into the y-hyperplane. Hence the supports of the distributions Tjg are
included in Z,.

It is wellknown (Schwartz [8], p. 101) that we have for some ¢ a representation

go o §S—1 — z‘u ® §(p)

where p, are distributions on R™!, with compact support and where &P is the
derivatives of order p of the Dirac measure on R. This has then to be inter-
preted in the sense that the representation of R* as R™! X R corresponds to the
coordinate representation (y,z), y € R*?1, z € R. From this it is easy to under-
stand that we have a representation

q—1
(goS ) xff =2 gp @7,
p=0

where ¢, now belong to (R™1). It is seen from this that the support of every
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@p ® 8P is included in the support of (g0 8-1) = ¥, and from this we see at once,
by applying the mapping S to the two members, that TF¥g € By(E,).

It remains to show that ¢, % 0 implies that ¢ < m. If @, # 0, then it is
possible to find a function ¢ € H(R") with support included in W,, vanishing
on the y-hyperplane together with all derivatives of order < ¢ — 2, but such that

{ps(goS8)=pi> 0.
Hence
Ap*p)e S, 9> +#0,
which shows that there is a function in J,_,(%;), which is not annihilated by g.
By the assumption g € O.(E,), and thus ¢ < m.
2°. The infinite differentiability of TW.f, for f€ $%(R"), is a consequence of
the infinite differentiability of (fo S—1) %8s in W, and of the assumption on the
support of y. The compactness of the support is evident. Hence T,.f € H(R™).
The supports of T,.f for f fixed, % variable, are in fact included in a fixed com-
pact subset of W, Hence it suffices to show, due to well-known estimates, that
all partial derivatives of 7f converge uniformly to the partial derivative of f.
It is evident that it suffices to show that the partial derivatives of k* fx con-
verge uniformly to %k on every compact subset of W, if L € %(R"), which is
immediate.
3°. Let us agree in the following to interpret the product of y and any complex-
valued function defined in W, as a function on R™ with values determined by
the product in W;, and with the value 0 outside W,. Then for f€ $(R"), with
the changes in the order of the integration motivated by absolute convergence,
we have, for (y,z) € R",

Tif(y , 2) = 7(y) / Ty — o2+ 9y — yo) — v~ DB(go/h)dy, =
Rn—~1 V
= 7(y) / fly — ko, z 4+ yply — ho) — y(y))B(o)do =
Rn-—l
= »(y) / die ™ / / e~ o—tm o +wly=h)=v) fp | 2)B(o)dndo -
Rn—l Rn-—-l
Hence, by Fourier’s inversion formula, we have for every (y, () € R*
2n) 7 | TWfly , 2)e*dz =
R
=) / g =t W=hd=v flyy | £)B(o)dndo ,

Rn—l Rn—l
and forming the Fourier transform of 7T.f we thus obtain
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(2ay-1 Ty, &) = (2)2 / / Tufly , 6%+ ey = (4.2)
R"I R
:/d%f(’?o, C)E’(’I’] 77]0 ) C :k) ’
Rn—-l

where (5, () € R® and where, for every (5,7,,) € R*1

E(,? 20> Gy h) = ei(<y!7/—’717)“"}”!7:710>+§(W(3’_h0)"/«’(y))y(y)ﬁ(g)dydo- .

Rn—l Rn_l
The function (y, o) — (w(y — ho) — w(y))/k is infinitely differentiable on the
support of (x,y)-> p(y)B(c) because of (3. 2) and each partial derivative has a
bound, uniform in A. Furthermore, the Hessian of the functionis — H(y — ho)H(y),
where H is the Hessian of p, hence its inverse has bounds, which are uniform
in A. Applying Lemma 2.1 with m = 2n — 2 and 4 = »n + |x], we obtain for
every (,%,, () € R¥ 1,

ln — nol>“"“’°"
1+ [Ch| ’

where D is a constant, independent of %, and by (4.2) we obtain

By, 50, £ B)] < D(L+ ;@hb-@—n(l N

1T = / i / T, O+ [, Dfdy < (4.3)
R

(2n1‘"/dé“/d%lfno, I/ (1m0, 5 WL+ (n, O))dy .
R Rn—

But elementary inequalities show that

|7 — 7
L4 ig)

for every (n,n,,¢) € R and hence
flE(n 05> &5 W)L+ |(n, O))¥dy <

Rn-—l

< D(1+ 1o D)) / (1 & |hp-e- (1 N H;;‘[)_”dn _

1 — "o I)""',

fod
) < (14 llmo, D) <1+1 + |RE

(L1, 2 <+ |(n, C)l)""(1+

Rn-—-l
= Dy(1 + [(no» DD,
for every (7,,() € R", where D, is independent of 4. Hence by (4.3)

ITwflly < (22" Dylifll »
and 3° is proved.
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