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1. Introduction

The purpose of this paper is to present in the unified setting of index theory
several results on eigenvectors and positive eigenvalues for nonlinear single-valued
and multi-valued maps. These results, besides being interesting in their own right
in the context of nonlinear analysis, have also applications to problems in linear
algebra and population dynamics (see, for example, [1], [18]). Many researchers
have made significant contributions to this area, starting with the celebrated
theorem of Krein-Rutman [10]. Conjectures have been formulated and later
solved. Open questions still exist. It is our intention to offer an overview and to
bring the reader up to date with recent developments. We shall incorporate in
the paper the case of single-valued as well as multi-valued maps. The functions
we are considering belong to the class of a-contractions (k-set-contractions) or
condensing maps, with respect to some measure of noncompactness. We make
reference to the one proposed by Kuratowski [11], but the reader will see that the
stated results hold also for other measures. The methods of proof are sometimes
different between the single-valued and the multi-valued case. Moreover, some
questions regarding multi-valued maps remain unsolved. For these reasons the
theory regarding noncompact single-valued maps is presented separately from
the theory regarding noncompact multi-valued maps. Every multi-valued map
considered in this paper is assumed to have an acyclic decomposition. “Acyclic”
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is intended in the Cech homology, although different homology theories could be
used.

NOTATIONS AND DEFINITIONS will be introduced when needed and once
stated will remain unchanged throughout the paper. We list here the ones which
are used more frequently.

Spaces, cones, wedges and subsets.

o E always stands for an infinite dimensional Banach space, although
many of the results we present can be rephrased in finite dimensional
spaces.

e A cone K C F is a closed subset of F with the following properties:

(i) x,y € K and a,b € [0, +00) implies ax + by € K;
(ii) x € K, x # 0 implies —x ¢ K.

e A wedge W C E is a closed subset of E which satisfies (i). A wedge
is called special if there is a constant A > 0 and a vector xg € W such
that ||x + xo|| = A||x|| for every x € W. Every cone in a Banach space
is a special wedge (see [12]).

o Unless otherwise stated @ denotes an open bounded neighborhood of
the origin in E or in a cone K C E. Q, 89, co) stand respectively for
the closure, the boundary and the convex hull of 2. When 2 C K its
closure and boundary have to be taken with respect to K.

e 7(Q) =r = sup{||x| : x € 9N}.

elet f:Q — E,or F:Q — E (or K) be respectively a single-valued
or a multi-valued map. Then d(f,802) = d = inf{||f(x)| : x € 99},
d(F,09Q) = d = inf{|ly|| : y € F(x),x € 0Q}.

e D(0,7)={x€E:|x| <r}; Dx,r=D(0,r)NK.

e B(0,r)={x€ E: x| <r}; Bk, =B(0,r)NK.

e S(0,r)={x€E:|x|=r}; Skr=5(0,r)NK.

Measure of noncompactness. Given a bounded subset A of a Banach
space E we define, following Kuratowski [11],

a(A) = inf{e > 0: A admits a finite covering with subsets

of diameter not exceeding €} .

The properties of & needed for our results are:

1. a(A) = 0 if and only if A is totally bounded;

2. a(eo(A)) = a(A), where To(A) denotes the convex closure of A (see [2]);
3. a(AU B) = max{a(A4),a(B)};

4. a(A+ B) < a(A) + o B);
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5. a(tA) = ta(A) for every t > 0;

6. a(D(0,1)) = 2 (see [8]).
A single-valued or a multi-valued function ¢ defined on the closure of a subset
X of a Banach space E and with values in E is said to be an a-contraction
with constant k < 1 (or a k-set-contraction) if o(¢(A)) < ka(A) for all bounded
sets A C X. The attribute condensing is used for those maps F such that
a(é(A)) < a(A) for all A C X, A bounded and a(A4) > 0.

The index. Let X be a subset of E. A multi-valued map F : X —o E is said
to be upper semicontinuous if F(x) is compact for every x € X, and FY(W) =
{x€ X : F(x) C W} is open in X for every W open in E. If X is the closure of
an open, bounded set 2 and Fix(F) = {x € Q : x € F(x)} is compact in €, then
F is said to be admissible. The map F will be called acyclic if for all x € X the
set F(x) is acyclic in the Cech homology. In particular, this is true whenever
F(x) is convex for all x € X. Let {Xo, X1,... , Xn+1} be open, bounded subsets
of E with Xo =Q, Xp11 = Eand let & = {Fy, Fi,... ,F,} be a family of upper
semicontimious, acyclic-valued maps such that F} : X; —o Xi1. ®isan acyclic
decomposition of F if F = F, 0 F,,_10...0 Fy. For an admissible map F which
is an o-contraction or is condensing and which has an acyclic decomposition P,
one can define a fixed point index (see [6] and [20]). Although the index depends
on the decomposition, it has nevertheless the following fundamental properties.

PROPERTY 1 (Decomposition). ind(E,®,Q) = ind(E,T,Q), where
I'={Fy,...,Fi_s,FioF;_1,F;,,...,F,},
provided that the map F; o F;_1 is still acyclic.
PROPERTY 2 (Additivity). Assume that Q; UQy C Q and
Fix(F) = (Fix(F) N (@1 \ Q2)) U (Fix(F) N (Q2 \ Q1)).
Then ind(E, ®,Q) = ind(E, ®, ;) + ind(E, ®, Q3).
PROPERTY 3 (Solvability). ind(E,®,Q) # 0 implies Fix(F) # 0.

PROPERTY 4 (Normalization). ind(E,x0,Q) = 1 if x € Q (and
ind(E,%0,0) = 0 if xo & Q) where the constant map F(x) = xq is also de-
noted by Xq.

PROPERTY 5 (Homotopy). Let H : Q x [0,1] — E be upper semicontinuous
and condensing. Define FIX(H) = {x € Q : x € H(x,t) for some t [0,1]}.
Assume that FIX(H) is a compact subset of € and H has an acyclic decompo-
sition

Q,t) = {Ho(-t), Hy,... ,H,}.
Then ind(E, ®(-,t),) is defined and it is constant.
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PROPERTY 6 (mod p). Assume that F' and FP have no fized points on OfQ.
Moreover, assume that if for some 1 < i < p we have y € F'(x), x € FP~i(y)
and x € , theny € Q. In this case ind(E, ®,Q) = ind(E, ®P,Q) (mod p) (see
also [21]).

The above definition and properties are obviously valid for single-valued maps
and they can be extended to the class of a-contractions or condensing maps
defined in an open, bounded neighborhood €2 of the origin in a cone K or in a
wedge W of E.

The organization of the paper is as follows. In the first section we study
the case of compact single-valued and multi-valued maps defined on Q C E
or Q ¢ K. In Section 2 we extend our analysis to the class of a-contractions
and condensing single-valued maps defined on Q. Section 3 contains the results
regarding multi-valued a-contractions or condensing maps defined on . In
Section 4 we go back to single-valued maps defined on a cone K, and which
have the additional properties of being positively homogeneous of degree one
and order preserving. Finally, in Section 5, the analysis of Section 4 is extended
to a class of multi-valued maps defined on K.

1. The compact case

Let f : @ — E be continuous and compact. The following result is well

known.

THEOREM 1.1 (see [3]). Assume that (i) f(OQ) N (coQUIN) = @. Then
ind(E, f,Q) = 0.

PROOF. Let m > 0 be such that B(0,m) C Q and let 7 : E — E be a
continuous (for the existence of 7 see [3]) retraction such that m(x) = x for
every x with ||x| > m and ||7(x)|| = m for every x € B(0,m). The map
g(x) = m(f(x)) is continuous, compact, and it coincides with f on 9€2. Moreover,
g(x) # 0 for all x € Q. Define h(x) = (2r/m)g(x).

The map h is compact, homotopic to g by a homotopy without fixed points

on 89 and has the property h(2) NQ = @. Thus
0 = ind(E, h, ) = ind(E, ¢, Q) = ind(E, £, ) .

O
REMARK 1.1. Condition (i) can be replaced by other assumptions. For ex-
ample either one of the two conditions

o f(0Q) NcoQt =0, and
e f(OQ)NcoQl =0 with x # f(x) for every x € 99,
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could replace (i). Notice that the first implies (i) and the second is implied by
(i). We list two additional conditions which may be easier to verify than the
ones mentioned so far:

(i) r < d;

(ili) 0 < d and f(x) # tx for all x € 8N and ¢ € (0,1].

COROLLARY 1.1. Let f be as in Theorem 1. Then there are X > 1 and
x € O such that f(x) = Ix.

REMARK 1.2. In case (ii) we obtain A > d/r.

REMARK 1.3. The condition d > 0 in (iii) cannot be omitted, as the following
example shows.

EXAMPLE 1.1. In the Hilbert space {2 of square summable sequences of real
numbers define the compact linear operator Lx = L(zy,%2,...) =
(0,3%1,3%2,...). Then Lx # tx for all x € B(0,1) and ¢t € (0,1]. Thus
ind(i?, L, B(0,1)) = 1. Notice that inf{||Lx|| : ||x|| =1} = 0.

The following result extends Theorem 1.1 to multi-valued maps. It is proved
with the same strategy used to establish Theorem 1.1.

THEOREM 1.2. Let F': Q —o E be upper semicontinuous, compact, admis-
sible and with an acyclic decomposition ®. Assume that (j) F(0Q) N (co U o)
= 0. Then ind(E, ®,Q) =0.

REMARK 1.4. As in the single-valued case condition (j) can be replaced by
other assumptions, which may be easier to verify. We list the following two.

(W) r<d;

(ij5) 0 < d and tx & F(x) for all x € 9Q and t € (0,1].

COROLLARY 1.2. Let F be as in Theorem 1.2. Then there are A\ > 1 and
x € 00 such that Ax € F(x).

Again, we get A > d/r when (jj) is assumed.

COROLLARY 1.3 (see [5]). Let F': S(0,1) — S(0,1) be upper semicontinuous
and compact. Assume that F has an acyclic decomposition ®. Then F has a

fixed point.

ProoF. Extend F to D(0,1) by setting F(tx) = tF(x) for t € (0,1], x €
5(0,1), and F(0) = 0. Let g > 1, define G(x) = ¢gF(x) and let &, be the
acyclic decomposition of G corresponding to ®. Then ind(E, ®,,B(0,1)) = 0.
By Corollary 1.2 there exist A > 1 and x with ||x|| = 1 such that Ax € G(x), i.e.
x € F(x). O
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All previous results are valid in the case when {2 is an open, bounded neigh-
borhood of the origin in a cone X C E. The only requirement is that the
single-valued or the multi-valued functions map {? into K. For example, we have
the following version of Theorem 1.2.

THEOREM 1.3. Let K C E be a cone, 2 be an open, bounded neighborhood of
the origin in K, and F : Q@ — K be upper semicontinuous, compact, admissible
and with an acyclic decomposition ®. Assume that one of the following conditions
is satisfied:

() r<d;
(i) 0<d and tx & F(x) for all x € 9Q and t € (0,1].
Then ind(K, ®,Q) = 0.

COROLLARY 1.4. Let F be as in Theorem 1.3. Then there are A > 1 (A >
d/r) and x € OQ such that A\x € F(x).

COROLLARY 1.5. Let K C E be a cone and F : Sk, — Sk,1 be upper
semicontinuous, compact and with an acyclic decomposition ®. Then F has a

fized point in Sk 1.

2. The noncompact case: single-valued maps

In this section we present results on eigenvalues and eigenvectors of functions
which are not compact, but belong to the class of a~contractions or condensing
maps with respect to some measure of noncompactness. To be specific we make
reference to the o-measure of Kuratowski [11], but the conclusions are indepen-
dent of this choice, as long as the appropriate conditions are met. Besides being
of interest on their own, the results of this section provide an affirmative answer
to a conjecture of Massabd-Stuart [15] (see Theorem 2.3 below). A partial answer
to the conjecture was given by Nussbaum [17], in the case when (2 is star-shaped
with respect to the origin. Here this restriction is removed and the conjectue
is established in its full generality. Our first result extends Theorem 1.1 to a-
contractions. The proof, however, is quite different since the map 7 f cannot be
used in this case.

THEOREM 2.1. Let f : Q@ — E be continuous and c-contractive with constant
p < 1. Assume that (i) f(8Q) N (coQUIN) = 0. Then ind(E, f,Q) =0.

PROOF. Let ¢ > 1 be such that gp < 1, and define 9(x) = gf(x). Then
there exists ¢ > 0 such that ||x — y|| > 2¢ for every x € co? and y € g(09).
Select m so large that (gp)™a(Q) < € and define V; = ¢*~*(?),i=1,... ,m. By
induction we obtain

Voo CVip1 C...C V1 =Q.
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If for some index i the set V; is empty, then obviously ind(E, g,Q) = 0, and by
homotopy ind(E, f,2) = 0. Thus we can assume, without loss of generality, that
Vi # 0 for all indices . Moreover, by elementary topology, we have h(8h~1U) C
OU provided that h is continuous. Thus, with h =g and U = 92—1(9) we derive

9(0V;) = g(8g" ~*(Q)) C 8g*H(Q) = Vi1 .

By applying g*~* to both sides we arrive at g%(8V;) C g*~1(8V;_,) for all i =
1,...,m. Hence

g™ (V) C g™ (OVin—1) C ... C g(8Q).

Since ag™(Vm) < (gp)™a() < &, we can cover g™(V,,) with finitely many
closed, convex sets Ki,..., K, such that diam(K;) < ¢ for all 4 = 1,...,s.
Define K = (J; K; and let 7 : K — K be continuous, compact and such that
n(K;) C K; (for the existence of such a map  see [7] and [19]). Since |x—y| > 2¢
for allx € coV,, and y € g(8Viy,) we deduce that g™ and g™ are homotopic on
Vin- By Theorem 1.1, ind(E, 7g™, Vm) = 0, which implies ind(E, g™, V) =0as
well. We can assume that m is a prime number larger than |ind(E, g,Q)|. From
the modp property we obtain

ind(E,g,Q) =ind(E, g™, V;n) (mod p),

which implies ind(Z, g, §2) = nm for some integer n. Since |ind(E, g, Q)| < m the
only possibility is n = 0. The maps f and g are obviously homotopic without
fixed points on Q. Thus ind(E, f,Q) = 0. O

In the compact case we have seen that condition (i) can be replaced by either
one of the following (see Remark 1.1):
(ii) r < d; '
(iii) 0 < d and f(x) # tx for all x € 8Q and ¢ € (0, 1].
In the noncompact case (iii) needs some adjustments, as the following example
shows.

EXAMPLE 2.1. In the Hilbert space I? of square summable sequences of real
numbers define the linear operator Lx = L(&1,%2,...) = (0,21, %3,...). Then
L is an a-contraction with constant p = % Condition (iii) is obviously satisfied,
but ind(E, L, B(0,1)) = 1, since L is homotopic to the constant map which sends
everything into 0.

We now present how (iii) can be modified in the noncompact case. As men-
tioned in the introduction we define d = inf{|| f(x}|| : x € 89}, r = sup{||x]| :
x € 0Q}. Let p be the a-contraction constant of f. Replace condition (iii) by

(iif) rp < d and f(x) # tx for all x € 8 and ¢ € (0, 1].
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Notice that (iii)’ reduces to (iii) in the compact case since p = 0. To see
why (iii) works consider the map g : & — E defined by g(x) = f(x)/(p +€),
where £ > 0 is selected so that p+¢ < 1 and r(p+€) < d. We deduce that g
is an a-contraction with constant p/(p + €) and d' = inf{||g(x)[| : x € OQ} =
d/(p+¢€) > r. Tt follows that g(82) Ncof2 = @. The condition f(x) # tx for
all x € 80 and ¢ € (0, 1] implies that f and g are homotopic via the admissible
homotopy H : Q x [0,1] — E defined by H(x,s) = (1 — 8)f(x) + sg(x). Thus
ind(E, f,Q) = ind(E, g,€) and g satisfies the assumptions of Theorem 2.1. In
the case when r < d we can choose £ > 0 such that p+ e < 1. Defining g as
before yields the same conclusion. Summarizing, we have the following result.

THEOREM 2.2. Let f : Q@ — E be continuous and a-contractive with constant
p < 1. Assume that one of the following conditions is satisfied:
(i) r < d;
(iii) rp < d and f(x) # tx for allx € 8Q and t € (0,1].
Then ind(E, f,92) = 0.

Theorem 2.2 remains valid in the case when {2 is an open, bounded neigh-
borhood of the origin in a cone K C E. The only requirement is that f maps
into K. Moreover, we should keep in mind that O, Q are to be taken relative
to the cone.

THEOREM 2.3. Let K C E be a cone, ? be an open, bounded neighborhood of
the origin in K, and f : @ — K be continuous and a-contractive with constant
p < 1. Assume that one of the following conditions is satisfied:

(i) r< d;

(iii) rp < d and f(x) # tx for all x € 0Q and t € (0,1].

Then ind(K, f,Q) = 0.

The above result provides a positive answer to a conjecture of I. Massabd and
C. Stuart [15], who established Theorem 2.3 under the additional assumption:
there ezxists a constant ¢ > 1 such that ||x +y|| > c|[x|| for all x,y € K (i.e.
the cone K is normal) and 7p < c¢d. They conjectured that ¢ was not needed
in the last inequality. Their conjecture was correct, as shown by Theorem 2.3.
Notice that as a consequence of Theorems 2.1, 2.2 and 2.3 we deduce that f has
an eigenvector xg € 99 corresponding to an eigenvalue A > 1. We present this
result in the form of a Corollary in E. A similar result holds in K.

COROLLARY 2.1. Let ) be an open, bounded neighborhood of the origin in
E, and f : Q — E be continuous and a-contractive with constant p < 1. Assume
that one of the following conditions is satisfied:
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(i) f(OQ)N (coQ2UN) = B;
(i) » < d;
(iii) rp < d and f(x) # tx for all x € 8Q and t € (0,1].
Then there exist A > 1 (A > d/7 in case (ii)) and xo € OQ such that Ax = F(x).
In the case when € is star shaped with respect to the origin Theorem 2.1
and its consequences can be established in a more direct manner, without using
the modp theorem (see, for example, [17]).
We now turn our attention to the case when f is condensing. The proof of
Theorem 2.1 needs some adjustments since we cannot define the auxiliary map g.
Given an integer m > 1, define V,,, = f1=™(f2) and notice that

a(f™(0Vm)) < a(f™(Vim)) < a(f™(Q).
As we have seen in the proof of Theorem 2.1, we have the inclusions
F™(OVim) C f™HOVim—-1) C... C £(89).

It is known that for every bounded set A, a(f"(4)) — 0 as n — co (see [16]).
Therefore, by a theorem of Kuratowski [11], the set

Ko = ﬂfm(avm) ) Koo - f(aﬂ)s

is nonempty and compact.
Assume that f(902) N (coUAN) = 0. We obtain f(x) ¢ Q for every x € 5.
That is, x € f~1(Q). This implies x ¢ V3 and V, C Q. Since

K C f(00) C E\ (coQ2UdN)
is compact we obtain Ko, NV, = 0 and dis(K o, Va) = 3d > 0. Consequently,
d(Koo, Vin) >3d  forallm >2.

Define M = 1 + sup{||x|| : x € K} and choose ¢ € (1,1 + d/M). Then
gK C E\To(Q, and there exists ¢, £ € (0, min{1/3,d/2}), such that

qNz(Koo) C E\TOR, where Np(Ko)={x € E:dis(x, Koo) < h}.

Select n so large that fm(8Vy,) C N.(Koo) and a(f™(V,.)) < € for all m > n.
Let m > n be given. We can cover the set f™(V,,) with a finite family of closed
convex sets C;, i = 1,... ,k, of diameter not exceeding ¢ and find a compact
map

mm:| JCi=C—C suchthat m,(C;)CC; and || f™(x) — T f™(x)|) < €

for all x € V. Since qmmnf™(0Vin) C qNae(Koo), the compact map O
satisfies gy, f™ (V) NTOQ = @. Thus gy f™(0V,,) NV, = 0, and we can
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apply Theorem 1.1 to obtain ind(E, grmf™, Vi) = 0. The maps gm, f™ and
T f™ are homotopic, since

k(t,x) = [1+t(g — ]mmf™(x) € Nze+d(Koo) C Naa(Koo) CE\V2 C E\ Vi
for every x € V,,, and t € [0,1]. Hence
0=ind(E, g7 f™,Vin) = Ind(E, 70 f™, Vin) .
We want to show that
0 = ind(E, T f™, Vin) = ind(E, f™, Vin) .
Define h(t,x) = (1 — ) f™(x) + tmm f™(x). If x € OV;, we have
h(t,x) € Noe(Koo) C Ni(Koo) CE\Va C E\V,,.

This shows that h is an admissible homotopy and gives the desired result. At this
point, with the same strategy used in Theorem 2.1, we obtain ind(FE, f,Q) = 0.
In summary:

THEOREM 2.4. Let f : Q@ — E be continuous and condensing. Assume thet
F(O) N (coQQUIN) =0. Then ind(E, f,2) =0.

THEOREM 2.5. Let Q C K and f : @ — K be continuous and condensing.
Assume r < d. Then ind(K, f,Q) = 0.

COROLLARY 2.2. Let f : @ — E be continuous and condensing. Assume
that f(O) N (coQUON) = B. Then there exist A > 1 and x € OQ such that
Ax = f(x).

COROLLARY 2.3. Let Q C K and f : Q@ — K be continuous and condensing.
Assume that v < d. Then there are A > d/r and x € 9 such that Ax = f(x).

3. The noncompact case: multi-valued maps

For multi-valued, upper semicontinuous o-contractions or condensing maps
the techniques of the previous section, with particular reference to the proof of
Theorem 2.1, cannot be used, since we do not have enough control on the fixed
points of F" belonging to 8V,, where V,, = F1~"(Q0) and F~1(A) = {x: F(x) C
A}. Additional assumptions that could allow us to apply the same method to
the multi-valued case include the following two, which are obviously satisfied in
the single-valued case:

(i) if x € F(x) then F*(x) C Q for alln > 1,
(i) if F*(x) N O # O, then F*1(x)N O =0.
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Here F*"t1(x) = F(F"(x) N ). The above conditions look rather restrictive
and not easy to verify. Therefore we are going to use a different approach. In
this section, unless stated otherwise, {2 is assumed to be an open, conver and
bounded neighborhood of 0.

THEOREM 3.1. Let F : @ — E be upper semicontinuous and condensing.
Assume that F' has an acyclic decomposition ® = {Fp,... ,F,} and F(@Q) N
= 0. Then ind(E, ®,Q) = 0.

PROOF. Let 7 : E — Q be the retraction m(x) = ¢(x)x, where t(x) = 1 if
x € 0 and it is the largest number such that t(x)x € Q if x € Q. Extend F to the
upper semicontinuous, condensing map G : E — E defined by G(x) = F(n(x))
and let @, = {m, Fy,... ,Fn}. Notice that G(E \ Q) C F(6Q) C NL(0)\ Q for
some h > 0 such that () UQ C N,(0). By normality and due to the fact that
Nx(0)\ ©Q is acyclic, we obtain

ind(E, ®,, N»(0)\ 1) = 1.

From ind(E, ®;, N;(0)) = 1, using the Additivity Property of the index and the
fact that G has no fixed points on 952, we derive

ind(E, ®,, N»(0) \ ) + ind(E, ®,,Q) = 1.

This implies ind(E, ®;,Q) =0.
The restriction of G to  coincides with F. Therefore ind(E,®,Q)=0. O

In the case when F is an o-contraction with constant p < 1 the above result
can be strengthened somewhat. More precisely, we have

THEOREM 3.2. Let F : @ — E be an upper semicontinuous a-contraction
with constant p < 1. Assume that F has an acyclic decomposition ® =
{Fo,...,Fn} and is fized point free on 8Q. Then F(OQ) N Q = 0 implies
ind(E,®,Q)=0.

PROOF. Let g > 1 be such that gp < 1. Define G(x) = ¢F(x), and let &,
be the acyclic decomposition of G corresponding to ®. Since G(8Q) NN = 0,
Theorem 3.1 implies ind(E, ®1,92) = 0. Since F' and G are homotopic the result
follows. O

COROLLARY 3.1. Let F: Q — E be an upper semicontinuous a-contraction
with constant p < 1. Assume that F has an acyclic decomposition & = {Fo,--.,
E,} and one of the following conditions holds:

(i) r<d;
(ii) rp < d end tx € F(x) for all t € (0,1] and x € 8.

Then ind(E, ®,Q) = 0.
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PrOOF. Choose £ > 0 so that p+¢& < 1 and r(p+¢) < d. Define G(x) =

;_}_—EF (x). It is easily seen that G and F' are homotopic and
. d

inf{|lyll : y € G(x), x € 90} = 7s >r

Hence G satisfies the assumptions of Theorem 3.2. O

COROLLARY 3.2. Let F : Q — E be upper semicontinuous and condensing.
Assume that F has an acyclic decomposition ® = {Fy,... ,F,} and F(8Q)NQ
= (. Then there exist A > 1 and x € 9Q such that Ax € F(x).

COROLLARY 3.3. Let F : 0 — E be an upper semicontinuous a-contraction
with constant p < 1. Assume that F' has an acyclic decomposition and one of
the following conditions holds:

(i) r<d;
(i) pr < d and tx ¢ F(x) for all t € (0,1] and x € O10.
Then there exist A > 1 and x € 8Q such that Ax € F(x).

We now examine some cases in which € is not convex, but is contained in
a wedge W with the property that there exists a vector xg € W such that
|x + Axo|| > ||x|| for all x € W. Notice that, without loss of generality, we may
assume ||Xo|| = 1. Recall that W is called a special wedge.

THEOREM 3.3. Let Q@ C W and F : @ — W be upper semicontinuous.

Assume that F admits an acyclic decomposition ® = {Fy,... ,F,}, is an a-
contraction with constant p < 1, and satisfies one of the following conditions:
(i) r<d;

(i) rp < d and tx g F(x) for oll x € 0Q and t € (0,1].
Then ind(W, @,Q) =0.

PROOF. Let € > 0 be such that p+ & < 1 and 7(p+¢€) < d. Define G(x) =
#F(x), and let ®; be the acyclic decomposition of G corresponding to ®. G is
an a-contraction with constant p/(p+ e). Moreover, for every x € 9 we obtain
G(x) ¢ W\ D(0,r) and ind(W,®,Q) = ind(W,®1,Q2). Let U and V be two
open subsets of W such that

0eVcvVcUcUcQ

and Q\V ¢ G~1(W\ D(0,r)). There are two continuous functions u,v : E — R
such that

v(x)=0 ifxeV;

v(x)=1 ifxeW\U,

ux)=1 ifxeT;

ux)=0 ifxeW\Q.
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Let M = sup{||y| : ¥ € G(x), x € Q} and choose b > M + r + 1. Define
G(x)+bv(x)xy ifxeU,
H(x) =< u(x)G(x)+bxo ifxeQ\U,
bxg ifxeW\Q.
The map H is upper semicontinuous, a-contractive with constant p/(p + e) and
admits an acyclic decomposition 3. Moreover, its restriction to V coincides
with G. Let us show that H(W N (D(0,r) \ V)) C W\ D(0,r). We examine

separately the two cases (i) x € U\ V and (ii) x € D(0,7) \U. In case (i) let
y € H(x), i.e. y =z + bu(x)xp for some z € G(x). We have

|z + bu(x)xo]| = ||z|| >~
since G(Q\ V) c W\ D(0, ). In case (ii), y = u(x)z + bxg and
lu(x)z + bxg|| > b—|lz| 20— M >7r+1.

In particular, w € H(x) for some x € W with ||x|| = 7 implies ||w|| > r + 1.
Thus, by Corollary 3.1, ind(W,®5, B(0,7) N W) = 0. Since H has no fixed
points on (B(0,7) N W) \ V we obtain, from the Additivity Property of the
index, ind(W,®3,V) = 0. On the open set V we have H = G = F. Thus
ind(W, ®,V) = 0. The map F does not have any fixed points on O\ V, and this
implies, again by the Additivity Property,

ind(W, ®,Q) =0.
|

COROLLARY 3.4. Let QC W and F : Q — W be upper semicontinuous and
condensing. Assume that F' has an acyclic decomposition ® = {Fy,... ,F,} and
d > r. Then ind(W, ®,Q) = 0.

PROOF. The proof is patterned after the one of Theorem 3.3. The map G is

not needed since F(0Q) ¢ W \ D(0,r). The map H is defined using F' in place
of G. |

COROLLARY 3.5. Let Q C W and F : Q — W be an upper semicontinuous
a-contraction with constant p < 1, which has an acyclic decomposition ® =
{Fy,...,F,}. Assume that one of the following conditions holds:

(i) r < d;

(iii) rp < d and tx & F(x) for all t € (0,1] end x € IQ.

Then there erist x € 0Q and A > 1 such that Ax € F(x).

PROOF. F cannot be homotopic to the constant map G(x) = 0 for all
xeq. O
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COROLLARY 3.6. Let 0 C W and F : Q — W be upper semicontinuous,
condensing, and with an acyclic decomposition ® = {Fy,... ,F,}. Assumer <
d. Then there exist x € OQ and A > d/r such that Ax € F(x).

COROLLARY 3.7. Let S = {x € E : |x|| =1}, and F : § — S be an
upper semicontinuous a-contraction with constant p < 1, which admits an acyclic
decomposition ® = {Fy,... ,F,}. Then F has a fized point.

ProOF. Let ¢ > 1 be such that gp < 1. Define G4(x) = ¢F(x) and let ®; be
the acyclic decomposition of G corresponding to ®. Then G, is an a-contraction
with constant gp. Extend G, and F to the full disk and denote the extensions
with the same symbols (see Corollary 1.3). It can be shown (see for example
[12]) that F and G, are still a-contractions. If F is fixed point free on S then the
index of ®; on B(0,1) is defined and, according to our previous results, we have
ind(E, ®;, B(0,1)) = 0. The maps F' and G, are obviously homotopic and we
obtain ind(E, ®, B(0, 1)) = 0. This, however, is impossible since F is homotopic
to the constant map K(x) = 0. O

4. Order preserving single-valued maps

Let K be a cone in E. Denote by < the partial ordering induced by K, i.e.
x <yify—x € K. A function f : K — K is said to be order preserving
if f(x) < f(y) whenever x < y, and positively homogeneous of degree one if
f(tx) = tf(x) for all t > 0 and x € K. The following notations and definitions

will be used throughout the section.
e Given any map f : K — K which is positively homogeneous of degree
1 and such that f(Sk,1) is bounded, the quasinorm, |f|, of f is defined
by setting |f| = sup{||f(x)| : x € Sk,1}, and the spectral radius, r(f),

of f as
r(f) = limsup |f*'/".

Since || < |f|™ we see that 7(f) < |f].

o For the same family of maps considered above, and using the Kuratowski
measure of noncompactness, we define a(f) = inf{p : a(f(4)) < pa(4),
for all A C Sk}, and

w(f) = limsup |a(f™)|Y/™.

One can easily verify that w(f) < a(f).
e Given f: K — K and p > 0, we set f,(x) = (1/p) f(x).

LEMMA 4.1 (see [14] and [17]). Let f : K — K be positively homogeneous of
degree 1 and such that w(f) < 1. Assume that there ezists u € Sk,1 such that
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the sequence {f™(u) = u,} is unbounded. Then there exists a subsequence {w,,}
of {u,} such that:
(@) {llwml||} is strictly increasing and divergent;
(i) ||wWm|| is strictly larger than the norm of every vector which comes before
W, in the original sequence;
(iil) the sequence {W../||Wm||} has a convergent subsequence.

PrROOF. (i) and (ii). Let w; = u;. Choose as wy the first vector of {u,}
with norm strictly larger than |lu,||. Then choose as wj the first vector of {u,}
with norm strictly larger than ||ws|, etc.

(iii) Let ¢ > 1 be such that a(f?) < 1. Consider the subsequence of {u,}
made of those vectors which precede the vectors of the subsequence {w,,} by
exactly g positions. Denote this subsequence by {z,,} and let

A={vmn =wn/||wn|}, By = {Zmg/|Wmll}.
We have By C Dg 1, f4(By) C A and A\ f9(B,) finite. Consequently,
a(A) = o(f1(B,)) < a(fT)a(Bg) < 2a(f7).

Replacing ¢ with ¢®> and repeating the same procedure we obtain
a(A4) < 2[a(f9))?, and, in general, a(A4) < 2[a(f9)]* for every integer k > 2.
Since a(f?) < 1 we conclude that A is totally bounded and it contains a conver-
gent subsequence. O

‘We are now ready to establish the following important result on the index of
order preserving maps.

THEOREM 4.1. Let f : K — K be continuous, positive homogeneous of
degree one and order preserving. Assume that

() a(f) <r(f) <oo;
(ii) there exist u € Sk, and 6 € (a(f),r(f)] such that

n
lim sup ”—f—(sgzuﬂ >0.
Then either there exists x € Sk,1 such that f(x) = éx or ind(K, f4, Bk,) = 0.
In this last case there exist x € Sk,1 and X € (6,7(f)] such that f(x) = Ax.

PROOF. Assume that f(x) # éx for all x € Sk,1. Then there exists € > 0,
a(f) < 8§ — e, such that f(x) # px for all p € [6 —,6 + ¢]. In fact, assume
that f(x,) = pnXn for some sequence p, — 6 and {x,} C Sk,:. From éx, =
f(xn) — (pn — 8)x,, and with A = {x,,}, we derive

ba(A) < a(fla(A) + Ta(A)
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for all 7 > 0. Hence §a(A) < a(f)a(A). Since § > a(f) we obtain a(A4) = 0,
and {x,} must have a convergent subsequence. It is easily seen that the limit
xp of this subsequence satisfies the equality éx9 = f(xp), contradicting the
assumption 6x # f(x) for all x € Sk,;. Select p € [6 —¢€,8) and consider the
map f,. Obviously a(f,) < 1 and the sequence

R o)
Il = - H

is unbounded. Pick a positive integer k such that || f,(x) + ku|| > 2 for all x €
Dk,1. From the Solvability Property of the index we obtain ind(K, g, Bk,1) = 0,
where g(x) = f,(x) + ku. Consider the homotopy H(x,t) = f,(x) + tku. We
know that H(-,0) and H(-,1) are fixed point free on Sk,;. Assume x = f,(x) +

tku for some x € Sk,; and ¢ € (0,1). It follows that x > f,(x) and x > tku. By
an induction argument we derive

x > th(fp)"(n).

Let {w,,} be the subsequence of {(f,)"(u)} with the properties insured by
Lemma 4.1 and let w, ||w| = 1, w € K, be the limit of a convergent subse-
quence of {Wp,/||Wp,||}. From x > tk(f,)"(u) we derive

X S om
([ | (W]

Consequently, 0 > w. Since this is impossible we deduce that H is fixed point
free on Sk for all t € [0,1] and

ind(K’ fp,BK,l) = md(Ka g, BK,I) =0.

The homotopy H(x,t) = tf,(x) cannot be fixed point free on Sk; since for t = 0
we have ind(K, H(-,0), B(0,1)) = 1. Thus there exist x € Sg; and ¢ € (0,1)
such that x = tf,(x), i.e. f(x)=Ax, A € (6,7(f)). ]

In [17] (Theorem 2.1} Nussbaum established a result which follows from
Theorem 4.1, since he replaces (ii) with the stronger condition that ||(f)™(u)] is
unbounded.

REMARK 4.1. Notice that when § = r(f) there is always x € Sk,1 such that
f(x) = r(f)x, since otherwise ind(K, f,(), Bx,1) = 1, & contradiction.

COROLLARY 4.1. Let f : K — K be positively homogeneous of degree one
and order preserving. Assume that

() alf) <r(f) < oo
(i) there ezist u € Sk 1, 6 € (a(f),r(f)] and N such that f¥(u) > §Nu.
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Then either there erists x € Sk,1 such that f(x) = 6x or ind(K, f5, Bg,1) = 0.
In this last case there ezist x € Sk and A € (6,7(f)] such that f(x) = Ax.

PROOF. Assume that 6x # f(x) for all x € Sk,; and let £ > 0, p € [§ — ¢, §)
be selected as in the proof of Theorem 4.1. We want to show that the sequence
{II(fo)™(u)||} is unbounded. We have

N 1 .~ &N
(fo)" (u) = p—Nf (u) > AU
By induction we obtain

PNk Nk
W(fp) (u) >u.

Since p™*/6N* — 0 as k — oo the sequence {(f,)*(u)} must be unbounded.
From this point on we can follow the same reasoning used in the proof of Theo-
rem 4.1 to obtain the desired conclusion. O

REMARK 4.2. When § = r(f) we obtain f(x) = r(f)x for some x € Sk,1.

It is known (see for example [17]) that in the case when f : K — K is a
linear map L, the condition w(L) < r(L) implies the existence of an eigenvector
x corresponding to the eigenvalue r(L). This result is basically a consequence of
two important facts. The first is the property that every bounded linear operator
L such that r(L) > 1 has an unbounded sequence of iterates {L"(u)},u € Sk ;.
Since for every p € (w(L),r(L)) we have r(L,) > 1, the linear operator L, has
an unbounded sequence of iterates starting at some point of the unit sphere.
This fact provides one of the two key ingredients of Theorem 4.1. The second
important fact is that w(L,) < 1 for every p € (w(L),r(L)) and this insures
that some iterate of L, is an a-contraction. Since L, is differentiable we can use
for L, the properties of the index. This is the second fundamental ingredient. of
Theorem 4.1. We announce below a generalization of this result to the case when
the cone K is normal, i.e. there exists a constant v > 0 such that ||x+y| > |||
for all x,y € K. The proof of the theorem is quite long and will appear in a
forthcoming paper.

THEOREM 4.2. Let K C E be a normal cone with nonempty interior and
f:E — FE be such that f(K) C K. Assume that

1. f is positively homogeneous of degree 1 and order preserving;

2. w(f) <r(f) < oo;
3. [ is of class C! in E\ {0}.

Then there exists x € Sk,1 such that r(f)x = f(x).
EXAMPLE 4.1. Let E = C[0,1] and f(x)(t) = [i \/2%(s) + 22(1 — ) ds.

Then f is positively homogeneous of degree 1 and maps the normal cone K of
positive functions into itself. Moreover, f is order preserving and of class C! in
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E\ {0}. Finding an eigenvector for f corresponding to a positive eigenvalue A
is equivalent to finding a global solution (i.e. ¢ € [0,1]) to the problem

{ o' (t) = A/z2(t) + 72(1 — 1),

z(0) =0.

Using the fact that z'(f) = 2’(1 — t) and after a lengthy but straightforward
computation we deduce that the above problem has a solution if and only if
A = v/2In(1 + v/2). The solution x can be written in the form

z(t) = a[l + sinh[2In(1 + V2)t + In(—1 + V2)]].

where a = z(1/2). With ¢ = 1/2 we obtain ||x| = 1. Theorem 4.2 implies that
the spectral radius of our operator f is 7(f) = 1/v2In(1 + v/2).

We close this section with the following remark.

REMARK 4.3. Let f : K — K be order preserving and positively homoge-
neous of degree 1. Assume that max{a(f),r(f)} < 1. Then ind(K, f, Bk,1) =1
since f is homotopic to the constant map g(x) = 0.

When a(f) < 1 < r(f) and f is a linear operator L, the condition x # L(x)
for all x in Sk 1 implies that ind(K, L, Bk,1) = 0. In fact, it can be shown that
there exists u in Sk,; such that the sequence {L™(u)} is unbounded. Hence,
according to Theorem 4.1 we obtain ind(K, L, Bk,1) = 0. A further refinement
of this result is possible by replacing a(L) with w(L). In the nonlinear case the
situation is different, since r(f) > 1 does not imply the existence of a vector u
in Sk,1 such that {f"(u)} is unbounded. If such a vector exists, and x # f(x)
for all x € Sk,1, then ind(K, f, Bk,1) = 0, again as a consequence of Theorem
4.1. We are unable to provide an example of a map f : K — K which is order
preserving, positively homogeneous of degree 1, with a(f) <1 < r(f), x # f(x)
for all x in Sk ; and such that ind(K, f, Bk,1) # 0.

5. Order preserving multi-valued maps

A multi-valued map F : K — K is order preserving if x <y implies z < w
for every pair of points z, w with z € F(x) and w € F(y). F is positively
homogeneous of degree one if F(tx) = tF(x) for all x € K and ¢ > 0. In this
section, unless otherwise stated, all multi-valued maps are assumed to be order
preserving and positively homogeneous of degree one.

¢ Given a bounded set A C K we define M (A) = sup{|x|| : x € A}. The
quasinorm of a map F : K — K such that F(Sk 1) is bounded is |F| =
M(F(Sk,)). For every x € K and y € F(x) we have |y| < |F||x],
and |F| is the smallest possible constant for which such an inequality is
true.
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* Givenx € K and z € F(F(x)) there exists y € F(x) such that z € F(y).
Therefore ||z|| < |Fl{ly|| < |F|?|lx|. It follows that {F?| < |F|2, and in
general |F™| < |F|™. The spectral radius of F' is defined as

r(F) = limsup |F™|Y/™,

We have 7(F) < |F|.

e Using the Kuratowski measure of noncompactness, we define
a(F) = inf{p: a(F(A)) < pa(A) for all A C Sk}, and
w(F) = limsup |a(F™)|*/™.

One can easily verify that w(F) < a(F).
e Given p >0 and F : K — K we set F,(x) = (1/p)F(x).

LEMMA 5.1. Let F : K — K. Assume that there exist u ¢ Sk,1 and

6 < r(F) such that
lim sup A—Jw

Then for every p < 6 the sequence {M((F,)™(u))} is unbounded.

PROOF. M((Fp)™(u)) = M(F"(u))/p" = (6"/o"™)(M(F™(u))/6"™). Since
lim sup,, o, M(F™(u))/6™ > 0 and p < § the result follows. O

>0.

LEMMA 5.2. Assume that w(F) < 1 and there exist u € Sk such that
the sequence {M(F™(u))} is unbounded. Then there ezists a sequence {¥n, €
Fre(u)} such that {vyn, = ¥n,/l|¥n,ll} is convergent.

PRrOOF. Let w; € F(u) be such that |w;|| = M(F(u)). Let my be the first
index such that M(F"2(u)) > ||w1]| and pick ws € F™2(u) such that [wal| =
M(F™2(u)). Proceeding in this way we construct a sequence {w,, € F*m(u)}
such that {||wy||} is strictly increasing, and the norm of w,, is strictly larger
than the norm of every vector in F*(u) for every index ¢ which comes before Ton-
Let A= {wm/|[wm/}.

Choose ¢ > 1 such that o(F?) < 1 and construct a set B, as follows. Pick
an index m of the sequence A and look at the corresponding index n,,, such that
Wm' € F"m(u). Assume that n, — ¢ > 1 and select a vector z € Frm—4(u)
such that wp, € F9(z). Define zn,—g = z/||Wn|| and set B, = {z,,_,}. We have
B, C Dk,1 and A\ F?(B,) is finite. Consequently,

a(A) < o(FU(B,)) < a(F?)a(B,) < 2a(F9).

By replacing g with g* we obtain a(A4) < 2[a(F9)]*. Hence A is totally bounded
and has a convergent subsequence. O

We are now ready to prove for multi-valued maps a result analogous to
Theorem 4.1. Given a multi-valued map F : K — K which has an acyclic
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decomposition & = {Fy,... ,F,} and given p > 0 we denote by ®, the acyclic
decomposition of F, induced by &.

THEOREM 5.1. Let F : K — K be an upper semicontinuous map which can
be expressed as a composition of acyclic-valued maps ® = {Fy, ..., F,}. Assume
that

(i) a(F) < r(F) < oo;
(ii) there are 6 € (a(F),r(F)] and u € Sk,1 such that

lim sup M > 0.
n—0co 517'

Then either there exists x € Sk 1 such that 6x € F(x) or ind(K, ®s, Bk,1) = 0.
In this last case there are y € Sk,1 and X € (6,r(F)] such that Ay € F(y).

PROOF. Assume that 6x ¢ F(x) for all x € Sk,;. Then there is ¢ > 0,
a(F) < § — ¢, such that F, is fixed point free on Sk, for all p € [§ —¢,6)." In
fact, assume that there is a sequence {p.},pn — 6, and x,, € Sk 1 such that
prnXn € F(x,). Write 6x, + (pn — 6)%n, € F(Xy) or 6X, € F(Xn) — (pn — 6)Xn.
Let A= {x,}. Then for every v > 0 we have

bo(4) < a(F(A)) +va(A) £ o F)a(A) +ya(4).

It follows that 6a(A) < a(F)a(A) and since § > a(F) we obtain a(A) = 0.
Hence {x,} has a convergent subsequence X, — Xo, ||xo|| = 1. Clearly

PrpXn, — 6xg and pp,Xn, € F(Xp,).

Let 7 > 0 be given. We have xg € F~}(D(F(x0),7)) where D(F(xq),7) =
{y : ly — 2| < r for some z € F(xp)}. It follows that for nj large enough
Xn, € F7Y(D(F(xp),r)) and consequently F(x,,) C D(F(xg),r). This implies

PrpXn, € D(F(x0),r) and 6&xo € D(F(xo),7).

Since this is true for every r > 0 and F(xg) is closed we obtain §xy € F'(xg).
This contradiction establishes the stated property. Choose p € (6§ —¢,6). By
Lemma 5.1 the sequence {M((F,)"(u))} is unbounded. Let k be so large that
k — M(F,(Dk,1)) > 1. Define G(x) = Fp(x) + ku and let @, be the acyclic
decomposition of G corresponding to ®. Then ind(K, ®;, Bk,1) = 0. We want
to show that G and F, are homotopic. Let H(x,t) = F,(x) + tku and assume
x € H(x,t) for some x € Sk,; and t € (0,1). There exists z € F,(x) such
that x = z + tku. Hence x > z and x > tku. Since F, is order preserving
and positively homogeneous of degree one, we obtain x > z > tkw; for every
w1 € (F,)(u). By induction it follows that x > tkw, for every w, € (F,)"(u)
and for every n > 1. Using the convergent subsequence of Lemma 5.2 we derive
X/|Wmll > tkWp/||Wml. If v is the limit of the subsequence we get [[v]| = 1
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and v < 0. This is impossible, since v € K. Therefore with ®, denoting the
acyclic decomposition of F, induced by & we obtain ind(X, ®,,Bk,1) =0. We
know that F, is not homotopic to the constant map which sends everything
into 0. Thus there must be ¢ < 1 and x € Sk, such that x € tF,(x), i.e. Ax €
F(x) with A € (6, r(F)]. O

REMARK 5.1. In the case when § = r(F) we conclude that F' has an eigen-
vector corresponding to the eigenvalue r(F).

COROLLARY 5.1. Let F : K —o K be an upper semicontinuous map which
can be expressed as a composition of acyclic-valued maps ® = {Fy,... ,F,}, is
positively homogeneous of degree one and order preserving. Assume that

(i) a(F) < r(F) < oo;
(ii) there ezist u € Sk,1, 6 € (a(F),r(F)] and N such that z > éNu for
some z € FN(u).

Then either there exists X € Sk,1 such that 6x € F(x) or ind(K,®s, Bk 1) = 0.
In this last case there erist x € Sk1 and A € (6,r(F)] such that Ax € F(x).

PrOOF. Follow the same reasoning used in the proof of Corollary 4.1. [
REMARK 5.2. When § = r(F) we obtain r(F)x € F(x) for some x € Sk ;.
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