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ON THE LERAY-SCHAUDER ALTERNATIVE

ANDRZEJ GRANAS

Dedicated to the memory of Juliusz Schauder

1. Introduction

In 1933, Jean Leray and Juliusz Schauder discovered [9] that the problem
of solvability of an equation z = T'z, for a completely continuous operator T in
a Banach space, reduces to finding a priori bounds on all possible solutions for
the family of equations z = ATz, where A € (0,1). Since then, this fact, known
as the Leray-Schauder Alternative, and its.various extensions and modifications,
have played a basic role in various applications to nonlinear problems.

In this note, we elucidate and complement the above result. We introduce a
class of nonlinear operators of the Leray-Schauder type and discuss its properties
both in the fixed point and the coincidence setting. By elementary means and
using only some known fixed point results, we show that many of the currently
used nonlinear operators are of the Leray-Schauder type.

We begin with some notation and terminology. By space we shall understand
a metric space and by a map a set-valued transformation.

Given a map T : X — Y between spaces, the sets Tz are the values of T
and the set

I'r={(z,y) e X xY: yeTx}
is the graph of T. Two maps S,T : X — Y are said to have a coincidence
provided s NT'r # 0; if T : A — X, where A C X, then z is a fized point for
T, provided z € Tz.

By an operator we shall understand an upper semicontinuous map with non-
empty compact values. An operator is said to be compact provided its range
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is relatively compact. An operator is completely continuous if it is compact on
bounded sets. Given a class M of operators we let

M(X,)Y)={S: X ->Y: SeM]}, M(X) = M(X, X),
and define the class M, by letting
M(X,Y)={S=S810820::08; with $;eM, k=1,2,...}.

We now introduce four classes of operators as follows:

(1) T e K(X,Y) if the values of T are convex (the Kakutani operators);
(2) T € A(X,Y) if the values of T are Rs-sets*
(the Aronszajn operators [7));
(3) T € E(X,Y) if the values of T are acyclic
(the Eilenberg-Montgomery operators [4]);
(4) T € N(X,Y) if the values of T consist of one or m acyclic components
with m fixed (the O’Neill operators [11]).

These classes and the classes of their composites are displayed in the following
diagram:

K ¢ A ¢c E ¢ N
(D) n N n n

Kc C Ac C Ec - Nc

In what follows, for a normed linear space E and a positive number p, we let
K,={zeE:|z||<p} and S,={z€E:|z|=0p}

Given a bounded subset A C E we let ||A|| = sup{|la||:a € A}. UT:E — Fis

an operator between normed linear spaces E and F, then welet T, =T | K, :

K, — F. By r: E — K, we denote the standard retraction of E onto K, given
by

W y for ||yl < p,
r(y) = Yy
“Tol
The author thanks M. Lassonde for several useful comments.

for [lyll > p.

2. The Leray-Schauder operators in normed linear spaces

Let E be a normed linear space and T : E — FE be an operator.

1We recall that a compact space X is aeyclic if all its reduced Cech homology groups
over the rationals are trivial. A compact space X is Rgs-set provided it is the intersection of a
descending sequence of compact AR’s.
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DEFINITION 2.1. We shall say that T is of the Leray-Schauder type provided
for any ball K, in F, either

(a) there exists z € K, such that z € Tz, or
(b) there exist y € S, and A € (0,1) such that y € ATy.

We begin by a result which collects several important examples:

THEOREM 2.2. Let T : E — FE be an operator such that
(a) T is completely continuous,

(b) T belongs to one of the classes appearing in the diagram (D).
Then T is of the Leray-Schauder type.

PROOF. Assume, for example, that T : F — E is completely continuous and
is of the Eilenberg-Montgomery type. Let us fix arbitrarily a ball K » in E and

. . T T, . .
consider the composite map E — K, -5 E. Since the operator T,r is compact
and is of the Eilenberg-Montgomery type, we may apply the extended Eilenberg-
Montgomery fixed point theorem given in [6], and infer that the operator T,r
has a fixed point, i.e. © € Trz for some x € E. From this, it easily follows that
r(z) = y is a fixed point for the composite map 77T, : K, — K, i.e.,

(2) yerTy.

We now examine two possible cases:
(A) |ITyll < p, and
®B) [Tyl > p.
In case (A), rTy = T'y and therefore y € T'y, i.e. property (a) holds.
In case (B), there exists z € Ty such that
(3) [l >p and y=ra

In view of (3) we get

z &
y=p—€S8, and z=-"—TyeTy.
Izl ~° P
This gives y € ATy with A = p/||z|| < 1. Thus property (b) holds. The proof is
complete. 0

The proof for T" in some other class of the diagram (D) is strictly analogous,
except that another appropriate (for the class in question) fixed point theorem
is used. For example, for compositions of operators in the classes E, A, and N,
we use fixed point results given in [4], [7], and [3] respectively.

Some general properties of the Leray-Schauder operators are given in the
next two results:
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THEOREM 2.3. Let T : E — E be an operator of the Leray-Schauder type;
let p be a positive number and assume that for all x € S, one of the following
conditions is satisfied:

@ [T=l < = (E. Rothe);
(i) [Tz| < llz—T=|;
(i) [Tzl < (|lz - Tz|? + [<|®)* (M. Altman);
(iv) [Tz| < max{||z|, |z — Tz}

Then the operator T has at least one fized point in K,.

PROOF. The routine verification that property (b) in Definition 2.1 cannot
occur, is left to the reader. O

THEOREM 2.4 (The Leray-Schauder Alternative). Let T : E — E be an
operator of the Leray-Schauder type and let

Er={z € E:xz €Tz for some0 < \<1}.

Then either

(a) the set Er is unbounded, or
(b) the operator T' has at least one fized point.

Proor. Assume &7 is bounded and let K, be a ball containing £ in its
interior. Since no x € S, can satisfy the second property in Definition 2.1, the
operator T has a fixed point and the proof is complete. O

3. The Leray-Schauder operators for coincidences

In this section £ and F denote two Banach spaces and L : E — F stands
for a fixed surjective linear bounded operator.

DEeFINITION 3.1. We shall say that 7" is of the Leray-Schauder type with
respect to L, if for any ball K, in E, either:

(a) there exists x € K, such that Lz € Tz, or
(b) there exist y € S, and A € (0,1) such that Ly € ATy.

We now give a result in which several important examples are collected:

THEOREM 3.2. Let T : E — F be an operator such that

(a) T is completely continuous,
(b) T belongs to one of the classes appearing in the diagram (D).
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Then T is of the Leray-Schauder type with respect to L.

PROOF. Assume, for example, that T is of the Eilenberg-Montgomery type.
Observe that the set-valued map L~ from F' to E satisfies the hypotheses of the
well-known theorem of E. Michael [10]; consequently, L=! admits a continuous
single-valued selector s : F — E satisfying Ls = id. Consider now the operator
sT, : K, — E and observe that sT, is compact and of Eilenberg-Montgomery
type. By Theorem 2.2 (applied to the class E.) we have: either

(i) z € sTx for some z € K, or

(ii) y € AsTy for some y € S,,.
Applying L and using the fact that Ls = id, we conclude that, either Lz € Tz
for some x € K, or Ly € Ty for some y € S,. The proof is complete. |

THEOREM 3.3. Let T : E — F be an operator of the Leray-Schauder type
with respect to L; let p be a positive number and assume that for all z € 8,, one
of the following conditions is satisfied:

@) (ITz| < ||L=| (E. Rothe);
(i) |Tz|| < ||Lz — Tz|;
(i) ||Tz|? < (|Lz — T=z|? + ||La:||2)1/2 (M. Altman);
(iv) Tzl < max{||Lz|, | Lz — Tx|}.

Then the operators T and L have at least one point of coincidence in K o

THEOREM 3.4 (The Leray-Schauder Alternative). Let T : E — F be an
operator of the Leray-Schauder type with respect to L and let

Er={zx € E: Lz € Tx for some0< < 1}.

Then either

(a) the set Ep is unbounded, or
(b) the operators L and T have at least one point of coincidence.

The proofs of the last two results are strictly analogous to those of Theorems
2.3 and 2.4 and are omitted.

REMARKS.

(i) The first elementary proofs (not using the degree theory) of the Leray-
Schauder Alternative in the classical setting of single-valued completely
continuous operators in Banach spaces were given in (12] and [8].

(ii) The proof of Theorem 2.2 is a modification of an argument given in 2],
where it is proved that a nonexpansive map in a Hilbert space is of the
Leray-Schauder type. A similar argument was used earlier in the case of
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single-valued completely continuous operators in normed spaces in the
book [5].

(ili) Theorem 2.2 (as well as arguments in the proof) can be established also
in many other situations; for example:

(a) for the class of maps studied in [1] in normed linear spaces;

(b) for completely continuous operators in some metric linear spaces
that are not locally convex; for example, in L, spaces with
0<p<l;

(c) for completely continuous operators appearing in the diagram
(D) in the context of cones in normed linear spaces.

(iv) Arguments used in this note can also be adapted to get a simple proof
of an analog of Theorem 2.2 in locally convex spaces.
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