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1 Introduction and a theorem of Mazur and Orlicz

Let X and Y be compact Hausdorff spaces, {f;} and {g;} two families of
real-valued continuous functions defined on X and Y respectively and indexed
by the same set I. We consider the question of existence of nonnegative Radon
measures ¢ and ¥ on X and Y respectively and not both zero such that

/fiduS/gidV, i€l
X Y

Since p = 0 corresponds to the case that all f; are zero functions, we may
assume without loss of generality that g # 0, hence after normalization the
problem becomes to find probability measures y and v on X and Y respectively
and a nonnegative real number y such that

(1.1) /f,duS’)’/ g; dv, 1 €1,
X Y
where by measures we always mean Radon measures.

We consider first the case v = 1 together with applications to minimax
theorems and a duality theorem of Gale in the next section. The general case
will then be treated in the third section by applying the result obtained for the
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case v = 1. An application to Lagrangian duality is then considered in the last
section.

In the remaining part of this section we present the main tool of this work,
which is a generalization (Theorem 1) of a theorem of Mazur and Orlicz [7, p.
174] (see also (8], [9]). The theorem of Mazur and Orlicz is a general form of the
Hahn-Banach theorem. Our generalization is based on the following special case
of the theorem of Mazur and Orlicz:

LEMMA 1. Let 7 be a map from a set S into a recl vector space E and q a
sublinear functional on E. Then the following two statements are equivalent:

(I) There is £ € E*, the algebraic dual of E, with £ < q such that
£(7(s)) >0 forall s€8S.

(I1) ¢(>" Ai(si)) =2 0 for alln and all s1,..., 8, in S, all A\ >0,...,
An > 0.

For completeness we include a proof of Lemma 1 which relies on a simple
geometric form of the Hahn-Banach theorem:

PROPOSITION 1. Let E be a real vector space and C a linearly open convex
cone not containing the zero element 8. Then there is a hyperplane H containing
0 such that HNC = {.

We recall that a set C in E is called linearly open if for every z in ¢’ and y in
E,z+ryisin Cif |r| is small. See [5] for a proof of Proposition 1 independent
of the Hahn-Banach theorem.

Given a sublinear functional ¢ on a real vector space E we shall use Q to
denote the set {z € E : g(z) < 0}.

PROPOSITION 2. Let g be a sublinear functional on a real vector space E
with Q@ # B, and let £ € E*. Then the following two statements are equivalent;

(A) Lz) <0 forallzeQ.

(B) There is 0 > 0 such that of < q on E.

ProOF. That (B) = (A) is obvious. To show (A) = (B) define a map ¢
from E into R? by
t(z) = (g(z), —£(2)), rzeFE.
Let P be the convex hull of the image of E under the map ¢ and R? be the nega-
tive quadrant of R?, i.e. R?2 = {(ry,m2) € R?:r; <0, ro < 0}. We claim that P
and R? are disjoint. Actually, if v € P, then there are 1, ..., £, in E and o; >
0,..., an 20 with 37, a; = 1 such that v = (3.7, eug(z:), (30 | cus));
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if 33y cag(es) < 0, then (37, aiws) < 30 aigq(as) < 0= L0 auz;) <
0= —£3 ", aiz;) >0 =>v ¢ RZ. This shows our claim. Hence by separation
principle in R? there is (a1, az) in R? with a2 + o2 > 0 such that

(1.2) o7 + agre < a1q(z) — agé(x) V(r1,r5) €ER2 and z € E.

Since 171 + aors is bounded from above for (r1,72) € R?2, a; > 0 and @ > 0.
Letting (r1,72) tend to (0,0) in (1.2), we have

azb(r) < a1q(x) Vr € E,

from which since @ # () we infer easily that both o) and s are positive. We
choose 0 = asa;! to finish the proof.

‘We are now ready to prove Lemma 1.

PROOF OF LEMMA 1. That (I) = (II) is obvious. We show that (II) = (I).
If @ = @, (II) holds always and (1) holds with £ being the zero functional. So we
may assume that @ # (). Since g is sublinear, @ is a linearly open convex cone.
Let P be the convex cone generated by the image of S under 7. If (II) holds,
then PNQ =0, henceif welet C={z —y: 2z € P,y€ Q}, then 0 ¢ C. It is
clear that C is a linearly open convex cone. By Proposition 1, there is £ in E*
such that £(z) > 0, for z € C, i.e. for z € P and y € Q we have

rz) > £(y), €(z) > £(ry) for r >0,
from which by letting r tend to zero we obtain
(1.3) y) <0 Vyeq and Lz) >0 VzeP

Since £(y) < 0 for y € Q, by Proposition 2, there is ¢ > 0 such that ¢£ < g on
E and if we rename o/ to be £ then (1.3) becomes

{<q on FE and 4(z)>0 VzeP,

which establishes (I). The lemma is thus proved.

The following generalization of the Mazur-Orlicz theorem is our main pre-
liminary result:

THEOREM 1. For i = 1,2, let q; be a sublinear functional on a real vector
space E; and let ; be a map from a set S into E;. Then the following two
statements are equivalent:

(I) There are £1 and £3 in E7 and E3 respectively with £1 < q; and €3 < qo
such that

(1.4) 41(11(8)) < La(72(s)) VseS.
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(I} For any positive integer n we have

n n
(1.5) —q1 ( - Z)\iﬁ(si)) < (Z)\ﬂz(si))
i=1 i=1
forallsy,..., s, imnSandallX\; 20,..., A\, 2 0.

Proor. (I) = (II) is immediate. To show (II) = (I) we shall use Lemma 1.
Let E be the vector space product of Eqy and E3. Elements of FE will be denoted
by {u,v} with u € E; and v € Es. Let g be the sublinear functional on E defined
by

a({u,v}) = q1{w) + ¢2(v), u € E1, veE Ey;
finally, define 7: S — E by

7(s) = {—n1(s), 72(s)}, seS.

It follows from (II) that for any positive integer n we have

o gm(si)) >0

for all s1,..., sp, in S and all A; > 0,..., A, = 0. Consequently by Lemma 1
there is £ € E* satisfying £ < q on E such that ¢(7(s)) > 0 for all s € S. Let ¢
be expressed by {¢1, £} with ¢; € Ef and £, € E3 through

£({u,v}) = £1(u) + £2(v), u€ E;, v e Es.

It is clear that £ < ¢ is equivalent to £; < q; on E; and 43 < ¢; on E;. Now
£(7(s)) 2 0 for all s € S implies (1.4). Thus (I) holds and the proof is complete.

If we choose F; =R and let ¢;(¢t) = ¢ for t € R, then we obtain the theorem
of Mazur and Orlicz.

2. The main theorem (special case) with applications

In this section X, Y, {f;} and {g;} will always be as introduced in the last
section without further notice. We shall use C(S) to denote the vector space of
all continuous real-valued functions defined on a topological space S.

We now take up the question of the existence of probability measures p and
v on X and Y respectively such that (1.1) holds with v = 1. Applications to
minimax theorems and a duality theorem of Gale will also be given.
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THEOREM 2. The following two statements are equivalent:

(%) There exist probability measures p and v on X and Y respectively such
that

(2.1) /f,;duS/gidu, iel.
X Y

(%) For any positive integer n we have
n 7
(2'2) 2’2}? Z Ak fi (:L‘) < 1;;@}3{ Z AkGiy, (y)
k=1 k=1
foralliy,...,ip inTand all Ay 20,..., A\, 2 0.

PROOF. (¥) = (*+) is immediate. We now use Theorem 1 to show (¥x) =
(*). Let By = C(X) and E; = C(Y), define sublinear functionals ¢; and go by

a(f) = lzieaff(x), f € Ey; q2(9) = 13\1/16313(9(1/)1 g € Ey;

and finally let S =1 and define 75 : I — E;, j = 1,2, by

n@)=fi, i€l; m@E) =g, i€l
(*+) implies that the statement (IT) of Theorem 1 holds. Hence (I) of Theorem
1 holds. Thus there are £y € E} and {3 € E3 with ¢; < g; and £5 < go such that
(2.3) £1(fi) < £2(9:) Viel.

But 4, < ¢; and 45 < g2 means that £; and £, are probability Radon measures,
say 1 and v on X and Y respectively. Now (2.3) becomes (2.1) and statement
(*) holds. The proof is complete.

We consider now applications of Theorem 2 to minimax theorems and a
duality theorem of Gale [3]. We remark first that in the statement of Theorem
2, A1 20,..., Ay > 0 can be chosen with A1 +...+An =1,ie. A= (A1,... ,Ap)
is in the standard (n — 1)-simplex o™ ! of R™.

THEOREM 3. Let F bea family of continuous functions defined on a compact
Hausdorff space X and let [F] be the convez hull of F. If we denote by P(X)
the set of all probability measures on X, then

2.4 Min S / dp = Su {Min z) : GF}.
(24) yolin Sup | fdu=Sup {Ming(@): g € [F]

PROOF. Since for each p € P(X) the inequality

(2.4 Sup [ fdu> Sup {Miota) sg e m)
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clearly holds, it remains only to show that there is u € P(X) such that

(2.5) Sup/ fdp < Sup {Ming(w) 1g € F} )

feF Jx z€X
We may assume that the right hand side of (2.5) is a finite number L. By applying
Theorem 2 with Y being any compact Hausdorff space and each g; being the
constant function with value L, we need only verify that for any positive integer
n and all (A1,...,A,) in ™! the following inequality holds:

ggi;g; Mefin (@) S L

for all 41,...,4, in I. But this is obvious from the definition of L and the fact
that the function Y p_; A¢fi, is in [F]. This proves (2.5) and completes the
proof.

When F is a finite family and X is a finite set we obtain from Theorem 3 the
following well-known minimax theorem of von Neumann for bilinear forms [10]:

THEOREM 4. Let (a;5), i =1,...,m, j=1,...,n, be an m x n matriz and
denote by a = (ai,... ,am), and 8 = (B1,...,0n) generic elements of c™ !
and o™ respectively. Then

1\/£in Mﬁax Z a,;ja,-ﬂj = I\Iﬁa.x N.En Z a,;j(,\!«,;ﬂj.

Suppose now we have a finite number of functions fi,... , f, defined on an
arbitrary set S. Let X = {1,...,n} and let F be the family {g;} of functions
defined on X and indexed by S with g,(¢) = fi(s), for s € S and i € X. Then
the following corollary is a direct consequence of Theorem 3:

COROLLARY 1. Let fi,..., fn be real-valued functions defined on a set S,
and let o = (o1, ... ,0,) be a generic element of the standard (n — 1)-simplez in
R™. Then

Min Sup Z a;f;(s) = Sup Min Z Bifi(s:),
@ se5 i 1siin o

where the supremum on the right hand side is taken over all possible finite sets
{s1,-.. ,8m} and all possible B = (Bu,...,Bm) € ™! with m running through
all positive integers.

We now show that Corollary 1 implies the following minimax theorem of Ky
Fan [1]:
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THEOREM b. Let ¥ be a concave family of lower semicontinuous convex
functions on a compact convex subset X of a Hausdorff topological vector space.
Then

Min Sup f(z) = Sup Min f(x).
zeX feF feF z€X

PRrROOF. Since Mingex Supscp f(z) = Supgser Mingex f(z) holds always,
we need only show

(2.6) Min Sup f(«) < Sup Mm f(z).
zeX feF

For this purpose we may assume that the right hand side of (2.6) is < +00. Let
A be any finite number greater than the right hand side of (2.6) and for each
fEFlet

Ar={reX: f(z) <A}

Consider an arbitrary finite subfamily {f1,..., f,} of F. Since F is concave and
A= fi,..., A — fn are concave upper semicontinuous, it follows from Corollary
1 that

_ < M\ _ £
0 < Juf Maglh — /(o) < Min M [ > s @

= 1\,£in l;/lea)}czl a;[A = fi(z)] < 13\;169)%{ llgi%l"[}‘ — fi(=)],
J=

which means that [ ; Ay, is non empty. As each Ay is compact, it follows that
(fer Ay is non empty. Hence Mingex Supsep f(z) < A. Since A is an arbitrary
number greater than the right hand side of (2.6), (2.6) is proved. The proof is
complete.

Now we consider an application of Theorem 2 to a duality theorem of Gale.
Let M be a non empty subset of a normed vector space E and g a real-valued
function defined on M. For z € M, define a possibly infinite number o(x, g; M)
by

o(z,g; M) =Inf{s > 0: g(y) —g(z) < s ly— 2|, y € M},
where ||| denotes the norm on F as well as that on the topological dual E’ of E.
We note that o(z, g; M) is the larger of 0 and Sup,¢py 2. [9(y) — 9(z)]/|ly — z||.

THEOREM 6 [3]. Let M be a convez subset of a normed vector space E and
g a concave function on M. Then for any x in M we have

27  o(z,9; M) =Min{||§] : £ € F', g(y) — g9(z) < €(y — z), y € M}.

PROOF. Ifthere is £ in £’ such that g(y) —g(x) < é(y—z) for all y in M, then
obviously the left hand side of (2.7) is < ||¢||. Hence we may assume that the left
hand side of (2.7) is finite. It then remains to show that when o(z,g9; M) > 0
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there is £ € E' with ||| < o(x, g; M) such that g(y) — g(z) < £(y—z) for all y in
M. Let K = {{ € E' : ||§|| < o(z,g; M)}; then K is w*-compact. Let {f,},enm
with f, = g(y) — g(z) be a family of constants and let {hy},cnm be a family of
w*-continuous functions on K, where each h, is defined by

hy(§) =&(y-=z), E€K.

Then for any subset {y1,..., yn} of M and anyv (A,...,),) in 6™ we have
n

Z Aiyi —

i=1

— o(z,0; M) - Max s(z Ak = z) = Max > Aoty 6),
i=1 =1

Z Aify, < g(z Aiyi) — g9(z) < oz, g; M)
= i=1

leli=1
from which we infer from Theorem 2 that there is a probability measure ;2 on K
such that
o)~ 9@ = £, < [ hydu= [ €w-2)dute)

for all y € M. Since 7(z) = [, £(z) du(€), z € E, is obviously linear and since

In(2)] < 2] /K lell du(€) < o(z, g; M)z

we know that n € E' with ||n|| < o(z,g; M) and g(y) — g(z) < n(y — z) for all
y € M. This completes the proof.

3. The main theorem (general case)

We now consider the general problem introduced in the first section. We
denote by F and G the families of functions {f;} and {g;} respectively and by
[F], [G] their convex hulls. We also define G~ and G as follows:

G = {g'e (6] Maxg(y) < o};
Gt = {g € [G] - Maxg(y) > 0} -

For notational convenience, for g € [G] with g = > 7_; Aegiy, (A1,...,An) €
o™ ! and {iy,..., in} C I, we denote by f, the function Y 7_, A\ fi, € [F]. In
this way different expressions of convex combinations of functions in G of the
same function will be considered as giving different functions; in other words,
we mean by g € [G] a function with a given expression of the form Y 5, Axgi,.
It follows from Theorem 2 that the existence of probability measures u, v on X
and Y respectively and v > 0 such that (1.1) holds is equivalent to the following
condition:

(3.1) For allg € [G], Mig Jg(z) £ 71},@‘9(‘”)’
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from which it follows in particular that
. i < <0, i ]
(3.2) 12%1}(1 fg(z) < 0 whenever 1;/163.];( g9(y) £0,if ge[G].
If we let
v- = Inf Max f;/Max g}; ¥+ = Sup {Minf,/ Max g},
g€eG geG+

we observe readily from (3.1) that

(3.3) Yy Sy <

In the foregoing definitions of 4_ and <., we have compressed Min,¢ x fo(z) and
Maxyey g(y) to Min f, and Max g respectively and adopted the usual convention
that the infimum over an empty set is +00, while the supremum over an empty
set is —oo. It is clear that if (3.2) and (3.3) hold with  being a finite real number
not necessarily nonnegative, then (3.1) holds. Hence a first natural question is
the validity of the inequality v, < .. Actually we have:

LEMMA 2. If (3.2) holds, then v_ >0 and vy <_.

ProoF. That yv_ > 0 follows directly from (3.2). If either G~ or G is
empty, 7+ < - holds trivially,. We may assume therefore that both G~ and
G are non empty. Let Z be the disjoint union of X and Y and let H = {h;},
i € I, be the family of continuous functions on Z defined by h;(z) = f;(z) or
—gi(2) according as z is in X or in Y. Then (3.2) implies that Min h < 0 for all
h € [H], where [H] is the convex hull of H. We infer from Theorem 2 that there
is a probability measure u on Z such that

/h,-dyso forall i€l
z
We claim that p(X) > 0. Otherwise, u(Y) =1 and
/g,:duZO forall zel,
Y

which means by Theorem 2 that Max g > 0 for all g € [G], contradicting the
assumption that G~ # 0. Similarly, u(Y) > 0. Thus we may write |, g hidp <0,
i€l as '

[, edufux) < W) [ wdufuv),  ier,
x Y
which implies again by Theorem 2 that

Min fg < [u(Y)/pu(X)]Max g

for all g € [G], from which we infer that v, < u(Y)/u(X) < y_. This proves
the lemma.
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If now (3.2) holds and 74 < 400, then for all finite y such that v, <y <~v_
the condition (3.1) holds. Thus from Theorem 2 results the main theorem of this
note:

THEOREM 7. If (3.2) holds, then the following two statements are equiva-
lent:

(A) There are probability measures u, v on X, Y respectively and a real

/ fidﬂﬁ')’/ gidv
X Y

number v such that

forallie I
(B) Y4+ < +o0.

Furthermore, if (B) holds, then (A) holds for v being any real number between
v+ and y_ and with pu and v depending on 7.

ReEMARKS. (i) Condition (3.2) is a consequence of (1.1) for v > 0, but under
condition (3.2), if v+ < 0 we can also settle our problem for requiring v to be
negative. (ii) Since (3.2) implies v— > 0, if (3.2) holds and v, < 400, our
general problem always has solutions when restricted to oy > 0. (iii) In the proof
of Lemma 2, we have shown that v; < +oo if G~ # 0. Hence (A) holds if
G~ # 0. One recognizes readily that G~ # @ is a generalized form of constraint

qualification condition of Slater in optimization theory (see [6] and [4]).

4. Lagrangian duality

We now consider an application of Theorem 7 to Lagrangian duality. We
refer to [4] and the references there for general information on dualities in math-
ematical programming. Let X be a nonempty set and let Y and Z be compact
Hausdorff spaces. Consider functions f and g defined on X x Y and X x Z
respectively and satisfying the condition that the functions f(z,-) and g(z, -) are
continuous on Y and Z respectively for each z € X. We consider the following
primary problem:

(PP) Min f(z,y) — Sup, for = € N,
yeY

where N = {z € X : g(x,2) <0Vz € Z}. If N # 0, the problem (PP) is called
feasible. Let

(4.1) L(u, v, %) = /Y £z, ) duy) — fz oz, 2) duz),

where p € P(Y), v € P(Z) and v > 0. L(u,v,~; x) is the Lagrangian function of
our problem (PP). The following problem is called the Lagrangian dual problem
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of (PP):

(LDP) Sup L{y, v,v; z) — Inf,
z€X

where the infimum is taken over all 4 € P(Y), v € P(Z) and v > 0.

Let u, v be the values respectively of problems (PP) and (LDP), i.e.

= Sup Mi :
u = Sup Mi fz,y);

v= Inf{SupL(p, vyiz):p€PY), ve P(Z),y> 0} :
zeX
then it is obvious that
(4.2) u <.

We now introduce another problem which is closely related to problem (PP).
For this purpose let us denote by P¢(X) the space of all probability measures
supported on finite subsets of X, i.e. if p € P¢(X), then there is a finite subset
{z1,..., zn} of X such that p(z;) =p({z;}) >0,i=1,...,n,and 31, p(z;) =
1. Since each element z of X can be identified with the probability measure
supported at z, X is imbedded in P;(X). For a function 2 on X we shall
denote the integral [ hdp of h with respect to p € P(X) by h(p). If p € Ps(X)
is supported at an element z of X, then h(p) = h(x); hence this convenient
notation is consistent with the usual notation for function values and does not
cause ambiguity. The following problem is called the extended problem of (PP):

(EPP) Min f(p,y) — Sup, peE N,
yeY

where N* = {p € Pf(X) : g(p, z) < 0 Vz € Z}; the value of (EPP) is denoted by
u*, i.e. u* = Supyen+ Mingey f(p,y). Since X is imbedded in Pf(X), we have
N C N* and hence

(4.3) u<ut
We also have the following obvious lemma for equality of w and u*.

LEMMA 3. Let X be a convez set in a real vector space and suppose that for
each y inY and each z in Z, x — f(z,y) is concave and z — g(z, 2) is convex
on X. Then u=u*.

We recapitulate now the results of the previous section by replacing I, X,
and Y there by X, Y, and Z of this section. For a given finite number r we
consider the following conditions:

(44) 3SpeP(Y),veP(Z),and v2>0suchthat L(u,v,v;z) <rVreX;
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(4.5) Max f(p,y) <r for pe N*.
yeY

If we choose F and G of Section 2 to be the families {f(z,-}) — r},ex and

{9(z,)}zex, then conditions (4.4) and (4.5) are the conditions (1.1) and (3.2)
respectively, hence (4.4) = (4.5).

LEMMA 4. (i) If r < u*, then Sup,cx L{p,v,v;z) > rVu € P(Y), v €
P(Z), and v > 0; (ii) »* < v.

PROOF. Since (i) = (ii), we need only prove (i). If r < u*, (4.5) does not
hold and hence (4.4) does not hold either, and thus (i) follows.

COROLLARY 2. Ifu* = 400, then any u € P(Y), v € P(Z), andy > 0 solve
the problem (LDP). In particular, if u = +oo, then (LDP) has oll u € P(Y),
v € P(Z), and v > 0 as solutions.

We now assume that v* is a finite number and let » = u*. Then (4.5) holds
and it follows from Theorem 7 that there exist p in P(Y), vin P(Z) and v > 0
such that

(4.6) Sup L{p. v,7;7) < u*
zeX

if and only if
(4.7) Sup [Min f(p,y) — u’]/[Maxg(p, 2)] < +o0,
peCN* y€Y 2€Z

where CN* = P;(X)\N*.
But if (4.6) holds, then it follows from Lemma 4
(i) that
Sup L(p,v,vy;z) = u*.
zeX

We have thus proved the main theorem of this section:

THEOREM 8. If the problem (PP) is feasible and u* < +o0, then (LDP) has
a solution and v = u* if and only if (4.7) holds.

REMARK. If CN* = {, then (4.7) holds trivially and (LDP) has a solution
with v = 0 if (PP) is feasible and u* < 400, i.e. there is pg € P(Y) such that

Sup Min f(p,y) = Sup / F(z,9) duoy)-
zeX JY

peN* ¥EY

This is exactly formula (2.4), hence, if we choose g(z, z) to be the zero function,
we recover Theorem 3. Thus the form we choose for problem (PP) allows the
minimax principles to be included in our framework.
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There is one useful situation for which (4.7) holds, namely, when the following
generalized Slater condition holds (see Remark (iii) following Theorem 7):

(GSC) There exists pp € Pp(X) such that g(po,2) < 0Vz € Z.

Thus the following theorem holds:

THEOREM 9. If —oo < u* < +o00, and (GSC) holds, then there are ug €
P(Y), vy € P(Z), and o 2 0 such that

Sup Lo, Yo, Y05 ) = u*.
zeX

COROLLARY 3. Assume that X is a convez set in a real vector space and
functions f and g satisfy the conditions of Lemma 3. Suppose that (PP) is
feasible, u < +00, and that the Slater condition holds, i.e. there is zgq in X such
that g(xzo,2) < 0 for z € Z. Then there are pg € P(Y), vo'€ P(Z), and v > 0
such that

u = Sup L(po, v0, Y03 Z)-
zeX

To look more closely at the condition (4.7) we introduce perturbed problems
of (EPP) in the following way. For € > 0 let N*(e) = {p € P¢(X) : g(p,2) <
€ Yz € Z} and define u*(¢) by

u*(e) = Sup Min f(p,y).
PEN™(e) VEY
If u* is a finite number and Sup, o€~} [u*(€) —u*] < +00, the problem (EPP) will
be said to be stable. For the role of stability in mathematical programming we

refer to [4]. Since the left hand side of (4.7) is bounded by Sup, . e [u*(e) —u*],
we have the following corollary of Theorem 8:

COROLLARY 4. Suppose that the problem (PP) is feasible and u* < +o00. If
(EPP) is stable, then (LDP) has a solution and v = u*.

We now consider an application of Corollary 4. Let X be a real vector space,
&1,..., &n, Cty- .-, Cm be linear functionals on X, and let by,..., by, ¢1,..., Cm
be real constants. Then the following duality holds:

THEOREM 10. Assume that N = {z € X : &(z) < b, i =1,..., n} # 0.
Then

m n
(4.8) Eél]g IIS\/JI.iSnm[Cj(Z’) +¢5] = Min{ Z a;c; + Z )‘ib'i}7
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where the minimum is taken over all a = (a1,... ,am) in 6™ ! and all A1 >
0,..., A > 0 satisfying Z;';l ;G =Yg Ak

ProoF. Let Y ={1,..., m}, Z={1,..., n} and define f and g by

g(.’t,'l:)=€,;(ﬂ:)—b.,;, zeX,1<i<n.

By Lemma 3, (EPP) is the same as (PP). If the left hand side of (4.8) is +oo,
by Corollary 2,

m n
(4.9) Sél)lg { D el @) + el =D Nlila) - bi]} = +o00
z j=1 i=1
foralla = (ai,... ,an)ine™ Yand all \; >0,..., A, > 0. Since X is a vector

space, (4.9) holds if and only if the left hand side of (4.9) is not a constant, i.e.
E;"zl a;¢; # X i1 Aiki, hence the minimum on the right hand side of (4.8) is
taken over empty set and is +co. We may assume then that the left hand side
of (4.8) is a finite number. In this situation it is clear that the problem (PP) is
stable. Thus by Corollary 4 there are @ = (@1,... ,&m) inoe™ tand X\; > 0,.. .,
An > 0 such that

i=1

(410) Sup Min [¢;(z) +¢;] = Sup { ; ;[ () + ¢5] — Z Ailti(z) — b,-]}.
But for the right hand side of (4.10) to be finite it is necessary that

m n

Z o;[¢i(z) + ¢5] — Z Ai[éi(z) — b;] = constant,

j=1 i=1

ie. 3 00; @€ = Yoim) Aki; this proves the theorem.

We remark here that when m = 1, Theorem 10 is the duality theorem in
linear programming; while if b = ... = b, = ¢; = ... = ¢, = 0, Theorem 10
leads to a generalization of a lemma of Farkas [2]:

COROLLARY 5 (Generalized Farkas lemma). Let &1, ..., &, (1,..., Cm be
linear functionals on o real vector space X. If forz € X, &(x) <0,1<i<n
imply Miny <;<m (j(z) < 0, then the cone generated by &i,..., &, contains a
convex combination of (1,..., (m.
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