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1. Introduction

In this paper, we consider the boundary and periodic value problem for systems
of nonlinear second order differential equations

z"(t) = f(t,z(t),2'(t)) ae. t € [0,1],
()
z € BC

where f : [0,1] x R?» — R" is a Carathéodory function and BC denotes a boun-
dary condition such as non-homogeneous Dirichlet, Neumann, Sturm-Liouville con-
ditions, or the periodic condition:

P) '7:(0) = -7"(1),
z'(0) = z'(1);

(SL) { Ao.’L‘(O) - ,3011,"(0) =To,
A1z(1) + frx'(1) = ry;
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260 M. FRIGON

where A; is a n x n matrix (possibly nonsymmetric) for which there exists a; > 0
such that (z, A;z) > o;||z||? for all z in R™; §; =0,1; a; + B; > 0; i =0, 1.

The literature on this problem is voluminous, and we refer to [1-4,7-11] and
the references therein. Recall that in the scalar case (n = 1), many results rely on
an assumption of the following form:

(1.1) zf(t,z,0) >0 for |z| =M,
This assumption was generalized by one of existence of upper and lower solutions:
(1.2) there exist ¢ < ¢ € W1([0, 1], R) such that

¢"(t) > f(t, 6(t),4'(t)), and ¥"(t) < f(t,9(t),¥'(t)) ae.te€[0,1].

The condition (1.1) was generalized for systems of differential equations by the
following assumption from which arose many results (see [1,3,8,10]):

(13) there exists a constant M > 0 such that
' (z, f(t,2,p)) + lIpll* = 0 for ||z|| = M and (z,p) = 0.

On the other hand, the assumption (1.2) was generalized in a number of ways, of
which we mention the following two:

( there exist ¢ < ¢ € W>1([0, 1], R™) such that

¢ > filt T, ooy Bic1, Bis Tit 1y« - Ty Pls - -+ 5 Pie 15 B Pick 15+ 5 Pr)s
(1.4) P! < filt,T1s s Tim 1, Wiy Tig 1y o Ty P1y - - -5 Pie 1 Yio Pik 1y -+ -3 D)
for ¢;(t) <z; < ;(t), —c; < pj < ¢4 for j #14, and c being any

| vector satisfying |¢}(t)], [¥i(t)] < ci (see [2]);

¢"(t) = f(t,¢(t), and ¢"(t) < f(t,¥(t)) ae te[0,1]
This last assumption was given in the case where the considered problem was the
periodic problem and the function f did not depend on the derivative z’ (see [11]).

I recall also that those assumptions came with some other assumptions related
to the boundary conditions. In particular, the assumptions (1.1) and (1.3) are
deficient for the non-homogeneous Neumann problem.

Note also that in the scalar case, the assumption of existence of upper and lower
solutions (1.2) generalizes the assumption (1.1). This is not the case for systems;
that is, the assumptions (1.4) and (1.5) don’t generalize the assumption (1.3).

In this paper, we introduce a new notion which is a natural generalization
of the assumption (1.3). Moreover, in the scalar case, this notion is equivalent
to the notion of upper and lower solutions. Furthermore, using this notion, we
obtain existence results for problems with periodic, or non-homogeneous Dirichlet,

1.5) { there exist ¢ < ¢ € W21([0,1],R") such that
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Neumann, or Sturm-Liouville boundary conditions. Qur Theorems 4.1 and 4.2 are
generalizations of some results obtained by Bebernes and Schmitt [1], Fabry and
Habets [4], and Hartman [8). As we mentioned at the beginning, our results are
given in the Carathéodory context. The proofs rely on the Schauder Fixed Point
Theorem.

The author wishes to thank Professor Granas for a useful discussion.

2. Preliminaries

In this section, we establish notations, definitions, and results which are used

throughout this paper. We denote by (,) the scalar product, and by | - || the
Euclidian norm in R™. The Banach space of the k-times continuously differen-
tiable functions = with the norm: ||z||x = max{||z||o, ' llo, ., [|[z®*)||g} is denoted

by C*([0,1],R"), where ||z||o = max{[|z(t)]| : t € [0,1]}. The Sobolev class of
functions in  C'([0,1],R™) with absolutely continuous derivative is denoted by
W21([0,1],R"). We define Cy([0,1],R") = {z € C([0,1],R*) : z(0) = 0}, and
CE([0,1],R™), (resp. W2([0, 1), R™)) the set of functions z € C*([0, 1], R") (resp.
W21([0, 1], R*)) satisfying the boundary condition € BC. Let L([0,1],R™) de-
note the space of integrable functions, with the usual norm || - Iz

Let € > 0, we define the operator L. : C}([0,1],R?) — Co([0,1],R™) by:

L(z)(t) = z'(t) — 2'(0) — 5/0 z(s)ds.

A function F : C'([0,1],R™) — L'([0,1],R") is called integrably bounded if
there exists an integrable function A in L([0, 1], [0, 00)) such that
IF(z)®)| < h(t) ae. te[0,1], and for every z in C'([0, 1], R™).

We associate to F an operator N : C1([0,1],R"?) — Co([0,1], R™) defined by:

t
Np(z)(t) = / F(z)(s)ds.
0
We recall the following result (see [7]).

LEMMA 2.1. If F: C'([0,1],R"™) — LY([0,1], R") is a continuous and integrably
bounded function, then the associated operator N is continuous and compact.

We say that a function f : [0,1] x R* — R" is a Carathéodory function
if: (i) for every (z,p) in R?", the function t — f(t,z,p) is measurable; (ii) the
function (z,p) — f(t,z,p) is continuous for almost every ¢ in [0,1]; (iii) for every
k > 0, there exists a function Az in L([0, 1], [0, 00)) such that £t z,p)|| < hy(t)
a.e. t € [0,1], for all ||z < k and ||p|| < k.
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For sake of completeness, we state the following results which will be used later
in this paper.

LEMMA 2.2. Let u : [0,1] — R" be an absolutely continuous function and let
E be a negligible set in R™, then meas{t € [0,1] : u(t) € E and u'(t) # 0} = 0.

LeEMMA 2.3. Let u € W21([0,1],R) and € > 0. Assume one of the following
properties is satisfied:
() w”(t) > 0 ae. t € [0,1),a0u(0) — bou'(0) < 0, aru(l) + b1u'(1) < 0,where
ai b; >0, and max{a;,b;} >0, max{ag, a1} > 0;
(ii) w”(t) — eu(t) > 0 ae. t € [0,1],a0u(0) — bot'(0) < 0, ayu(l) +biu'(1) <
0,where a;,b; > 0, and max{a;, b} > 0;
(iii) w”(t)—eu(t) >0 ae.t € [0,1],u(0) =u(1), u(0) <0 or v/(1)-u'(0) <0.
Then u(t) <0 for all t € [0,1].

Let us consider the following problem:

%) z'(t) = f(t,z(t),z'(t)) ae. t€0,1],
z € BC

where f :[0,1] x R*® — R™ is a Carathéodory function and BC denotes one of
the following boundary conditions:

z(0) = z(1),
P
) { '(0) = ='(1);

(SL) { Apz(0) — Boz’(0) = o,
Az(1) + pia’(1) =7y
where A; is a n X n matrix (possibly nonsymmetric) for which there exists a; > 0
such that (z,A;z) > oy||z||? for all z in R™; B; =0,1; a;+5; >0, ¢ =0,1
In particular, (SL) includes non-homogeneous Dirichlet and Neumann boundary
conditions. A solution to (x) is a function z € Wé’l([O, 1], R™) satisfying (x).

Now, we introduce the notion of solution-tube to the problem (x). This notion
will play an essential role in our existence results.

DEFINITION 2.4. A solution-tube to the problem () is a couple (v, M) where M
is a non-negative function in W'([0,1],R), and v is a function in W'([0, 1], R™)
such that:

(i) (@=v(t), £(t,z,p)—v"(O) +llp—v DI > ME)M"($)+(M'(£))? and for all
(z,p) € R®® such that ||z — v(t)|| = M(t), and (z — v(t),p — o'()) =
M(t)M'(t); and v"(t) = f(t,v(t),v'(t)) a.e. on {t € [0,1] : M(t) = 0}:
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(ii) if BC denotes (SL), ||lro — (Aov(0) —Bov'(0))ll < aoM(0)—BoM'(0),||r, —
(A1v(1)+ 81" (D))|| £ a1 M(1)+ 1 M’'(1);and if BC denotes (P), v(0) =
v(1), [[v'(1) —v'(0)]] < M’'(1)—M’'(0), and M(0)= M(1).

Remark that if BC denotes the homogeneous boundary condition (SL) (i.e.
ro = r1 = 0) or the periodic condition (P), to say that (0, M) is a solution-tube to
(*) with M > 0 being a constant, is equivalent to have:

(z, f(t,z,p)) + ||p||> > 0 ae. t€[0,1] and for all (x,p) € R
with ||z|]| =M and (z,p) = 0.

This condition was considered by many authors, we mention [1,3,8,11].

Remark also that in the scalar case, the notion of upper and lower solutions to
(%) is equivalent to the notion of solution-tube to (x).

Indeed, if ¢ < ¥ € W21([0,1],R) are respectively lower and upper solutions to
(%), then ((¢+4)/2, (¥ — ¢)/2) is a solution-tube to (x). Conversely, if (v, M)
is a solution-tube to (x), then v — M and v + M are respectively lower and upper
solutions to (x).

3. Main Theorem

Before the statement of the main existence result for the problem (%), we intro-

duce some notations.
Let v € W1([0,1],R"), and M € W21([0,1],[0,00)). Define

{ lIrall + 1| Asll (M(3) + [lo(@)]),  if BC = (SL), and 8; # 0,

00, otherwise
i=0,1;
9y = min{|M'(t)| : M(t) =0}, f{t€[0,1]: M(t)=0}#40,
2= { 00, otherwise;
and

c= C(BC, ’U,M) = min{pO:Pl,Pz}-
We may now state our main Theorem.

THEOREM 3.1. Let f:[0,1] x R?® — R" be a Carathéodory function. Assume
there exists (v, M) a solution-tube to (x) such that ¢ = ¢(BC,v,M) < co. In
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addition, suppose there exist y € L([0,1],[0, 00)) and a Borel measurable function
¢ : [0,00) — (0,00) such that

(2, p)| < ~(2) ¢(llpll) ae. ¢t and for all (z,p) with ||z —v(t)]| < M(¢);

and

fmﬂ>|| ||
. 9(s) " T

Then the problem (x) has a solution such that ||z(t)—v(t)|| < M(t) forallt € [0, 1].

To prove this theorem, we will modify the function f. To this modified function,
we will associate a problem for which we will deduce the existence of a solution.
Finally, we will observe that this solution is in fact a solution to our original problem
(x). In order to do that, we need to introduce some notations. Before that, we give
some examples.

ExAMPLES 3.2. (1) The following problem has a solution.

{ 2"(t) = &/ (1) — |lz(®)|| 2(£) + (L,0,... ,0),
2(0) = z(1) = (0,... ,0)

Verify that v(t) = 0, M(t) = t — %, ¢(s) = s+ 17/16, (&) = 1, satisfy the
assumptions of Theorem 3.1. Consequently, this problem has a solution such that
lz(t)]| < t—t2. Observe that there is no constant M such that (0, M) is a solution-
tube to this problem.

(2) The following problem has a solution.

{ () = (z'(t) — (¢,... . 1) (=) + 2),
z(0) = (0,...,0), z(1)=(1,...,1)

Verify that v(t) = (£,...,5), M(t) =82, ¢(s) = (s+vR)(2+vA), 7(t) = 1,
satisfy the assumptions of Theorem 3.1. Consequently, this problem has a solution
such that ||z(t) — (%, el %)” < 52@ Observe that if we look for a solution-tube of
the form (0, M(t)), then we must have ||z(1) — (0,...,0)|| = ||(1,...,1)|]|=v/n <
M(1). Therefore (0, M (t)) gives a worse approximation of the solution. Note also
that there is no solution-tube (0, M) with M a constant.

Let (v, M) be the solution-tube to (x) given in Theorem 3.1, and let K be a
positive constant which will be determined later. To (¢,z,p) € [0,1] x R*", we
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associate Z,p, and P given by:

M@ .
i — { Iz —v@)| T (@ — () +o(t), if |z —e@)| > M(2),

T, otherwise;

K / ' i ot
__ { =@ v Y@, e =) > K,
b, otherwise;
and
D+ (z—v(t))x
M) (z-o(@5- V) |
(uz T e ) il > MG
. ,
=15+ (1 - ) B @ = w(e), i M) > 0, e~ o0 < M),
and |lp - (9] > K,
\ D otherwise.

Observe that ||Z]], ||7]], |P]| are bounded independently of (¢, z, p).

REMARK 3.3. If ||z — »(t)|| > M(¢) then
(@) Iz —v(@®) = M(2),
(i) (—o(8),p—v'(#)) = M()M'(D), o
(i) 15— O =[5 v + ()2 - S DL OF,
(iv) if K > 2||M’{|o, then there exists a constant Ko depending only on ¢’ and
M’ such that ||B]|? < ||p||* + Ko-

Let £ > 0, we define the functions fi, 2 : [0,1] x R?" — R” by:
M(t Mt
MOz (1o 20 5

T — (@1 e — (0]
fi(t, z,p) = o M"(2) —w if |z — v
(0 + @ -v@)), it - vl > M),
f(t’xaﬁ)a otherwise;

f2(t) $7p) = fl(t,l‘,p) —€7.

Observe that fi(t,z,p) = f(t,z,p), fao(t,z,p) = f(t,z,p) —ex on {(t,z,p) :
lz — v(@)| < M(t), |lp —v'(t)|| < K}, and there exists h in L*([0,1], [0, 0)) such
that ||fi(t,z,p)|| < h(t) a.e. t, and for all (z,p) € R*™, i=1,2.
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To the function f;, we associate F; : C1([0,1],R*) — L([0,1],R"), (i = 1,2),
an operator defined by:
F.,'(.’L')(t) = .fi(tv .’L‘(t), .’L"(t))

The function f;, and consequently f2 are not necessarily Carathéodory functions,
but we have the following result:

PROPOSITION 3.4. Let f : [0,1] x R?™ — R™ be a Carathéodory function
and let (v, M) be a solution-tube to (x). Then the previously defined operator
F; : C([0,1],R™) — L(]0,1],R") is continuous and integrably bounded.

PROOF. Obviously, F; is integrably bounded. Therefore, it is sufficient to show
that if z, — z in C([0,1],R"), then

(3.1) fit, za(t), ' n(2) = f1(t,z(t),2'(t)) ae. te€]0,1]

The conclusion will follow from the Lebesgue Dominated Convergence Theorem.

Since f is a Carathéodory function, it is clear from the definition of f; that the
relation (3.1) holds almost everywhere on {t € [0,1] : ||z(¢t) — v(t)|| # M(¢)}. On
the other hand, by Lemma 2.2, we have

(z(t) —v(t),z'(t) —v'(¢)) = M({t)M'(t) ae.
on {t € [0,1] : Jlz(t) — v(t)|| = M(t) > 0}. Therefore, it is easy to verify that
almost everywhere on that set,
zI(t) = Z'(t).
Thus, the relation (3.1) is satisfied almost everywhere on that set.

Finally, on {t € [0,1] : |l=(2) — v()]l = 0 = M()}, =(t) = v(t), 2'(t) = v'(2),
MI(£) =0, M"(t) = 0 ace; so, fi(t,a(t),a'(8)) = F(t,a(t), (1)) = £(t,0(t),'(£))
= v"(t) a.e. Observe that, on that set, fi(t,y,p) = v”(t) a.e., for all p, and
y # v(t). This completes the proof. O

COROLLARY 3.5. Under the assumptions of Proposition 3.4, the operator
Fy : CY([0,1],R™) — L([0,1],R") previously defined is continuous and integrably
bounded.

Now, we consider the associated problems:

) {:z:”(t) = fi(t,z(t),z'(t)) a.e. t€[0,1],
' x € BC

z"(t) — ex(t) = fa(t, z(t), 7' (t)) ae. te€[0,1],
(*)2 {
z € BC
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Fix € > 0 such that the operator L. : C§([0,1],R™®) — Co([0,1],R™) defined
in §2 is invertible. In particular, if BC' denotes (SL) with max{ag, a1} > 0, then
we can take ¢ = 0 (see [6]).

The following result gives a priori bounds on the solutions to the problem (x)s.

LEMMA 3.6. Let f be a Carathéodory function and (v, M) a solution-tube to
(x). Then every solution to () satisfies |lz(t) —v(t)|| < M(t) for every t € [0,1].

PROOF. First of all, we remark that

(3.2) (z—v(t), fult,z,p) — 0" (1) + I — ' (&)||”

1 R {(z —v(t),p—v'(1))?
2 M"(1) ||z — v(B)|| + EETOIE

a.e. t € [0,1], and for every (z,p) € R?", with ||z — v(f)|| > M(¢).
Indeed, if |z — w(¢)]] > M(t), using Definition 2.4 and Remark 3.3 give

(@=v(®), fit,z,p) —v"(t)) +Ip — V' @)
= (@ — (1), f(t,Z,P) — v" (1)) + M"(2) (llz — v()l| — M(2)) + ||]p — »'(2) ||
> MEM" () + (M'(t)* + M"(¢) (= — v(®)ll — M())
+llp =o' @I — IF - 'O

= M"(8) |z — v(®)] + I — DI — |5~ v (R)]F + EZ2P VO

Il —v(®)I?

(@ —v(t),p —v'(¢))?
lz—v@I*

{z —v(t),p - v'(1))?
llz — v(B)]|?

*(“ﬁ)"

r—v —v'(t))?
(“P —v'(t)|? - ( ”m(tl’ﬁ(t)llz(t)) ) , otherwise,

[ M7 (t) ||z — w(2)]| +

if [lp - ') < K,

MY(t) ||z = w(B)l] +

= 4

{z —v(t),p —v'(t))*
lz — ()2

On the other hand, let z be a solution to (x)2. So,

2 M"(t) |z — o)l +

(3.3) " (t) = falt, z(t),2' (1)) + ez (t) = fi(t, z(t), 2’ (1)) + e(z(t) — F(2)).
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On the set {t € [0,1] : [|z(¢) — v(?)|| > M(t)}; we have

= 0~ 9.2 — @)
Ie®) = vl F(®) — (0]

which exists for all £, and

() — vty =8B =@, 2" — V() + (1) - v )]

EGELT]
{alt) — o(8), (1) — v (1)
3.4 le) v

Fix § > 0, and let Es = {t € [0,1] : ||lz(t) — v(t)|| > M(t) + §}. The function
lz(t) — v(t)| belongs to the space W*'(Es,R). Therefore, if we note w(t) =
lz(t) — v(#)|| — (M(t) +6), then, using the relations (3.2), (3.3) and (3.4), we
verify that:

w” (t)—ew(t)

- z(t), ' (t)) — v" ell1- __M®) z(t) — v
(o0 =00 50,200, 0) =) ¢ (1 - ) e - o)
@ — oo
L 2@ VO _ (@) — o(t),2) - v(e)?
()~ v(o)] Fe(® — (O

— M"(t) — ew(t)
>e6 > 0.

In order to apply the maximum principle (Lemma 2.3), we need to verify some
boundary conditions. If BC denotes (SL) then, either

w(0) <0 or apw(0)— Bew'(0) < 0.
Indeed,
ll2(0) — v(0)|| (2l|(0) — w(0)|| = Boll=(0) — w(0)")
< (2(0) — v(0), Ao(z(0) — v(0)) ~ Bo(z'(0) — '(0)))
< [l2(0) — v(0)| [|Iro — (Aov(0) — Bov'(0))]|
< [|12(0) = v(0)|(x0 M (0) — BoM'(0))
< [l=(0) — v(0)|(co (M (0) + 6) — Bo(M + §)'(0)).
Similarly, either _
w(l) <0 or ajw(l)+ Gw’(1) <0.
On the other hand, if BC denotes the periodic boundary condition (P), then

[l(0) ~ w(0)]| = l|l=(1) —w(1)Il, M(0) = M(1),
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and, either
lz(0) —v(0)| <0 or w'(1)—w'(0)<o0.
Indeed,

lo(1) = ()’ - 12(0) — v(@) ] = £ ||:((g))_v£?3)ﬂ V(1))

< [lv'(1) = ()l < M'(1) = M'(0) = (M +6)/(1) ~ (M + 6 (0).

By Lemma 2.3 applied to w, we deduce that ||z(t) — v()|| < M(t) + 6. But this
inequality holds for every § > 0; therefore, ||z(t) —v()|| < M(t) for every ¢ € [0,1].
This completes the proof. )

Now, we can prove our main Theorem.

PROOF OF THEOREM 3.1. To prove this theorem, the constant K will be chosen
appropriately, and we will show that the problem (x); has a solution z satisfying
() — (@)l < M(t), and ||l2'(t) — o'(#)|| < K. Thus, using the definition of fs,
this solution will be a solution to our original problem ().

By Lemma 3.6, we know that every solution to (), satisfies lz(t) — v(@)| <
M(t). Now, we will determine K in order that ||z'(t)—v'(t)|| < K for every solution
to (%)a.

Let z be a solution to (x)2 and ¢ = ¢(BC,v, M) be the constant previously
defined. By assumption, ¢ < co. Using the boundary condition, we can show that
there exists ¢o € [0, 1] such that ||z’(¢)|| < ¢. Fix K > ¢ such that

K
ds
3.5 1 < —_—,
(35) Il < [ 5
and choose K such that
(3.6) Ipll < K implies  [lp—o'(t)]] < K for all ¢ € [0, 1].

We claim that ||z/(#)|| < K for all £ € [0,1]. Suppose that lz’(¢1)]| > K for some
ty € [0,1]. Then, there exist t,t3 € [0,1] such that ||2/(t)|| = ¢, Iz’ (&s3)|| =
and ¢ < ||#/(¢)|] < K for all ¢ between #, and t3. Without loss of generality, assume
that ¢ < t3, then

{z'(2), ="(t))

L FTOT

which exists for all £ € (is,¢3], and
(1) = f(t,z(t),2'(t)) ae. tE€ [ty,ts]
by the definition of f;. Thus,

=" @O < =" < v@) sz’ (D)) ae. t€ (ta, ta].
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Dividing by ¢, integrating from ¢ to t3, we obtain:
Bl @l

A0

By the inequality (3.5) and the change of variables formula (see [5]), we get

K g Bz ()]
. = — 7" 1.
”’Y”L < ¢(8) " ¢(”l"(t)“) t < “’Y”L

c

dt < |7l a-

This is a contradiction. In consequence, [|#’(t)|| < K for all ¢ € [0,1], and the
relation (3.6) gives

(3.7) |l='(t) —v'(#)|| < K for all t € [0,1].

On the other hand, a solution to (%)2 is a fixed point for the operator L71oNp, :
CL([0,1], R*) — C}([0,1],R™), where L. and Np, are defined in §2. Using Lemma
2.1 and Corollary 3.5, we deduce the compacity of this operator. The Schauder
Fixed Point Theorem gives the existence of a fixed point to L' o Ng,, and then a
solution to (*)2. Using Lemma 3.6 and the relation (3.7), we get the conclusion. O

4., Other existence results

In what follows, we will generalize some results given by Hartman [8, 9], Be-
bernes and Schmitt [1], Fabry and Habets [4], for the periodic or the Dirichlet
problem. In those results, the function f was continuous, and they assumed the
existence of what we call a solution-tube of the form (0, M) with M a positive con-
stant, as in [1, 8, 9], or a positive function in C?([0,1],R), as in [4]. As we mentioned
before, we will obtain results not only for the Dirichlet or periodic boundary condi-
tions, but also for the non-homogeneous Neumann and Sturm-Liouville boundary

conditions.

THEOREM 4.1. Let f: [0,1] x R?™ — R™ be a Carathéodory function. Assume
there exists (v, M) a solution-tube to the problem (x). In addition, assume there
exist a constant k > 0, a function h € L'([0,1],[0,00)), and a Borel measurable
function ¢ : [0, 00) — (0, 00) such that

* s

——ds = oo,
$(s)
and the following two properties are satisfied a.e. t € [0,1], and for (z,p) € RZ"
with ||z — v(t)]| £ M(t):
() Nft2,p)| < 2k ((z, F(t,z,p)) + llpl?) + h(2);
(i) [p, f(t, 2z, 0))| < llpll S(Il2l)-
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Then the system (%) has a solution such that ||z(t) — v(2)|| < M(2).

PROOF. We will show that every solution to the problem (%), satisfies ||z(t) —
v(t)|| < M(¢), and |'(t) — v'(t)|| < K where K will be an appropriate constant
which will be chosen later.

Let Kp be the constant given in Remark 3.3(iv). Let M; = |Mllo + llv]lo,
K) =4(1 4+ kEMy)M; + ||A||z: + k Ko/2, and take Ky > K such that

Ko 3 )
4.1 / ——ds > Ky + 2kM;;
(4.1) o o) > H2RM

and choose K > 2 ||M’||o such that
(4.2) pll < Ka implies |lp—o'(t)]| < K for all t € [0,1].
We will show that every solution to (x), satisfies [|z’(t)]| < K3, hence
l<'(¢) — v'(®)]| < K for all £ € [0,1].
Let z be a solution to (x);. By Lemma 3.6, we already know that z satisfies
lz(t) — v(t)|| < M(t), and thus
(4.3) =@l < M.

The assumption (i), the inequality (4.3), Remark 3.3(iv), and the following
relation

z(t+1/2) —z(t) — Lz(tz = /t+1/2 (t+1/2—3s)z"(s)ds, 0<t<1/2
t

imply that

k K
(4.4) ') < 4My + 4k M7 + (|B]| 2 — 2k (||l + = for 0<t<1/2

Similarly, the assumption (i), the inequality (4.3), Remark 3.3(iv), and the following

relation
t

4
w(t)—z(t—l/Z)—xT(?f):/ (t—1/2—-s)z"(s)ds, 1/2<t<1
t—1/2
lead to
/ 2 2v\/ kKO
(4.5) |l="(t)|l < 4My + 4kMZ + ||B|Izx + 2k()|z(2)]|®)’ + 5 for 1/2<¢t <1.

Adding (4.4) and (4.5) gives
l='(1/2)]| < 4My + 46MZE + ||h)|p2 + &k Ko /2 = K.

Now, suppose there exists ¢y € [0, 1] such that ||z’(¢p)|| > K. Then there exist
t1 and t3 € [0, 1] such that ||2'(t1)|| = Ka, ||z'(t2)|| = K2, and K; < |z’ ()] < K,
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for t between t; and t;. Without loss of generality, assume 1/2 < ¢; < ¢2. Then
the assumption (ii) and the inequality (4.5) imply that

(@'(t),2"(t)) _ {='(®), =" (D)) ' 2
< < |2’ (@) < K1+ 2k(||z(®)]|*)'-

AON = HleOn = L 2RO
Integrating from #; to tz, and using the change of variables formula and the in-
equality (4.1) give .

K2 g 2 (2'(t), 2" () Ko

—ds= [ oo tdt < Ky +2kMY < —— ds.

K, () n  llz'®l) Pk 4(s)
This is a contradiction. Therefore, ||z'(t)|| < K2 for all t € [0,1] and then ||lz’(¢) —
v'(t)]| < K. The rest of the proof follows as in the proof of Theorem 3.1, and we
get the existence of a solution to the problem (x). O

The following theorem generalizes a result given by Fabry and Habets [4], and
obtained for the classical homogeneous Dirichlet problem. They assumed M (%) > 0
for all ¢ € [0, 1], which is not the case here.

THEOREM 4.2. Let f:[0,1] x R?® — R™ be a Carathéodory function. Assume
there exists (v, M) a solution-tube to the problem (x). In addition, assume there
exist a constant k € [0,1), a function h € L*([0,1],[0,c0)), and a Borel measurable
function ¢ : [0,00) — (0,00) such that

o0 s2
——ds = oo,
./ #(s)
and the following two properties are satisfied a.e. t € [0,1], and for (z,p) € R2"
with ||z — v(t)|| < M(t):

(i) 0< (=, f(t,z,p)) +klpl* + R(2);

(i) |(p, £t 2,0)) < llpll &(lipll)-
Let BC denote the boundary condition (P), or (SL) with (1 — 8;)riM (i) = 0,
i =0,1. Then the system (x) has a solution such that ||z(t) — v(t)|| < M(2).

PROOF. As before, we will show that the problem (%) has a solution satisfying
llz(t) — v(t)]| < M(¢), and ||z'(t) — v'(¢)|| £ K, where K is a constant which will
be determined later.

First of all, taking into account the boundary condition and Lemma 3.6, we
note that there exists a constant kg = ko(BC,v, M) such that every solution to
(x)2 is such that

(4.6) {z(1),2'(1)) — ((0),2'(0)) < ko.
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Let
1 1/2
k1 = (m(”h”Ll + ko + ng)) :

where K is the constant given in Remark 3.3(iv). Let ks be such that

ko 52 9
4.7 ——ds > k7,
7 o 3 PR
and take K > 2||M'||o such that
(4.8) lpll < k2 implies that |[|p — »'(2)|| < K.

Let z be a solution to (x);. By Lemma 3.6,
(4.9) () — (&)l < M(2).
By using Remark 3.3(iv), the relation (4.9), and the assumption (i), we get

(z(t), =" (1)) = (z(t), f(t, 2(),2'())) = (2(t), F(t, 2(t), ' (¢)))
> k|’ (E)* — h(t) — k Ko.

Integrating by parts gives
1 1
(z(1), 2/ (1)) — (2(0),2'(0)) — / I/ (D)7 dt > —k / ' ()2 dt — [[All s — k Ko.
It follows that
1
1
[ U@l T + o+ k) = 12
i =

Now, suppose there exists o € [0,1] such that ||2'(#9)|| > k2. Then there exist
t1 and ?3 in [0,1] such that ||z(t1)|| = k1, l|2'(t2)]| = k2, and k1 < |2/ ()| < ka,
and then ||z'() — v'(t)|| < K for ¢ between ¢; and ¢;. Without loss of generality,
assume £; < tz, then the assumption (ii) implies that

llz' Al (' (1), =" (1)) a2
(I’ O <|l2"@®)* ae. te(t,tz).

Integrating from ¢, to {2, and using the change of variables formula give

b / 'Ol @ (), 2"®) ,

Kk P(8) . o(ll=' ()
ta k2 2
< ‘/t‘l llz' ()% dt < k2 < A mds.

We get a contradiction. Therefore, ||z'(t)|| < k2, and then ||z/(¢) — +/(t)]| < K for
all t € [0,1]. This completes the proof. m]
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