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PERIODIC SOLUTIONS
FOR FUNCTIONAL DIFFERENTIAL EQUATIONS
WITH MULTIPLE STATE-DEPENDENT TIME LAGS
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Dedicated to Jean Leray

0. Introduction

Suppose that h : R? — R satisfies a “negative feedback condition”: h(éo,&1)
< Oiffo > Oand{l > 0and h(&),fl) > Oion < Oandfl <0.Letr:R — [O,M]
be a locally Lipschitz map with r(0) = 79 > 0. Consider the differential-delay

equation
(0.1) 2'(t) = h(z(t), z(t — r(x(t)))).

Under further natural hypotheses it has been proved in [12] and [13] that equa-
tion (0.1) has a “slowly oscillating periodic solution” or “SOP solution” (see
Definition 3.1 in Section 3 below).

More generally, suppose that A : R™*! — R satisfies a negative feedback
condition analogous to that above. For 1 < j < m, let r; : R — [0, M] be a

locally Lipschitz map. Assume (and this is crucial) that r;(0) = o for 1 < j < m.
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Consider the equation
0.2)  2'(t) = h(z(t), 2(t — r1(z(t))), z(t — r2(2(2))), - -, 2(t — rm(2(2))))-

One might hope that, under further natural assumptions, equation (0.2) has
a slowly oscillating periodic solution; and indeed we shall prove this as a very
special case of our later results. However, the proof in [12, 13] that there exists
an SOP solution of equation (0.1) (the case m = 1) does not extend to the case
m > 1; and we shall need a different approach. Ironically, the proof in [12, 13]
supplanted an unpublished, earlier and less aesthetic argument by one of the
authors (R.D.N.); but the earlier approach can be extended to cover equation
(0.2), and it is that argument which will be refined and generalized here.

There are many variants and generalizations of equation (0.2) which also
possess SOP solutions. For example, suppose that p; : R2 - [0,M], for1<j<
m, is a locally Lipschitz map and that o; is a given real number with 0 < o; < M
for 1 < j < m. Assume that p;(0,£;) =70 forall§ € Rand for 1 < j < m.

Consider the equation
' (t) = h(z(t), z(t — pr), z(t — pa)s -, 2(t = Pm)),

pi = pj(2(t), 2(t — 0;))-
Our later results (see Corollary 4.1 and Remark 4.2 in Section 4) imply that
under further natural assumptions, equation (0.3) has an SOP solution.

It is obviously desirable to treat equations (0.2) and (0.3), and other examples
described in Section 4 in a unified way. In order to do this, suppose that M > 0
and let Xy := C([—M,0]) denote the Banach space of continuous, real-valued
functions in the usual norm. Assume that f : X) — R is a continuous map
and that f satisfies a negative feedback condition: if ¢ € X and ¢(s) > 0 for
—M < s <0, then f() < 0; and if ¢(s) < 0 for —M < s <0, then f(p) > 0.
Assume that for all ¢ € X with ¢(0) =0,

(0.4) f(p) = g(e(—0))-

Here, 7o > 0 and g : R — R is a locally Lipschitz map with ug(u) < 0 for all
u # 0. Under further natural assumptions on f we shall prove (see Theorem 3.1
and Remark 3.4 in Section 3) that the equation

(0.3)

(0.5) Z'(t) = f(z)

has an SOP solution. (As usual [8], if z : R — R, then x; € Xy is defined by
z4(s) = z(t + 8) for —M < s < 0.) Our results about equation (0.5) will imply
as very special cases theorems about equations (0.1), (0.2) and (0.3).
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In practice, part of the difficulty and interest of the proof lies in finding the
“appropriate, natural assumptions” on f. Even after one finds the appropriate
framework and sees the basic outline of the proof, a variety of technical difficulties
must be overcome. Thus it may be useful to give an overview of the proof and
of various obstacles.

Even for simple examples like equations (0.1) and (0.2), the map f : X5y — R
in equation (0.5) will not, in general, be locally Lipschitzian. Thus questions
about uniqueness and continuous dependence on initial data for the initial value
problem corresponding to equation (0.5) are not standard. In Section 1 (see
Definition 1.1) we introduce the concept of being “almost locally Lipschitzian”
and show that our functions f, while usually never locally Lipschitzian, are usu-
ally almost locally Lipschitzian. Using this idea we are able to give satisfactory
uniqueness and continuous dependence results for the initial value problem.

If ¢ € X, we define, as usual, lip(yp) by

lip(p) = sup{|p(s) — p(t)lls —t[™" : s,t € [-M,0] and s # t}.
If A,B,M and R are positive reals and 7 is as in equation (0.4), we define
closed, bounded convex sets Gt(—B, A, M, 7o) and G*(—B, A, M, 79, R) by
Gt (—B,A,M,7) ={p€ Xy : —B < p(s) < Aforall s € [-M,0],
with ¢(s) > 0 for —79 <5 <0, and ¢(0) = 0},

G*(-B,A,M,7,R) = {p € Xn : ¢ € GT(—B, A, M, 1) and lip(p) < R}.
It is also convenient to define U+(—B, A, M, 7o) (respectively, Ut(—B, A, M, 7o,
R)) to be the set of functions ¢ € G*(—B, A, M, 7p) (respectively, Gt(—B, A, M,
7o, R)) such that o(s) > 0 for some s € [—70,0). The set Ut(—B, A, M, 1p) (re-
spectively, Ut (—B, A, M, o, R)) is a relatively open subset of G*(—B, A, M, 7,)
(respectively, Gt (—B, A, M, 19, R)).

If p € Gt(—B, A, M, 19, R) and z(t; ) = z(t) denotes the solution of the

initial value problem

Z'(t) = f(z;) fort >0,
.’L’I[—M, 0] =@

it is important for our results to have conditions which ensure that for all ¢ > 0,
(0.6) —B<z(t;p) <A and |[2'(;¢)| <R

Some results along these lines are given in Theorems 1.3, 1.4 and 1.5. See, also,
Remark 3.4.
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If f satisfies a negative feedback condition and equations (0.4) and (0.6)
are satisfied for all ¢ € G¥(—B, A, M, 19, R), it is shown in Section 2 that (for
w € UT(—B, A, M, 19, R)) the zeros of z(t; ) are separated by a distance greater
than 79. More precisely, for ¢ € UT(—B, A, M, 7, R), define oo(p), and {1{p)
and CZ(‘P): by

ao(p) = sup{t = 0 : z(s;p) =0 for all s € [0,1]},
Ci(p) = inf{t > 1o : z(t;9) = 0},
Ca(p) = inf{t > (i(p) : z(t;p) =0}

Then it follows that oo(p) < 7o, With (1(¢) > oo(p) + 7o and z(t; ) < 0 for
o9 < t < (1, and (a(p) > (i(p) + 70. It may happen that ¢;1(¢) = oo or
¢2(y) = co. Using these facts we define a map

Ty:Ut(—B,A,M,7,R) - G (-B,A,M, 7, R)

by setting
T (‘P) = Loy

where z denotes the function z(¢; ) and (2 = (2(p). If (1(@) = 0o or (2(p) =
oo we define I'y(w) = 0. It is not hard to prove that fixed points of I'g in
U*t := Ut(—B, A, M, 1, R) correspond to SOP solutions of equation (0.5). If
Gt := G*(-B,A, M, 1y, R) the strategy of the proof is to prove that I is
continuous and that ig+(Lg,U™), the fixed point index of [y : Ut — G is
defined and nonzero.

At this point, a difficulty arises: the map I'¢ is continuous on U, but it
is not clear (see Remark 2.1) that it can be extended continuously to Gt. In
the case of equation (0.1), one can circumvent this difficulty. In [12, 13] it is
proved that for ¢ € Ut and (1(p) < t < (2(yp) one has t — r(z(t)) > 0, and this
observation is used in [12, 13] to define a variant of I'y which can be extended
continuously to GT. This technique is no longer applicable for equation (0.2)
when m > 1. Fortunately, as we shall show below, it is possible to define and
evaluate ig+(I'g, U1) even if I'g cannot be extended continuously to U+.

The basic result of this paper is contained in Theorem 3.1 and Remark 3.4.
However, even to state Theorem 3.1 precisely, it is necessary to discuss the
“linearization of f” at 0. In fact, for the examples of interest, the map f is
rarely Fréchet differentiable at 0. In Definition 3.2 we define a weakening of
Fréchet differentiability at 0, namely “almost Fréchet differentiability at 0” and
“the almost Fréchet derivative at 0.” It turns out that our maps f are usually
almost Fréchet differentiable at 0, and this is sufficient.
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The central point in Theorem 3.1 is the evaluation of g+ (T, UT). The basic
idea of the proof in Section 3 is to consider a homotopy of equations parametrized
by a, in the range 0 < a < 2, where o = 0 corresponds to the original equation

and o = 2 to a linear equation
y'(t) = ~By(t) — vyt — 7).

For each o one defines a map I'y : Ut — X something like I'y. For an
appropriate retraction p one has pI', : Ut — G, and the key idea is to use
the homotopy property of the fixed point index to prove that ig+(p's, Ut) is
constant for 0 < @ £ 2. For 1 < a < 2 the map I', extends continuously to
G, and this fact, together with the additivity property of the fixed point index,
simplifies the problem of computing ig+(pLe,UT) for 1 < @ < 2. An analytical
part of the proof (see Lemmas 3.4 and 3.4A) involves obtaining an upper bound
on the minimal period of any SOP solution of one of the parametrized equations,
0 < a £ 2. For a = 2, the map I's corresponds to a linear equation, and the
computation of ig+(pl'z, UT) is obtained from Lemma 3.2.

The proof of Theorem 3.1 requires use of all the basic facts about the fixed
point index: the additivity, homotopy, commutativity and normalization prop-
erties. However, it is worth noting that, if we use Remark 3.2 in Section 3, our
proof totally avoids the apparatus of asymptotic fixed point theory.

Theorem 3.1 and Remark 3.4 imply all of our existence results for SOP solu-
tions. In Section 4 we verify that all the hypotheses of Theorem 3.1 are satisfied
for our equations (0.1), (0.2) and (0.3). We also remark on some generalizations
by R.D.N. of work of Kuang and Smith [9].

This paper is dedicated to Jean Leray in recognition of his seminal work in

fixed point theory.

1. Existence, uniqueness and boundedness
for the initial value problem

Throughout this paper M will denote a fixed positive constant, and we shall
denote by X s or simply X the Banach space C([—M,0]; R) of continuous, real-
valued functions ¢ : [-M,0] — R, with norm |¢|| = max_p<;<o|@(t)]. If
@ € X, we define lip(p) by

lip() = sup{lp(s) — @(t)lls — |7 : s,t € [~M,0] and s # t}.

As usual, if z : [tg — M,1;] — R is a continuous function and t; > t,, then for
tg <t < t; we shall define z; € Xr by z:(8) = z{t + s) for —-M < s <0.
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Our first theorem is a standard result; it follows easily from the Schauder
fixed point theorem and is proved in Chapter 2 of [8].

THEOREM 1.1. Suppose that f : Xpr — R is a continuous map and that
wo € Xy and to € R. Then there ezists 6 > 0 and a continuous function
z : [to —-M,ty + 8] — R, continuously differentiable on [to,to + 8], such that

o'(t) = flze)  forto<t<to+§,

(1.1)
xto = SOO'

If there exist constants C1 and Cy such that for all p € Xy,
(1.2) |£ ()| < Cullell + Co,

then x in (1.1) can be defined on [to — M, 00).

We need hypotheses on f which ensure that the solution of (1.1) is unique. If
f is locally Lipschitz, uniqueness holds in (1.1); but for the examples of interest
to us, for example the equation (0.1), the corresponding map f is, in general,
not locally Lipschitz. The reader can verify that f is not locally Lipschitz for
simple examples like f(p) = w(—r(¢(0))), where 7(0) = 1 and r’/(0) # 0. Thus
we need a variant of the local Lipschitz condition.

DEFINITION 1.1. Let g : D C X3; — R be a continuous map, and for each
o € X, and quantities § > 0 and R > 0, define V' (iq; 6, R) by

V(po;6,R) = {p € Xum : |l — oll < 6 and lip(p) < R}.

We shall say that g is almost locally Lipschitzian if, for each ¢ € D and R > 0,
there exists § = 6(pp, R) > 0 and k = k(yo, R,6) > 0 such that for all ¢,9 €
V(SDO; 67 R) n -D,

lg(e) — a(P)Il < Klle — ll-

The map g in Definition 1.1 is defined on D C Xs. Suppose, however, that
there exists a continuous retraction p : Xjs — D of Xs onto D, which is locally
Lipschitzian on Xz, and that for every o € X, and 6§ > 0 and R > 0, it is
true that

sup{lip(p(y)) : ¥ € V(0; 6, R)} < co.
Then if g : D C X — R is almost locally Lipschitzian and G : Xy — R is
defined by G() = g(p(¢)), it follows that G is an extension of g and G is almost
locally Lipschitzian. We leave the proof to the reader.
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We shall apply the above observation in the following simple situation. Sup-
pose that A and B are real numbers with —B < A and define K(—B, A, M )=
D c Xy by

D={peXy: -B<pt)<Afor -M<t<0}.

Define a retraction r : R — [ B, A] by

A foru > A,
(1.3) r(uy)=< u for —B<u<A,
—B for u < —B.

It is easy to check that ;' is Lipschitz with lip(r) = 1. Define a retraction
p: Xy — Dby

(1.4) (p(#))(t) = r((t)).

It is easy to check that p is a continuous retraction of X s onto D and that for
all @, ¢ €X M,

lip(p(p)) <lin(p), and  [lp(e) — )| < [l — .

It follows that if g : D — R is almost locally Lipschitzian and G = g o p, then
G : Xpr — R is almost locally Lipschitzian.

LEMMA 1.1. Let D C X be a closed, bounded set and let g : D — R be
almost locally Lipschitzian. If R > 0 and Dp = {¢ € D : lip(y) < R}, then
there erists a constant k = k(R, D) with

llg(w) =g < klle =9l for all o, 4 € Dp,.

PROOF. The Ascoli-Arzela theorem implies that Dy is a compact subset
of Xpr. Using Definition 1.1, we see that for each ¢ € Dpg there exists § =
6(y,R) > 0 such that (in the notation of Definition 1.1) the restriction of g
to V(p;6,R) N D is a Lipschitz map with Lipschitz constant k(p,R,6) > 0.
Compactness of Dg implies that there exist (g;, §;) for 1 < i < m, with
(1.5) Dgp=|J V(¢ 6/2,R)N D.

i=1
Let §o = min{6; : 1 < i < m} and ko = max{k(yp;,6;,R) : 1 < i< m}. If
w,% € Dg and @,y € V (¢, 6;, R) for some i, we obtain

lg() — g()I < kollp — 2|l

If 9,4 € Dg and there does not exist ¢ with ¢, € V(¢;,6;, R), select (by
using (1.5)) a j with ¢ € V(p;,6;/2, R), so we must have v & V(y;,6;, R) and
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o= > 6;/2 > 60/2. Since g is continuous on the compact set Dp, there exists
a constant C with ||g(e) — g(¥)|| < C for all @,¢ € Dp, so if ||¢ — 9| > 0/2,
we have

la(p) — g(@)ll < (2C85 )l — %1l
Thus we have proved that g|Dg is Lipschitz with Lipschitz constant k = max{ko,
2C6;'}. O

Under the assumption that f is almost locally Lipschitzian we can prove
uniqueness of solutions of (1.1) for Lipschitz initial conditions.

THEOREM 1.2. Suppose that f : Xpr — R is a continuous map which is
almost locally Lipschitzian and that wo € Xa and to € R and lip(po) < oco. If
§>0andy: [to— M,to+6] — R and z : [to — M,to + 6] — R both satisfy
equation (1.1), then y(t) = z(t) forto — M <t <ip+6.

PROOF. We define
t, = sup{t > to : y(s) = z(s) for ty < s < t},

and we recall that y(s) = z(s) = @o(s) for to — M < s < to. If t1 < ip+ 6, we
must obtain a contradiction. It is an easy exercise to show that the maps £ — y;
and t — z for tg < t < to + & are continuous, so {y; : to <t < o + 6} and
{2 : tg <t < to+6} are the continuous images of a compact interval and hence
compact. Since f is continuous, there exists C > 0 such that |f(y:)| < C and
|F(2:)] < C for tg <t < to+ 8, and we can also assume that lip(g) < C.

By definition of almost locally Lipschitzian, there exists 61 > 0 such that
(writing ¢; = y;, = 2, and using the notation of Definition 1.1) the restriction
of f to V(e1,61,C) is Lipschitz with Lipschitz constant k. Note that by our
construction we have lip(y;) < C and lip(z;) < C for tg <t < tp + 6. Further-
more, if t; <t < t; + 62 and Cé; < &1, we see that |y — ¢1] < C8y < 81, and
|zt — 1] < 61. It follows that for ¢; <t < ¢ + 82, where 0 < 8 < 6,.C1, we

have

16)  ly() —2(t)| < / 17(ws) — F(zs)|ds < / lys — 2]l ds

t
=k [ sup [y(r)—=2(r)|ds
t1 h <r<s

<ké( sup  y(r) —2(r)])-

t1<r<t1+62

If we take the supremum of (1.6) over ¢ with t; <t <t; + 62, we obtain

(1.7) sup  [y(t) — 2(t)| < kba( Sup ly(r) — 2(r)]).

t1 <t<t;+62 t1<r<t1+62
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If 82 > 0 is small enough that k6, < 1, then (1.7) implies that y(t) = z(t) for
t; <t <1+ 63, which contradicts the definition of #; and completes the proof.[]

If, under the hypotheses of Theorem 1.2, we also know that inequality (1.2) is
satisfied, we can conclude from Theorems 1.1 and 1.2 that there exists a unique
continuous function z|[ty — M, 00), continuously differentiable on [to, 00), such
that z:, = @ and z'(t) = f(z:) for t > t,. Note again that we need that g be
Lipschitzian.

In order to use Theorem 1.2 we need some examples of maps f which are
almost locally Lipschitzian.

PROPOSITION 1.1. Suppose that r; : Xpr — [0, M] is continuous and almost
locally Lipschitzian for 1 <i<m. Let g: R™! R be locally Lipschitzian. If
f:Xp — R is defined by

F(#) = 9((0), p(=71(9)), p(=72(0)), - - - s P(—Tm (),
then f is continuous and almost locally Lipschitzian.

ProoF. To show that f is continuous, it suffices to prove that the map
@ — o(—ri(p)) is continuous for 1 < i < m. To see this, select @y € X,; and
€ > 0. If o — o] < § we obtain
lo(=ri(9)) = wo(=Ti(0))| < lp(~ri(9)) - wo(—ri(e))|
(1.8) + leo(=ri(#)) = wo(—ri(0))|
<8+ lpo(=7i(#)) — po(—ri(0)).
Because ¢y is continuous, there exists 6, > 0 with |po(s) — po(t)| < /2 for all
s,t € [-M, 0] with |s — ¢| < ;. Because r; is continuous, we can select § > 0 so
that |r;(y) — ri(o)| < 61 for |l — pof| < 6 and so that & < £/2. For this choice

of §, we obtain from (1.8) that
€ €
lo(=ri(9)) — wo(—ri(p0))| < 5t5=6

and we conclude that f is continuous.

To prove that f is almost locally Lipschitzian, select wo € Xprand R > 0.
Because r;, for 1 < i < m, is almost locally Lipschitzian, there exist § > 0 and
C; > 0 such that for all @, € V(po; 6, R) we have

Iri(e) — ri(¥)| < Cille — |-

(Here V/(po; 6, R) is defined in Definition 1.1.) Because g is locally Lipschitzian,
the restriction of g to the set

{y €R™ : |y < floll + 6 for 1 <i <m+1}
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is Lipschitz. Thus there exists a constant C so that if ||¢—wol|| < & and [|lvb—¢ol| <

6 we have
150) -~ 101 < ©(160) = 9O + 3 le(-ri) = #(ri)] )

If @, € V(po; 6, R) we obtain also that

lo(=rs(9)) — p(—T:i(®)] £ lo(=ri(9)) — P(=ri(L))] + [(-Ti()) — P(=rs(¥))|
< lle = ¥l + Rlri(p) — ri(¥)|
< (GR+1lle -9l

Combining these estimates we see that

f(0) - f@)] < c(m+ 1t chi) le 9.

i=1

so f is almost locally Lipschitz. a

COROLLARY 1.1. Suppose that r; : R — [0, M] is locally Lipschitzian for
1 < i < m and that g : R™*! — R is locally Lipschitzian. If f : Xpr — R is
defined by
£(@) = g((0), p(—p1), p(=p2); - - - ,P(=Pm)),

where p; = ri((0)), then f is continuous and almost locally Lipschitzian.

ProoF. This follows immediately from Proposition 1.1. a

We shall need results which imply that solutions of equation (1.1) remain
bounded. To describe our results we need some notation and definitions. If
0,9 € Xar we shall write ¢ < 1 if (¢) < 9(¢) for all ¢ € [-M, 0], and p < 9 if
©(t) < ¢(t) for all t € [-M,0]. If C € R we shall write ¢ < C if p(t) < C for
all t € [-M,0] and ¢ < C if p(t) < C for all t € [-M,0]. If —B and A are real

numbers with —B < A, and R > 0, we define
19) K(-B,A,M)={pe Xy : —-B<p< A},
' K(~B,A,M,R) = {¢ € K(-B, A, M) : lip(p) < R}.

If —B < 0 < A, we also write

KO(_B’Aa M) = {(P € K(_B’Aa M) : ‘P(O) = 0}’
Ko(—B, A, M,R) = {¢ € K(—B, A, M,R) : ¢(0) =0}.
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DEFINITION 1.2. If f : D C Xj — R is a map, we say that f satisfies a
negative feedback condition if
(a) f(y) <0 forall p € D with ¢ >0, and f(yp) < 0 for all p € D with
@ > 0; and
(b) f(p) = 0 for all p € D with v < 0, and f(¢) > 0 for all ¢ € D with
p <0.

The negative feedback condition of Definition 1.2 will play a crucial role in

later results.

"THEOREM 1.3. Let —B and A be real numbers with —B < A and sup-
pose that f : K(—B,A,M) — R is continuous, almost locally Lipschitzian and
bounded on K(—B, A, M) = K. Assume that

f(p) <0 for all p € K with ¢(0) = A, and
f(0) >0 for all p € K with p(0) = —B.

Then for every Lipschitz ¢ € K and every to € R there ezists a unique continu-
ous function z : [ty — M, 00) — [~ B, A], differentiable on [ty, 00), and satisfying

z'(t) = f(z¢) fort > tg,

Tty = ©.

PROOF. Let p: X3r — K be the retraction defined by equations (1.3) and
(1.4). As noted before, ¢ — f(p(y)) is continuous and almost locally Lipschitz
on Xps. Furthermore, because f is bounded on K, the composition fopis
bounded on Xp. Theorem 1.2 implies that if ¢ € K is Lipschitz, then the

equation

z'(t) = f(p(z:))  for t > ¢y,

mto =@,

has a unique solution z : [t — M,00) — R. To complete the proof, it suffices
to show that —B < z(t) < Afor all t > ty. If ¥y € X and (0) > A, notice
that (p(1))(0) = A, so f(p(¥)) < 0. Similarly, we see that if ¥/(0) < —B, then
f(p(¥)) = 0. If z(t1) > A for some t; > to, then we define T = sup{t € [to, t] :
z(t) = A}, so (1) = A and z(t) > A for 7 < ¢ < t;. The mean value theorem
implies that z'(¢) > 0 for some ¢t with 7 < ¢ < ¢;, which contradicts the fact that
(o(wi))(0) = A and
z'(t) = f(p(ze)) < 0.
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This shows that z(t) < A for all ¢ > %o, and a similar argument yields z(t) > —B
for all t > . O

Theorem 1.3 immediately yields the following boundedness result.

COROLLARY 1.2. Let hypotheses and notation be as Proposition 1.1. Assume
that there exist real numbers —B and A, with —B < A, such that for oll { € R™
with —-B<(;<Aforl<i<m,

g(A,{) <0 and g(—B,¢)>0.
If po € K(—B, A, M) and lip(po) < 00, the solution of the equation
' (t) = g(z(t), x(t — r1(2e)), 2t —r2(%e)s - 2(E —rm(22)))  fort 2o,

Tty = Y0,
is defined for all t > ty and satisfies —B < z(t) < A for all t > 1.

Theorem 1.3 also gives information about examples like
(1.10) z'(t) = —Az(t) — Mez(t — 1), with 7 = 1+ cz(t),
where A > 0, and k > 0 and ¢ > 0. Such equations are discussed in [12] and [13].

COROLLARY 1.3. Let g : R? — R be a locally Lipschitzian map with g(¢o, 1)
< 0 for all Co,¢1 satisfying (o > 0 and {1 > 0, and g(n,n) > 0 for all n < 0.
Suppose that A and B are positive reals with
(1.11) sup g(4,¢1) 0.

—B<(1<0

Let r : K(—B,A,M) — [0,M] be a continuous, almost locally Lipschitzian
map such that r(p) = 0 for all ¢ € K(—B,A, M) with ¢(0) = —B. If ¢o €
K(—B, A, M) and lip(pg) < oo, the solution of the equation

Z'(t) = g(z(t), z(t —r(zr)))  fort = to,
xto = o,
is defined for all t > to and satisfies —B < z(t) < A for all t > to.

PROOF. We apply Theorem 1.3 with f(p) = g(©(0),(—7(p))). If ¢ €
K(—B, A, M) and ¢(0) = —B, we obtain f(yp) = g(—B,—B) > 0. If p(0) = A
and ¢; = @(—r(¢p)), then (1.11) implies that g(A,(;) <0 for —B < (; <0. The
assumptions on g yield g(4,¢1) < 0if 0 < ¢ < A. Thus we find f(p) < 0 for
all ¢ € K(—B, A, M) with ¢(0) = A. Corollary 1.1 implies that f is continuous
and almost locally Lipschitzian, so Corollary 1.3 follows from Theorem 1.3. 0O
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Corollary 1.3 immediately applies to equations studied in [12], namely,
(1.12) z'(t) = —Az(t) + Af(z(t—7))  with r =r(z(t)) and A > 0.
Assume in (1.12) that f and r are locally Lipschitz maps from R to R. Suppose
that (f(¢) < 0 for all { # 0 and that there exists —B < 0 with r(—B) = 0.

Define A by
A= sup f(¢)
—B<(<0

and assume that r(¢) > 0 for —B < ¢ < A. If M is defined by
M =sup{r(¢) : -B< (< A4}

we are now in the situation of Corollary 1.3. If o € K(—B, A, M) and lip(so)
< oo and ?p € R, Corollary 1.3 implies that there is a continuous map z :
[to — M,00] — [—B, A] which is continuously differentiable on [t, c0), satisfies
T4, = o and satisfies equation (1.12) for t > ¢y. Equation (1.10) is a very special
case with B=c ', A=kcland M =1+k.

Classical examples like Wright’s equation,

(1.13) z'(t) = —ax(t — 1)(1 + =(t)),

do not satisfy the hypotheses of Theorem 1.3. Our next two theorems are variants
of Theorem 1.3 which allow us to cover such examples.

THEOREM 1.4. Let B be a positive real and D = {p € Xp : ¢ > —B} and
suppose that f : D — R is a continuous map which is almost locally Lipschitzian,
bounded on bounded subsets of D and satisfies a negative feedback condition.
Assume that f(p) > 0 for all ¢ € D with ¢(0) = —B and suppose that there are
positive constants C1 and Cy with

f(p) <Cilp(0)| +C2  forallp € D.

Define A = (Ca/C1) exp(C1M). If p € D, with lip(p) < 00 and ¢(0) = 0, there
18 a unique solution x(t; ) = z(t) of

z'(t) = f(z:)  fort >0,
z(t) = ¢(t) for — M <t<0.
Furthermore, z(t) is defined for all t > 0 and —B < z(t) < A for all t > 0.

PROOF. Select A; > A and A; > ||¢||. Let p be the usual retraction of X,
onto K(—B, A1, M) and define f(¢) = f(p(v)) for ¥ € Xps. Theorems 1.1 and
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1.2 imply that if ¢ € X3r and lip(p) < oo, the initial value problem
Z'(t) = f(z,) fort>0,
To = @,
has a unique solution z(t; ) defined for all ¢ > 0. Thus, taking ¢ € D, with
©(0) = 0 and lip(¢) < oo, it suffices to prove that
—B<z(t;p) < A fort > 0.

If ¢ € X and 9(0) = —B, we know that f~('¢) > 0, so the same argument given
in Theorem 1.3 shows that z(t; ) > —B for all £ > 0.

It remains to prove that z(t) := z(¢; ) < A for ¢t > 0. If not, let 7 be the
first time ¢t > 0 with z(t) = A and define 7, = sup{t € [0,7) : z(t;p) = 0};
note that 7y is defined because ¢(0) = 0. The definition of 7 implies that
z'(1) = f(z,) > 0. Since f satisfies a negative feedback condition, we conclude
that 7 — 1 < M. For 11 <t <7 we have

2’ (t) = fz) < Ciz(t) + Ca,
and this differential inequality gives
z(1) = A < (C3/C1)(exp(Ci (T — 11)) — 1) < (C2/C1) exp(C1 M),

which contradicts the choice of A. O

The reader can easily verify that Theorem 1.4 is directly applicable to equa-
tions like Wright’s equation (1.13).

Our next theorem is another easy variant of Theorem 1.3, but it applies to
examples which are not covered by Theorem 1.3 or 1.4.

THEOREM 1.5. Let A, B and M be positive reals and let
f: Xy D> K(-B,AM)—R

be a continuous, almost locally Lipschitzian map which satisfies a negative feed-
back condition (Definition 1.2). Assume that for all ¢ € K(—B, A, M) we have
—BM™! < f(p) € AM~'. If po € Ko(—B,A, M), so that o(0) = 0, and
if also lip(wg) < co and tg € R, then there exists a unique continuous map
z : [to — M, 00) — [—B, A], differentiable on [tp,00), with

()= fze)  fort>to,

Tty = ©o-

(1.14)

PROOF. By using the usual retraction p : X — K(—B,A, M), we can
assume that f : Xy — R is continuous, almost locally Lipschitzian, satisfies
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a negative feedback condition and satisfies ~BM~! < f(p) < AM~! for all
¢ € Xy For this extended f, Theorems 1.1 and 1.2 imply that equation (1.14)
has a unique solution z(¢) defined on [ty — M,00). To complete the proof, it
suffices to prove that —B < z(t) < A for all £ > t;. We shall prove that
z(t) < A for all ¢ > ty, the proof that z(t) > —B for t > t; being analogous.
Suppose, by way of contradiction, that z(t2) > A for some ¢, > ¢,. Since we
assume that z(fo) = 0, we can define t; = sup{t € [to,t2] : z(t) = 0} and
note that z(t) > 0 for t; <t < t5. Because z'(t) = f(p(z:)) < AM™ for all
t, we must have 2 —#; > M and z(t; + M) < A. On the other hand, the
negative feedback condition on f implies that z’(t) <0 for t; + M < ¢ < t5, s0
z(t2) < z(t1+M) < A. Thus we have obtained a contradiction, and we conclude
that z(t) < A for all t > . O

Like the question of uniqueness of the initial value problem, the question of
continuous dependence of solutions on initial data is not completely standard in
our context. For completeness we sketch the proof of a result which will suffice

for our purposes.

THEOREM 1.6. Let —B < A and M > 0 be real numbers and suppose that
f:K(-B,A,M) - R and g: K(—B, A, M) — R are continuous, almost locally
Lipschitzian maps and that |f(p)| < R and |g(¢)| < R for all p € K(—B, A, M).
Suppose that po, o € K(—B, A, M, R) and that p: Xps — K(—B, A, M) is the
retraction given by equations (1.3) and (1.4). Let x : [to — M,00) — R and
y: [to — M,00) — R denote the unique solutions of

z'(t) = fp(z:))  fort>to,
zto = o,
and
v'(t) =glpy))  fort >t
Yo = ¢07
respectively. Define 6§ > 0 by
6 = sup{|/ () — g(¥)| : ¥ € K(-B, A, M,R)}.

By Lemma 1.1 the restriction of f to K(—B, A, M, R) is a Lipschitz map; let C
denote its Lipschitz constant, that is,

|£(61) = £(62)| S Cll61 — G2l for all 61,6, € K(—B, A, M, R).
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Then for all t >ty we have

(1.15) ly(®) — z(t)| < €94 o — tho| + (¢ — 1)8/C.

PROOF. Our assumptions imply that |2/(f)] < R and |y/(t)] < R for all
t > to, so we have p(z;), p(y) € K(—B, A, M, R) for all t > to. If we define
2(t) = |y(t) — z(t)|, we obtain for £ > o,

2(0) < () + | 19(0(5)) — F(p()) ds
a6 s+ | t (o) = Flpw)l ds + | £ (p(5e)) — £p(s))] ds
< #{to) + 6(t— to) + C /t lys — 2ol ds.
For 7 > to, define ¢(7) by
((r) = max{J=()] : to— M < <7}

Since ||ys — zs|| < ¢{(s) we deduce from (1.16) that for t <t <,

2(t) < z(to) + 6(t —t) + C t ¢(s)ds

-
< 2(to) +8(r — to) + C / ¢(s) ds.
to
For to — M <t < tg we have z(t) < |40 — wol|, so we conclude that

(1.17) ¢(r)= max _ 2(t) < [leo — ol +6(7 —to) + C/: ¢(s) ds.

to—M<t<T
Writing
1) = [ ¢@s,
ta

we see that (1.17) gives
(1.18) I'(r) — CI(r) < |lpo — %oll + 8(7 —to)-

By using (1.18) to estimate I(r) or by applying Gronwall’s inequality to (1.17)
we find
¢(t) < €9 o — o + (7¢7*) — 1)8/C,

which implies (1.15). O



PERIODIC SOLUTIONS 117

2. The operator of translation along trajectories

Throughout this section we assume A, B and M are positive numbers, and
that f : K(—B, A, M) — R is a map. As in Section 1, p: X; — K(-B,A, M)
and 7 : R — [-B, A] will always be as given by equations (1.3) and (1.4). We
shall suppose that f satisfies one or more of the following hypotheses. (See
equation (1.9) for the definitions of K(—B, A, M) and K(-B, A, M, R)).

H21. f: K(-B,A,M) C X) — R is continuous and almost locally Lip-
schitzian (see Definition 1.1). In addition f is bounded on K(—B, A,
M), so there is a constant L with |f(y)| < L for all p € K(—B, A, M).

H22. f: K(-B,A,M) — R satisfies a negative feedback condition (see
Definition 1.2). In addition there exist 7o € (0, M], and a locally
Lipschitz map g : R — R such that £g(£¢) < 0 for all £ # 0 and

f(e) = g((—70))

for all ¢ € K(—B, A, M) with ¢(0) = 0.

We shall work with subsets G*(—B, 4, M, y) C K(—B, A, M) and G*(-B,
A, M, 15, R) C K(—B, A, M, R) defined as follows. Let
(2.1) GY(—B,A,M,70)={p € K(—B,A,M) : o(t) >0
for — 70 <t <0 and (0) =0}

and
(22) G+(_B, A7 M, To, R) = {‘P € G+(_B’A’M’ TU) : hp(‘P) < R}

Analogously, we define G~ (—B, A, M, 7p) and G~(—B, A, M, 19, R), correspond-
ing to functions ¢ with p(t) < 0 for —79 <t < 0. In our further work, 7, will
always be a fixed number with —M < 75 < 0, and 7y will be as in H2.2 if H2.2
is assumed to hold.

We shall need a boundedness condition for solutions of equation (1.1).

H2.3. The function f : K(—B, A, M) — R satisfies H2.1 and 74 € (0, M] is a
given number. For every ¢ € Gt(—B, A, M, 1) with lip(p) < oo, the
unique solution z(t) of

.’E’(t) = f((l:t) for ¢ > 1o,

Tty =
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satisfies —B < z(t) < A for all £ > 1.

There is a sharpening of H2.3 which is actually useful in some applications.

H2.3A. The function f : K(—B, A, M) — R satisfies H2.1 and 7y € (0, M]
is a given number. There exists B > 0 such that for every ¢ €
G*(-B, A, M, 1, R), the unique solution z(t) of

2'(t) = f(z:)  fort >to,
Ty = ¢

satisfies —B < x(t) < A and |2/(t)| £ R for all t > to.

Theorems 1.3, 1.4 and 1.5 give examples where H2.3 is satisfied.
If0<m<Mand0<a<1, wedefine a map Q, : Xps — Xps by
(2.3)

(Qalp))(t) = {

o(t) if —(1—a)M—oa1g<t<0,
o(-(1—a)M —ar) if —M<t<—(1-a)M —arn.

We leave it to the reader to check that Q. : X — Xas is a bounded linear
projection of norm one for each «, that Q(K(—B, A, M)) C K(—B, A, M) and
Quo(K(—B,A,M,R)) C K(—B, A, M, R), and that Qo is the identity map.

If f: K(-B,A,M) — R we shall define F, : K(—~B,A,M) — R, for 0 <
a<l, by

(24) Fo(p) = F(p,a) = f(Qa(¥))-

LEMMA 2.1. Assume that f : K(—B,A,M) — R and that F, end F :
K(—B, A, M) x[0,1] — R are defined by equation (2.4). If f is continuous, then
F is continuous; and if f satisfies a negative feedback condition, then F, satisfies
a negative feedback condition for 0 < a < 1. If f is almost locally Lipschitzian,
then the maps F,, for 0 < a < 1, are almost locally Lipschitzian, uniformly in
a, that is, for each R > 0, there exists a constant kr with

|Fa(6) — Fa()| < krll6 — ¢l

for all 8,9 € K(—B, A, M, R) and all o satisfying 0 < a < 1. If f satisfies the
hypotheses of Theorem 1.3, Theorem 1.4 or Theorem 1.5, then, for 0 < a < 1,
the function F, satisfies the hypotheses of, respectively, Theorem 1.3, 1.4 or 1.5.

PROOF. Assume that f is continuous. The composition of continuous func-

tions is continuous, so to prove that F' is continuous, it suffices to prove that
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(¥, @) = Qa(y) is continuous. If ax — a and px — ¢ in Xy, we obtain (since

1Qall =1)

1Qa (o) — Qal(@)| L |1Qa (0k — ©)|| + |(Qar — Qa)()l
< llor — ol + sup{le(s) — @(t)] : |s —t| < |ax — a|(M - 7)}.

This estimate implies that Qq, (vr) — Qal(y) in Xar.

To prove that F, satisfies a negative feedback condition if f does, it suffices
to observe that if ¢ > 0 or ¢ > 0 (respectively, ¢ < 0 or ¢ < 0) then 8 > 0 or
6 > 0 (respectively, < 0 or 6 < 0), where 8 = Q,(¢) and 0 < @ < 1.

Assume next that f is almost locally Lipschitzian. Observe that if @ €
K(—B, A, M) and lip(p) < oo, then

(2.5) lip(Qa(¥)) < lip(p).

Lemma 1.1 implies that there exists a constant k = kg such that for all e, €
K(—B, A, M, R) we have

(2.6) 1F(e) = F)| < kllp — 9.
Combining (2.5) and (2.6) we conclude that for all ¢, € K(—B, A, M, R),

1Fa(p) — Fa(¥)] = 1f(Qalp)) - f(Qa(®))]
< kllQa(®) — Qu(¥)ll < Kkl — 4,

which is the desired estimate.
Our definition of Q,(y) implies that for 0 < o < 1,

(Qa(9))(0) =(0)  and  (Qalp))(—70) = @(—p).
If f satisfies H2.2 and ¢ € K(—B, A, M) and ¢(0) = 0, it follows that

Fa(p) = f(Qa(9)) = 9((Qul9))(—70)) = g(p(—m0)),

so F, also satisfies H2.2.

If f: K(~B,A, M) — R is continuous or almost locally Lipschitzian or sat-
isfies a negative feedback condition, then we have seen that F, is respectively
continuous or almost locally Lipschitzian or satisfies a negative feedback con-
dition. If f(p) < O (respectively, f(¢) > 0) whenever ¢ € K (=B, A, M) and
©(0) = A (respectively, ¢(0) = —B), then, because (Qa)(0) = ©(0), the same
condition is satisfied by F,. Obviously, if f is bounded on K (=B, A, M), then
Fy is bounded on K(—B, A, M). Thus, if f satisfies the hypotheses of Theorem
1.3, then F, also satisfies the hypotheses of Theorem 1.3.
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The verification that F,, satisfies the hypotheses of Theorem 1.4 if
f:D={pe Xy :9>—-B}=K(-B,0,M) =R

satisfies the hypotheses of Theorem 1.4 is equally straightforward and is left to
the reader. Similarly, the verification that F,, satisfies Theorem 1.5 if f does is
also left to the reader. O

If f: K(-B,A,M) — R and F,, for 0 < a < 1, is defined by equation (2.4),
we can extend F,, to a map on X s by

Fo(p) = Fa(p(p))-

For notational convenience, if ¢ € Xy and lip(p) < oo, we shall define z(t) =
z(t; ¢, @) to be the unique solution of

z'(t) = Fo(zt) = f(Qalp(z:))) for ¢ > 0,

(2.7
z(t) = ¢(t) for —M<t<0.

Theorems 1.1 and 1.2 and Lemma 2.1 imply that the solution z(t; ¢, @) of equa-
tion (2.7) is unique and is defined for all £ > 0.

If f satisfies the hypotheses of Theorem 1.4,s0 f maps D={p € X : ¢ >
—B} into R, there is some ambiguity about how F, should be “extended” to
X In the case of Theorem 1.4, let A be as defined in Theorem 1.4, let p be
the standard retraction onto K(—B, A, M) and define

Fo(p) = f(Qalp(¥))-

Since Fy () = f(Qa(p)) is defined for all ¢ € D, the function F, is, in general,
an extension of Fy|K(—B, A, M) but not of Fo:D—R.

If f satisfies H2.3, then for every ¢ € G*(—B, A, M, 7o) with lip(p) < co we
have —B < z(t; »,0) < A for all t > 0. Note, however, that we do not necessarily
know that —B < z(t;p,a) < A for 0 < a < 1. If f satisfies the hypotheses of
Theorem 1.3, 1.4 or 1.5 and ¢ € G*(—B, A, M, 79) with lip(¢) < 0o, Lemma 2.1
implies that —B < z(f;p,a) L Afor0 < a < 1.

Our next lemma provides information about the dependence of z(¢; ¢, ) on
(t, p, ).

LEMMA 2.2. Assume that f satisfies H2.1 and let z(t; ¢, ) denote the solu-
tion of equation (2.7). Given e > 0,T > 0 and R > 0, there exists § > 0 such
that

sup |z(t; p1,0n) — z(t; 02, 22)| < €
0<t<T
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for all 1,02 € K(—B, A, M, R) with |1 — @3] < é and all a1, s € [0,1] with
IOll - a2| < 6.

PROOF. By virtue of Lemma 2.1, we know that F, is almost locally Lip-
schitzian, uniformly in @. Thus, with the aid of Theorem 1.6, we see that it
suffices to prove that, given any n > 0, there exists 6; > 0 with

(28) sup{|F(ga, a) _F((PMB)I tp€ K(_B1 A, MaR)’
with |8 — a| < 6, for o, 8 € [0,1]} < 0.

However, the Ascoli-Arzela theorem implies that K (—B, A, M, R) is a compact
subset of Xy, and we conclude from Lemma 2.1 that (¢,a) — F(p, ) is con-
tinuous on the compact set K(—B, A, M, R) x [0, 1]. Inequality (2.8) now follows
from the fact that a continuous map on a compact metric space is uniformly

continuous. O

Our next lemma will be crucial for all our remaining work. Basically, it
asserts that, if f satisfies H2.1 and H2.2 and ¢ € G*(—B, A, M, 1), with lip(p) <
oo and @(t) > 0 for some t € [0, 0], then successive zeros of z(¢; @, @) for t > 0
are separated by more than 75. The precise statement of the lemma accounts
for the possibility that there exists oo > 0 with z(¢;¢,a) = 0 for all ¢ with
0<t< oy

For convenience we introduce some further notation before stating Lemma,
2.3; let

Ut(—B,A,M,7) = {p € Gt (=B, A, M, 1) : ¢(t) > 0 for some t € [—70,0)}
and
(2.9) Ut(—B,A,M,m,R) = {p e Ut (=B, A, M,7) : lip(y) < R}.
LEMMA 2.3. Assume that h : K(—B,A, M) — R satisfies H2.1 and H2.2

and that p : Xpr — K(—B, A, M) is given by equations (1.3) and (1.4). Assume
that p € X, with lip(p) < 0o and p(p) € Ut (—B, A, M, 7y), and let z(t) denote
the unique solution of

Z'(t) = h(p(z:))  fort >0,

z|[-M, 0] = .
Define

oo =sup{s >0 : z(t) =0 for all t € [0, 5]}

Then it follows that oo < T0 and z(t) < 0 for o9 < t < a9 + 79. Define
zy=1inf{t > g9 : z(t) =0} and 2z, =00 if z(t) < 0 for all t > 0p. If 21 <
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it follows that z'(z1) > 0 and z(t) > 0 for 2y < t < 21 + 70. If we define
2o = inf{t > 21 : z(t) = 0} and we define 23 = oo if z(t) > 0 for all t > 2y, it
follows that z'(23) < 0 if 22 < oo.

PROOF. Let g be as in H2.2, so
h(¥) = g(¢(—70))
for all 9 € K(—B, A, M) with ¥(0) = 0. It follows that
(2.10) 2'(t) = g(r(z(t —m))) =0  for 0 <t < oo.
Because £g(£) < 0 for all £ # 0, we conclude from equation (2.10) that
(2.11) z(t—10) =@(t—T10)=0  for 0 <t < oyp.

If 09 > 79, (2.11) implies that ¢(s) = 0 for —1p < ¢ < 0, which contradicts the
assumption that p(p) € UT(—B, A, M, 7).

To proceed further we need a simple estimate on &. Select R > 1 so that
lip(¢) < R and |h(¥)| < R for all ¥ € K(—B, A, M). Define v; € X5r by

75 Ht+70) for —7 <t <0,
P1(t) =
0 for — M <t<£ -7

For 1y € Xy with lip(yy) < R we have p(v)) € K(—B, A, M, R) and
(2.12) h(p()) = h(p(¥)) — h(p(¥ — $(0)¥1)) + A(p(s — $(0)31))-

If we define 8 = p(1 —¥(0)41), we note that 6(0) = 0, and 8(—79) = r(¥(—70)),
and so

(2.13) lip(8) < lip(¥ — 9(0)¢1) < lip(¥) + | (0)lip(¥)
< R+ 75 ' max{A, B} = R;.

It follows from (2.13) and the fact that & is almost locally Lipschitzian that there
is a constant kg, = k such that for all ¢ € X with lip(¥) < R,

(2.14) |h(p(¥))—h(p(¥ — (0)¢1))]
< kllp(e) — p( — p(0)h1) ||
< k|l — (3 — 9(0)p1)l| = klwp(0)[.

Also, H2.2 implies that

(2.15) h(p(sh — $(0)%1)) = g(r(¥(—70)))-
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Using (2.14) and (2.15) in (2.12) we see that there is a constant k (depending
on R) such that

(2.16) —kl(0)] + 9(r(¥(~m0))) < hp(¥)) < kl9(0)| + g(r((ro)))

for all ¥ € X with lip(y9) < R. Notice that, if k satisfies H2.1 and H2.2, the
constant k in equation (2.16) can be any number such that & is Lipschitz with
Lipschitz constant k on K(—B, A, M, R1), with Ry = R+ 75 ' max{A, B}.

We now apply equation (2.16). Select R so that lip(p) < R and |h(¢)] < R
for all ¢ € K(—B, A, M). Tt then follows that lip(z:) < R for all £ > 0 and
(using (2.16)) that there is a constant k with

(2.17)  —klz(t)| + g(r(z(t — 70))) < h(p(z+)) < klz(t)| + g(r(z(t — 70))).
Because g(¢) < 0 for £ > 0, we obtain from (2.17) that
(2.18) h(p(z:)) < k|z(t)| for o9 <t < 0g + 7.

We claim that z(t) < 0 for g9 <t < gp + 70. If not, there exist ¢, and #;
with o9 <1 <tz < ¢ + 79, where z(¢;) =0 and z(t) > 0 for t; < ¢ < ¢,. Using
(2.18) we see that
d
7 (ExP(=k(t — t1))z(t)) <0,
which implies that

exp(—k(tz — tl))x(tQ) < .’L'(tl) =0,
a contradiction.
By definition of g, there exists a sequence {t;}, with tj > 0o and lim;_, t; =

o0, and with z(t;) # 0. Because we know that z(t) < 0 on [0, o¢ + 7], we can
assume that z(¢;) < 0. On the interval [t;, 00 + 79|, (2.18) gives

d

(exp(h(t —t;))2(t)) <0,
which implies that

z(t) < exp(—k(t —t;))z(t;) <0 for t; <t < og+ 7.

Allowing t; to approach o yields z(t) < 0 for op < t < og + 7p.
If z; < 0o, with 2; as in the statement of Lemma, 2.3, we see that

m,(zl) = h(p(mz1)) = g(r(z(zl - TO))) > Oa

because z(z; — 79) < 0.
The remainder of the lemma follows by arguments exactly like those already
given. The details are left to the reader. O
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In the terminology of Lemma 2.3, we need precise information about ||z
when ¢ is large and z; = 0o or zz = 0o. In our next lemma we prove that in fact,

if 2; = 0o or z3 = 00, then lim;_,oo||z:[| = O.

LEMMA 2.4. Assume that h : K(—B, A, M) — R satisfies H2.1 and H2.2.
Let g be as in H2.2 and select R so that R > |h(y)| for all p € K(-B, A, M). If
R, = R+7; ' max{A, B} and if k is such that h is Lipschitzian on K(—B, A, M,
Ry) with Lipschitz constant k, then

(2.19) ~K|(0)| + g(r(w(=70))) < h(p(¥)) < kle(0)] + g(r(¢(=0)))

for all ¢ € Xy with lip(p) < R. Because g is locally Lipschitzian, there exists
C with
lg(€)| < Clg|  for € € [-B, Al
If ¢ € Xulip(p) < R and p(p) € UT(-B, A, M, 1), and if z(t) = z(t;¢)
denotes the solution of
' (t) = h(p(z))  fort >0,
To = ¥,
and oo = oo(y), and z, = z1(p) and z2 = z2(yp), are defined as in Lemma 2.3,

then

(2.20)  z(t) > —Ck~ M - eF M=)y sup r(p(s)) for0<t<zm

—71p%s<0

and

(2.21) z(t) < Ck~ (M — M) sup  |r(z(s))]  forzm St< 2.

z21—T0<8Lz1

For every 8 > 0, there exists T = T(6, R, h) such that if p(p) € U*r(—B, A, M, 1)
for some @ € X satisfying lip(p) < R, and if 21(p) > T (respectively, z2(p) —
z1(p) > T), then |z(t)] < 6 for T <t < z (respectively, for 21 +T <t < zp).

PRrOOF. Inequality (2.19) was obtained in the proof of Lemma 2.3. For

og <t < g + 19 We have

o' (t) = h(p(z:)) 2 kr(z(t)) + 9(r(2(t — 7))
> ka(t) — Csup{r(p(s)) : =70 < s <0},

where 7 : R — [—B, A] is the retraction in equation (1.3). It follows, writing

9]l = sup{leh(s)| : —ro < s <0}  fory € X,
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that we have
9 (exp(—k(t — 00)2(£))) 2 ~Cllo()ly exp(—k(t - o)),
which implies that
0> z(t) > —C|lp(@) |l k2 (e*E0) — 1) for o9 <t < 09 + 70.

If oo + 10 <t < min{og + M, z1 }, we obtain from (2.19) that

'(t) 2 kr(xz(t) + g(r(z(t — 10))) > ka(t),
which implies that for oo + 70 < t < min{og + M, 21} we have

z(t) > X770 ™z(ag + 10) 2 —C|lp()[|re ki (€*770) — ehlt=r0—m0)).
A simple calculus exercise now implies that
z(t) > —C|| p()||r k2 (eFM — kM —T0)) for 0 < ¢ < min{og + M, 1 }.

If 9 + M < 21, the negative feedback condition on h implies that z(t) > 0 for
g9+ M <t < 2, so we have established (2.20) for 0 <t < z;.

The proof of equation (2.21) is analogous and is left to the reader.

To define T'(6, R, h), select § > 0 and define

S5 = {p € K(=B,A,M,R) : |p(t)] > 6 for all t € [-M, 0]}

The set Ss5 is a closed subset of the compact set K(—B,A, M, R) and hence
is compact. The negative feedback condition on A implies that h(y) # 0 for
@ € Ss; and using the compactness of Ss5, we see that there exists ¢; > 0 with
h(p) < —c; for all p € S5 with ¢ > 0 and h(p) > ¢; for all ¢ € §5 with ¢ < 0.

If ¢ € Xp, with lip(p) < R and p(p) € Ut(—B,A, M, 1), and if z, =
21(p) > oo(p) + 2M and z(og + 2M) < —6, define T to be the first time ¢ >
oo + 2M with z(t) = —6 (a priori, T may equal co). Since z is increasing on
[oo + M, z1], we see that p(x;) € S5 for o9 +2M <t < 7. It follows that

z'(t) = h(p(z:)) > 1  forop+2M <t <7,
and because z(og + 2M) > —RM, we conclude that
T <00+ 2M + (RM — 8)c;' < 1o+ 2M + (RM - §)cT =Ty

and |z(t)] < 6 for Ty <t < 2z;. A similar argument (left to the reader) shows
that if

22— 21 > Ty = 2M + (RM — 6)cit,
then |z(t)| < 6 for 21+ T2 < t < 2o. If we define T' = T}, we obtain the statement

of the lemma. (]
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With the aid of Lemmas 2.1-2.4 we can define the operator of translation
along trajectories. Assume that f : K(—B, A, M) — R satisfies H2.1 and H2.2
and recall that z(¢; ¢, @) denotes a solution of equation (2.7). Let R be such that

(2.22) R > sup{|f(p)| : ¢ € K(-B,A, M)}.

For ¢ € X with lip(p) < oo and p(p) € Ut(—B, A, M, 1), as in Lemma 2.3

we define o = oo(p, @), and z; = z;(p, @) and z3 = z2(p, a), as
oo(p,a) =sup{s >0 : z(t;p,a) =0 for all t € [0, s]},

and
21(p, @) = inf{t > ao(p, @) : z(t; ¢, a) = 0},

(2.23) _
z(p, ) = inf{t > 21(p, @) : z(t; p,a) =0}

We define 2; = oo if z(t,,a) < 0 for all t > 0y, and zz = 00 if 2; = 00 or if
z(t;p,a) > 0 for all t > 2;. Lemma 2.3 implies that o9 < 79 and 21 — 0 > 7o,
and that z2 — zy > 79 if z; < co. Furthermore, 2'(z;) > 0 if 2y < oo and
z'(22) < 0 if 23 < co. We define a map T: Ut(—B,A,M,1,R) x [0,1] = X
by

T, if 29 = 22(p, &) < 00,

(2.24) L(p,a) i=Talp) = { 0 if z(p,@) = co.

We define I' : Ut(—B, A, M, 79, R) x [0,1] — X by
(2.25) I(p, @) i=Ta(p) := Qa(l(p,a)),
where @, is defined in equation (2.3) for 0 < a < 1.

THEOREM 2.1. Assume that f satisfies H2.1 and H2.2 and that R satis-
fies equation (2.22). If T is defined by equation (2.25) and we write Ut =
Ut(-B,A,M, 1, R), then T is a continuous map of Ut x [0,1] into Xp. If
I'(p, ) = @ for (p,a) € Ut x [0,1] and z(t) = z(t; p,a) denotes the solution
of equation (2.7) fort > —M and z, = 23(p, ) is given by equation (2.23),
then z(t + z2) = z(t) for all t > 0. Furthermore, if z(t) is defined for t <0 by
demanding that x be periodic of period z3, it follows that (since pQq = Qup)

2'(t) = f(0(Qalzr)) = f(Qalp(x:)))  forallt.

There ezists § > 0 such that if (¥,a) € Ut x [0,1] and if ¥(s) < & for
—-79 £ 8 <0, then =B < z(t;9,a) < A for 0 € t < 23(¢, @) and T'(¢,a) €
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Gt (=B, A,M,70,R) = G*. If f also satisfies H2.3, then ¢ — I(p,0) is a con-
tinuous map of U into G*. If f also satisfies the hypotheses of Theorem 1.3,
1.4 or 1.5, then T(U* x [0,1]) C G*.

PROOF. To prove that I' is continuous, it suffices to prove that ' given
by equation (2.24) is continuous. Indeed, suppose we have shown that I is
continuous. Assume that (¢;, ;) € Ut x [0, 1] converges to (¢, @) in Xy x [0, 1].
If ¥; = f((pj,aj) and ¥ = I'(, @), we know that lip(#;) < R and lip(¢)) < R,

and
Jim ;= 9l = .

It follows that

IT(s, @5) — T, o)l = 1Qa; (%) — Qu(¥)|
L 11Qa; (%5 — ) + [1Qa; (%) — Qu(®)]
< |I¥5 — ¥l + Rloy —al,

which proves continuity of T

To prove continuity of I', suppose that (¢q, ap) € Ut x[0,1] and that (¢;, a;),
for j > 1, is a'sequence in U* x [0, 1] which converges to (g, ). We have
to show that f(cpj, o;) converges to f((po, ap). For notational convenience, we
define (see equation (2.7)) zo(t) = z(t; o, a0) and x;(t) = z(t; p;, ;) for j > 1,
and up = 210, @) and v = 23(o, @), and finally u; = z1(pj, ;) and v; =
22(j,05) for j > 1 (see equation (2.23)).

We consider two cases: vy < 00 and vg = oo. If vy < 00, select § > 0 with
6 < up -7 and § < 79/2 and note that Lemma 2.3 implies that zo(t) < 0
for 9 < ¢t < up — 6, and that zo(t) > 0 for up+6 < ¢t < vo — 6, and also
zo(vo + 6) < 0. Lemma 2.2 implies that for all sufficiently large j we have
zj(t) < 0for 1o <t <wp -6, and z;(t) > 0 for up+ § <t < vy — 6, and also
z;(vo + 6) < 0. We conclude with the aid of Lemma. 2.3 that |u; — up| < § and
|v; —vo| < 8. We also obtain from Lemma 2.2 that for all sufficiently large j we
have |z;(t) — zo(t)] < 6 for ~M <t < vy + 6. If we recall that lip(z;) < R and
lip(zp) < R, we see that for all sufficiently large j,

IT(p5, 5) — Fpo, a0l = sup{le;(v; +1) — zo(wo +1)| : -M <t <0}
<sup{|z;(vo +1t) — zo(vo +1)| : —M <t <0}

<6+ Ré.
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Since § > 0 was arbitrary, we have proved that T is continuous at (po, ) if
z2(p0, ap) = g < 0.

It remains to consider the case vg = oc. Here we have two subcases: either
(a) up < oo and vy = 0o or (b) up = 0o. Given & > 0, there exists (by virtue
of Lemma 2.4) T > 0 so that [z(t;p,@)| < 6 for all (p,a) € Ut x [0,1] and ¢
such that T <t < z1(p, @) or z1(p,a) + T < t < z3(p, ). If ug < o0, the same
arguments already used show that for all sufficiently large j we have |u; —uo| < &
and z;(t) > 0 forug+6 <t <ug+T+ M +6. It follows that for all sufficiently
large j we have v; —u; > T + M and

105, )l = sup{laj(v; +)] - ~M <t <0} <6,

(If v; = oo then I'(p;,a;) = 0 by definition.) This shows that, in subcase (a),
f((pj, a;) converges to 0 = (0, @0)-

In subcase (b), we see with the aid of Lemma 2.2 that for all sufficiently
large j, we have z;(t) < 0 for 9 < ¢t < T+ M and that u; > T+ M. (We
can assume v; < 00, because T(¢;, ;) = 0 if v; = 00.) It follows from Lemma
2.4 that |z;(t)| < & for all sufficiently large j and for u; — M <t < u;, and
Lemma 2.4 (see equation (2.21)) also implies that there is a constant C; with
|z;(t)| < C16 for all large j and for u; < ¢ < v;. Since 6 > 0 is arbitrary, we
conclude again that f(cpj,aj) approaches 0 as j — oo, and this completes the
proof of the continuity of T.

Suppose next that ¢ € U' and let ¢ denote any Lipschitz function in Xy
with

U(t) = p(t) for —(1—a)M —arp <t <0.
Define z(t) = z(t;p,a) and set Z(t) = =z(t) for t > 0 and Z(t) = ¥(t) for
—M <t<0. It is easy to see that Qu(Z:) = Qu(z¢) for t > 0, so Zg = ¢ and

#F(t) = f(p(QalZy)))  fort>0.

Using our uniqueness results for solutions of the initial value problem, we con-
clude that Z(t) = z(t;%,o) and that z(t;4,a) = z(tp,@) for t > 0. If
I'(p,a) = ¢ and we write 22 = 22(yp, @), we obtain from the definition of T’
that _
z(t;p,0) = (22 + t 0, a) for —(1—-a)M —arp <t <0.

Define %(t) = z(z2 + t;p, @) for —M <t <0, so P(t) = ¢(t) for —(1 — )M —
atg <t <0, and define y(t) = z(z2 + t; ¢, ) for —M <t < co. By construction
we have that y(t) = z(¢; ¥, ), so our previous remarks imply that

z(22 + t;p,0) = y(t) = z(t; ¥, a) = z(t; p,0)  fort > 0.
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Clearly, if we extend z(t; @, «) for all t by periodicity, the extended function
z(t; ¢, ) will still satisfy equation (2.7).

If we recall (see Lemma 2.1) that F,(¢) = f(Qa(yp)) is Lipschitzian on
K(—B, A, M, R) with Lipschitz constant k, and that k can be chosen independent
of @, in the range 0 < o < 1, and if we apply Lemma 2.4 to h = F,,, we see that
equations (2.19), (2.20) and (2.21) are satisfied for h = F,,. In particular, there
is a constant C; such that for all (¢,a) € UT x [0, 1] we have

sup{|z(t; ¥, a)| : 0 <t < z2(%, )} < Crsup{ei(s) : —1 < s < 0}.

In particular, if § > 0 is chosen so that C16 < min{A, B}, we obtain that
—B < z(t;9,0) < Afor 0 <t < 2(9, @) if (¥,a) € Ut x [0,1] and sup{e(s) :
—7p < 5 < 0} < 8. We have arranged that |2'(¢;%,a)| < R for all ¢ > 0 and all
(¥,a) € UT x[0,1], so we conclude that I'(¢),a) € G* if (¥,a) € Ut x [0,1]
and sup{¢(s) : —7p < s <0} <6.

If f satisfies H2.3, then by definition we have that —B < z(t;4,0) < A for
allt>0and ¢ € U, so I'(4,0) € G*. If f satisfies the hypotheses of Theorem
1.3, 1.4 or 1.5, then Lemma 2.1 implies that F, satisfies the hypotheses of,
respectively, Theorem 1.3, 1.4 or 1.5, so —B < z(t;¢,a) < Afor all t > 0 and
(¥,a) e Ut x [0,1], and so I'(¢,a) € G™. O

REMARK 2.1. It is unclear when, under the hypotheses of Theorem 2.1, T'
can be extended continuously to G*(—B, A, M, 1, R) x [0,1]. If ¢ € Gt and
wo(t) = 0 for —mp < t < 0, it seems necessary (but perhaps not sufficient) for
continuity of I at (o, o) that I'(pg, ) = 0. However, if there exists a sequence
(pj, ;) € UT x [0,1] with

J.liglo(wj,aj) = (o, p) and
Jim 22(pj505) = ¢ < (1~ 00)M — (1 - o),
then in general T" will not be continuous at (vg, ). To see this, note that
(T(pjr ) (—(1 — ;)M — a;10) — @o(¢ — (1 — ag) M — ago)

and
(—(1—ap)M — agrg = —y < —To-
Thus, if po(—70) # 0, then I will not be continuous at (o, ap).
On the other hand, if we recall that z3(%, 8) > 27 for all (¥, 8) € Ut x [0, 1]
and if we use Lemma 2.4, we see that I" will be continuous at (g, o) if

(2.26) 270 — (1 — )M — agm9 = —To.
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If 370 > M, equation (2.26) will be satisfied for 0 < oo < 1 and I' can be extended
continuously to G* x [0,1]. If M > 37, then I can be extended continuously to

{(p,@) € GTx[0,1] : eitherp € U, or (3—a)m > (1—a)M and ¢|[—70,0] = 0}.

In particular, if (3 — )70 > (1 — )M (as will be true for « near to 1), then I,
can always be extended continuously to G+. In all cases, we define I'(¢, ) =0

when ¢|[—7,0] = 0.

Generally, suppose that f : X — R is continuous and almost locally Lip-
schitzian and that there exist constants C; and C» with

(2.27) I£(@)| < C1+ Ca|ol.

If ¢ € X and lip(p) < o0, let z(t; ¢, a) denote the unique solution of

o'(t) = f(Qalz))  fort >0,

2.28
( : zl[—Ma 0] = -

Previously, we assumed that f : K(—B,A,M) — R and extended f to X
by f(e) = f(p()), so equation (2.27) was automatic. Assume that f satisfies
H2.2 (except that f is defined on Xjs instead of K(—B, A, M)). If A and B
are any positive reals and ¢ € Ut (~B, A, M, 19) and lip(¢) < 0o, we can define
21(¢, @) and 22(yp, a) by equation (2.23). Furthermore, we can prove that there
exists a constant R with |z'(f;p,a)] < R for 0 < t < 22(p, ) and for all
(p,a) € UT(—B, A, M, 1) x [0,1] with lip(¢) < oo. If we fix A, B and R and
define

G = {p € Xu : lip(p) < R and ¢(0) =0, and (t) >0 for — 19 <t <0}
and
W ={p€ Xy : —B <9< Aand ¢(t) > 0 for some t € [-70,0]},

then I’y (given by equation (2.25)) is a well-defined continuous map from WNG
to G and fixed points ¢ of ', correspond to periodic solutions of equation (2.28)
as described in Theorem 2.1. Since WNG is a relatively open subset of the closed
convex set G and T, is locally compact, one can try to prove the existence of
fixed points of I'y, by showing that the fixed point index iq(I'a, WNG) is defined
and nonzero. This general approach to proving existence of periodic solutions
has proved very powerful, and it is the method we shall use here.
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3. Existence of slowly oscillating periodic solutions

Assume that f : K(—B, A, M) — R satisfies hypotheses H2.1 and H2.2 and
that 7o is as in H2.2. Generalizing the terminology of {10, 11, 12], we shall be
interested in a special class of periodic solutions z(t) of

(3.1) z'(t) = f(a).

DEFINITION 3.1. A periodic solution z(t) of equation (3.1) is called an SOP
solution, or a slowly oscillating periodic solution, or a Ps-solution if there exist
numbers 29, 21 and 22 with z; — 29 > 70, and 23 — 2; > 79, such that z(t) < 0
for zo <t < z1, and z(t) > 0 for 2; <t < 2, and such that z(t + 2, — 20) = z(t)
for all £..

The term slowly refers to the fact that zeros of z(t) are separated by distances
greater than 7. In general (see [10, 15]) there may be periodic solutions of 3.1)
with zeros separated by a distance less than 9. A priori, it may also happen that
there exists a periodic solution z(t) which is alternately negative or positive on
intervals [z;_1, 2;], for 1 < j < 2m, of length greater than 7o and which satisfies
z(t + 22m — 20) = z(t) for all t. As in [11], we shall call such solutions Py,,-
solutions. Under certain circumstances one can prove that every Py,-solution is
necessarily a Pz-solution: see Theorem 2.6 in [12]. In general, equation (3.1) may
possess Pam-solutions which are not P;-solutions, but little is rigorously known.

Our goal in this section is to establish the existence of an SOP solution of
equation (3.1). Theorem 2.1 shows that this is equivalent to finding a nonzero
fixed point of I'g in U*(—B, A, M, 79, R) = U™, where I'y is defined by equation
(2.25). The basic tool which we shall use to prove the existence of a fixed point
of Iy in U* is the fixed point index, which can be considered a generalization
of the topological degree of a mapping. Expositions of the classical fixed point
index can be found in [3] and [5]; expositions of more general forms of the fixed
point index which are more suitable for applications in analysis are given in
(2], [7], [17], [18], and [19]. These articles also contain further references to the
literature, in particular, to seminal work of J. Leray.

For the reader’s convenience we briefly summarize some facts about a special
case of the fixed point index. Suppose that X is a Banach space, K is a closed,
convex subset of X, and U is a relatively open subset of K (so U = WNK , where
W is an open subset of X). Note that the interior of K in X may be empty.
If U, and K are topological Hausdorff spaces, a continuous map A : U; — K 1
is called locally compact if, for each z € Uy, there exists an open neighborhood
Ve C Uy of z such that the closure of h(V;) in K; is compact. Obviously, if K;
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is compact, h is locally compact. If (for U a relatively open subset of a closed,
convex set K as above) h : U — K is a continuous, locally compact map and
S = {z € U : h(z) = x} is compact (possibly empty), then there is defined
an integer ix (h,U), the fixed point index of h on U. If ix(h,U) # 0, then h
has a fixed point in U. If U; and U, are relatively open subsets of K, with
h:U = U, UUy — K continuous and locally compact, such that h(z) # z for
all z € Uy NUz and S = {x € U : h(z) = z} is compact (and possibly empty),
then ix (h, U;) is defined for j = 1,2 and

iK(h’ U) = iK(h'1 Ul) + iK(h’ UZ)

This is the so-called additivity property of the fixed point index. It follows from
the additivity property that if U is a relatively open subset of a closed, convex
set K in a Banach space and h : U — K is continuous and locally compact and
if § = {z € U : h(z) = z} is compact, then for any relatively open set Us C K
with § c U; C U, one has ix(h,U) =ik (h,U1).

Suppose that Q c K x [0,1] is open as a subset of K x [0,1] in the relative
topology, that h : O — K is continuous and locally compact and that ¥ =
{(z,t) € Q : h(z,t) = z} is compact. Define & = {z : (z,t) € 2} and
h: : Q¢ — K by hy(z) = h(z,t). Then the homotopy property of the fixed point
index asserts that

ix(ho, Q) = ix(h1, ).
If Q; is empty, ix (hs, Q) = 0, by definition.

Finally, we shall need the commutativity property of the fixed point index.
Suppose that U; is a relatively open subset of a closed, convex set K; in a Banach
space X;. Assume that hy : Uy — Ko is continuous and locally compact and
that hq : Uy — K, is continuous. Define

Vi = hl_l(Uz) = {:E el : h1(.’17) c Uz},
Vo =hy (Uy) = {y € Uz : hoy) € Un},

and assume that
S = {IE ev;: hz(hl(m)) = :L'}
is compact (possibly empty). Then

Sy ={y € Va : hi(ha(y)) = v}

is compact and
iKl (h2h17 ‘/1) = iK2 (h1h27 ‘/2)
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A special case of the commutativity property is important. Suppose that U is a
relatively open subset of a closed, convex set K in a Banach space X. Suppose
that b : U — K is continuous, locally compact and S = {z € U : h(z) = z} is
compact. Assume that A(U) C K; C K, where K] is a closed, convex subset of
K. Then it follows that

ix(h,U) =ik, (h,UNK,).
Our goal is to compute the fixed point index of
I-‘0 : U+(_B,A7M77—0vR) = U+ - G+(_B, A,M,To,R) = G+.

In particular, we must prove that the fixed point index of Ty : Ut — Gt is
defined. Our strategy is to reduce the problem of computing this index to the
much simpler problem of computing a corresponding fixed point index for the

linear equation
(3.2) y'(t) = —By(t) — vy(t — o),

where we shall usually assume that 8> 0 and v > 0, and also 75 > 0.
Thus we begin by recalling some results about equation (3.2). Denote by
X = X, the Banach space of continuous functions ¢ : [—75,0] — R with the

sup norm, and write
(3.3) K={pe X, : ¢>0and ©0) =0}.

If ¢ € X and B and + are any real numbers and 7 > 0, there exists a unique
solution y(t) = y(t; v, 8,7), defined for all t > —7y, of

3.4 y'(t) = ~By(t) — vyt —m)  fort >0,
y(t) = ¢(t) for —9 <t <0.

The map (t, ¢, B8,7) — y(t; ¢, 8,7) is continuous. These are standard results.

Next assume that 79 > 0, and that 8 > 0 and v > 0 in equation (34). If
w € K and v =0, or if ¢ = 0, then it is clear that y(¢; ¢, 8,7) = 0 for all ¢ > 0.
Thus we assume that v > 0 and ¢ € K — {0} and define {; = ¢1(y, B,7) and
C2 = G2(p, B,7) by
G =inf{t > 70 : y(t;»,B8,v) =0},
G =inf{t > (i : y(t;¢,8,7) = 0}.
As usual, we define (1 = 00 if y(2;, 8,7) < Oforallt > 7, and ¢ = 00 if ¢; = 00
or if y(t; p, 8,7) > 0 for all t > ¢;. An easier version of the argument in Lemma
2.3 shows that there exists o € [0, min{79, {1 —70}), with y(t) = y(t; v, 8,7) = 0

(3.5)
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for 0 <t < g¢ and y(t) < 0 for g < t < (1; the proof is left to the reader. Also,
as in Lemma. 2.3, we find that {5 — {; > 70, and 3'({1) > 0 and 3'({2) < 0.

We now define the operator of translation along trajectories for equation
(3.4). If p € K — {0}, and 8 > 0 and v > 0, and if 2 = (2(p, 8,7) < o0, we
define (writing y(t) = y(¢; ¢, 8,7)) the map Sg , : K — {0} = K — {0} by
(3.6) Sp,4(9) = Y¢s-

As usual, y¢, € K is defined by

Yo (8) =y(s + G250, 6,7)  for —710 <5 <0.
If ¢, = oo, we define Sg () = 0. Finally, if p =0 or if p € K and v = 0, we
define Sg () = 0. Easier variants of the arguments in Section 2 (particularly
equations (2.20) and (2.21) in Lemma 2.4) show that (p,8,7) — Sp,(v) is
continuous for ¢ € K, and 8 > 0 and v > 0, and that (@, 3,7) — Sg(p) takes
bounded sets to sets with compact closure. If ¢ € K — {0} and Sg,(¢) = ¢
and y(t) = y(t;p,B,7) is extended to t < —7p by y(t) = y(t + {2) (where
¢z = Ca(w,B,7)), then y(t) is a Pp-solution of equation (3.2). The details of
these arguments are left to the reader.

It is convenient to note that we obtain explicit estimates in terms of ||| for
y(t) = y(t; , B,7y) on [0,(z). Specifically, for 0 <t < 79 and ¢ € K, we have
d
= (y()) = —vy(t = r0)e™ 2 —llwlle™.

If we interpret (1 — e=#t)3~! =t for 8 = 0, we obtain

y(t) > —vllel|(1 — e #H)s7! for 0 <t < 7.
Since (t) > 0 for 79 < t < {1 = (1(p, B,7), we conclude that

y(t) > —llel(l—e?™)p~t  for0<t <G
If {; > 2710 and 21y < t < (1, we note that §/(t) > —(8+ 7)y(t), so

“llllB71(1 — e Pr)e~ BIMNE-2m0) < y(t) <0 for2rp <t < (1.

Analogous arguments imply that

y(t) < Yllye, |(1 — e7PE=CNB=1  for ¢ <t < (1 + 7o,

and
y(t) <Yy, (1 —eP°)p™"  for G <t <G
If {1 + 279 < {2 and (4 + 27 < t < {2 we also obtain

0<y(t) < 7”yC1 - e_ﬁTD)ﬁ_le—(ﬁ+7)(t—C1—21'0)_
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We note that the map ¢ — Sg,,(¢) is not linear, even though equation (3.2)
is linear. However, it is easy to see that Sz, is homogeneous of degree one:

(3.7) S8,y (M) = XSz, () for p € K and A > 0.

As is well known, understanding equation (3.2) depends on understanding
the location of zeros of the associated characteristic equation

(3.8) z=—f —vexp(~Tpz) for z € C.

Our next lemma lists some known results about equations (3.2) and (3.8). All
of these facts, together with references to the literature, can be found in [10, pp.
119-125).

LEMMA 3.1. Assume that 8 >0 and v > 0 with B+ v > 0 and that 70 > 0.
If B <y define v = v(B/7,70) to be the unique solution v with 7/2 < vry < 7 of

cos(vmp) = —g = c
If B <y and
V1= = (7" = B2 > v = v(B/7,m0),

then equation (3.8) has precisely one solution z with Re(z) > 0 and 0 < Im(2) <
m/1o. If v < B, orif B <y and (v2 — BH)Y? < v = v(B/y,7), then equation
(3.8) has no solution z with Re(z) > 0. If B < v and (v% — BHY2 =y, then
+iv are the only pure imaginary solutions of equation (3.8). If y(t) is a periodic
solution of equation (3.2) which is not identically zero and which is nonnegative
on some interval of length £ > 1o, then v > B and (v — §2)1/2 = y and
y(t) = acos(vt) + bsin(vt) where v = v(B/v,7) and a and b are reals with
a? 4+ > 0.

The assumption that v < B, or that 3 < v and (v* — g%)'/2 £ v(B/v, 1) is
equivalent to the assumption that equation (3.8) has no pure imaginary root iw
with |w| < 7/79, supposing that B >0 and v > 0, with 3+~ > 0 and T0 > 0.

We next need to discuss the fixed point index of Sg, : K — K.

LEMMA 3.2. Assume that 3 > 0 and v > 0, and that 79 > 0. Let K be
defined by (3.3), let Sp : K — K be given by equation (3.6) and let U c K
denote a relatz'velfy open subset of K with0 € K. Ify < B orif 8 < v and
(7% — B*)Y% # v(B/v,70), for v as in Lemma 3.1, then 0 is the only fired point
of Sp.y in K, so the additivity property of the fized point index implies that

ik (8,7, K) = ik (S, U).
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Ify < B, or if B <~ and (v2 — B*)'/2 < v(B/7,70), then

ix(Sp,,U) =1.
I8 < and (12 — B2V > v(B/,m0), then
ik (S8, U)=0.

PROOF. If v = 0, Lemma 3.2 is immediate, so we assume v > 0. Suppose
that v < B, or B8 < v and (y2 — 8%)Y/2 # v(B/v,7). Our previous remarks
imply that if Sg(¢) = ¢ for some ¢ € K — {0}, then y(¢; ¢, 3,7) (defined by
equation (3.4)) can be extended to a P»-solution of equation (3.2). Lemma 3.1
implies that, under the given assumptions on 3, v and 7o, equation (3.2) has no
Py-solution. Thus 0 is the only fixed point of Sg, in K, and the first part of
Lemma 3.2 follows.

Next suppose that v < 3, or that 8 < v and (v — 8%)Y2 < v(B/v, ).
Lemma 3.1 implies that equation (3.8) has no solution z with Re(2) > 0. Stan-
dard theory for linear functional differential equations [8] then implies that for

every ¢ € X‘rm
(3.9) Jim y(t; ¢, 8,7) = 0.
—0O0
Let U be any relatively open neighborhood of 0 in K and consider the homotopy
(A ) = ASp1(9) =: Ta(¢)

for 0 < A< 1and ¢ € U. We claim that ASg~(p) = ¢ for (p,A) € U x [0,1]
if and only if ¢ = 0. For A = 0 this is obvious, and we already know that
Sg(p) # ¢ for ¢ # 0. Thus we assume that 0 <A < 1. If p € K — {0} and

Sa (@) =A"tp  for some A € (0,1),
then by using the homogeneity of Sg, (equation (3.7)) we see that
S (0) = X,

where S7*. denotes the m-th iterate of Sg. However, this contradicts equation
(3.9). Thus the hypotheses of the homotopy property are satisfied and

ix(Th,U) = iK(SB,A,U) = ig(To,U).

However, Tp is a constant map with Tp(p) = 0 € U for all p € U, so it is
well-known that

ix(To,U)=1.
(Formally, we are using the so-called “normalization property” of the fixed point
index; see (3], [4], [7), [17), [18], [19].)
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It remains to consider the case that 8 < v and (v? — B%)Y2 > v(8/v, 7).
We first reduce to the case 3 = 0. To accomplish this we consider the homotopy

(M) = Sxgy(p) for0<A<1land p€K.
It is easy to check that for 0 < A <1,
(7 = (A2 2 (9% = B3 > w(B/v,70) 2 v((AB) /7, 7o),

so Lemma 3.1 implies that 0 is the only fixed point of Syg, for 0 < A < 1. Thus
we obtain from the homotopy property that

iK(Sﬁ,va U) = iK(SO,*/, U),

so we can assume that 8 =0 and v > (0, 70) = 7/(270).

We shall view -y as fixed, and for notational convenience we shall write 7' =
So,y- We shall write y(t;) = y(t;9,0,7) for the solution of equation (3.4)
with 8 = 0; and for ¢;(y,0,7) and ¢(2(,0,7) as in equation (3.5), we shall set
¢1(p) = ¢(%,0,7) and (2(p) = (2(e,0,7). We define a cone K; C X, by

K; ={p € X, : ¢(—70) =0 and ¢ is increasing on [—7g,0]}.

(We say ¢ is increasing on [—79,0] if ¢(s) < ¢(t) whenever —15 < s < ¢ < 0.)
We define 71 : K — K1 by T1(p) = y¢, 4+, Where (3 = (1(p) and y(t) = y(t; @).
One can easily see from equation (3.2) and the fact that 8 = 0 that y|[¢1, {1 + 7o)
is increasing; one can also check that 73 is continuous and takes bounded sets to
sets with compact closure. If ¢ € K; —{0}, define z; = 21 (%) to be the first ¢ > 0
such that y(¢;9) =0, and 2z = 22(%) to be the first ¢ > 21 (¢) with y(¢;9) = 0.
(Because ¥ > 7w/(219) > 1/79, an easy direct argument as in Lemma 2.3 on
page 271 of [14] implies that 21(1)) < oo and z2(%) < oo, and that ¢;(p) < oo
and (3(p) < oo for all ¢ € K — {0}.) Define T : K; — K by T3(0) = 0 and
To(¥) = y,, for ¥ € Ky — {0} and y(t) = y(¢;¥). One can check that T5 is
continuous (though not necessarily locally compact) and that T = T2T). If we
write T = T1T%, then T can be described as follows. If ¥ € K; — {0} and we set
y(t) = y(t; ) and zp = 22(%), then T'(3)) = Yz, 4+,. OFf course we have T(0) = 0.
The commutativity property of the fixed point index directly yields

(3.10) ix(T,K) = ig(TeTh, K) = ig, (T1 Ty, K1) = ig, (T, K3).

Our characterization of T’ above shows that it is the same operator of trans-
lation along trajectories considered in Section 2 of [14]. Thus we can directly
apply Lemma 2.8, page 275, in [14] and conclude that 0 is an ejective fixed point
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of T : Ky — K. (Ejective points of a map are defined in Section 1 of [14].) We
can now directly apply Lemma 1.2, page 322, in [15] and conclude that

(3.11) ix,(T,V) =0,

where V is any relatively open neighborhood of 0 in K;. If U is any relatively
open neighborhood of 0 in K, we conclude from (3.10) and (3.11) that

ix(T,U) = ix(T,K) = i, (T, K1) = 0,

which completes the proof. O

REMARK 3.1. In Lemma 1.2 of [15] it is assumed that the ejective fixed point
zg is also an extreme point of the closed convex set C in question. However, the
conclusions of Lemma 1.2 remain valid if zp is not an extreme point, but C is
infinite dimensional. The proof is similar. In Lemma 3.2, 20 = 0 and C = K},
with 0 an ejective point of T and an extreme point of the infinite dimensional,
closed, convex set Kj.

REMARK 3.2. Our proof that ik, (T, K1) = 0 used some sophisticated ideas
from asymptotic fixed point theory. One can obtain the same result by using
Proposition 2, page 248, in [16], which is a conceptually simpler theorem. Let
U= {¢ e Ky : |[¢|| <1}. It is a special case of Proposition 2 in [16] that
ix,(T,U) = 0if (a) AT()) # ¢ for all A > 1 and all 3 € K1 with ||| = 1; and
(b) we have

inf{|T($)| : ¥ € Ku, |[]| =1} > 0.
The second hypothesis can be proved by elementary estimates, although it is

worth noting that
inf{||T(¢)|l : ¢ € K and ||| =1} =0.

For the first hypothesis, we already know from the linear theory that 0 is the
only fixed point of T. If AT'(¢) = % for some 9 € K; with ||| = 1 and some
A > 1, the homogeneity of T implies that

T™(y) =A™y, hence lim ||T™(y)||=0.

On the other hand, the homogeneity of T and the fact that 0 is an ejective fixed
point of T imply that for all ¥ € K; — {0},

tim sup || T™(4)|| = cc.

It follows that the hypotheses of Proposition 2 in [16] are satisfied.
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Not surprisingly, Proposition 2 and Corollary 1, pages 248-249 in [16], are
related to work of Grafton [6] about periodic solutions of functional differential
equations. See [16] for further details.

We shall need to prove that equation (3.1) or, more generally, equation (2.7,
has no P;-solutions which are small in the L* norm. To prove this it is natural
to make appropriate assumptions about the Fréchet derivative at 0 of the map
f in equation (3.1). The difficulty which must be addressed is that, for the
examples of interest, f is not Fréchet differentiable at 0. To handle this problem
we introduce a weakening of the idea of differentiability at 0.

Assume that (Y, || - ||) and (Y7, || - [}1) are Banach spaces, that Y; is a dense
subset of Y’ (in the ||-|| norm), and that the inclusion map is continuous. If Yo €Y;
and U is an open neighborhood of g in Y, a function f : U — R is called almost
Fréchet differentiable at yo in case f; = f|Y; is Fréchet differentiable at Yo as a
map from Y to R, that is, if there exists a bounded linear map D f; (yo) : Y1 = R
with

|f(¥) = f(w0) = (Dfi(wo))(w — yo)| = o(lly — woll1)  as |y~ yols — .

We shall only apply this definition when ¥ = Xy = C([~M,0]) and Y; =
C%1([~M,0]), the Banach space of Lipschitz continuous real-valued maps. For
definiteness, we explicitly state the definition in this case.

DEFINITION 3.2. Suppose that § > 0 and that f: {p € Xar : |¢| < b} —
R is a map. We say that f is almost Fréchet differentiable at 0 if there exists a
continuous linear map L : C%!([-M,0]) — R and a function o : (0, 6,) — (0, 00)
with lim._g+£7 o (e) = 0 such that

17() = £(0) — L()| < o([lll + Lip(y))
for all Lipschitz ¢ € X with [J¢|| + lip(¢) < .

A priori, the map L in Definition 3.2 need not extend as a continuous linear
map to all of Xs. However, in our applications this will be the case and, in fact
L will take a very simple form.

By replacing ¢ in Definition 3.2 by &, where

o(e) =sup{o(s) : 0< s<e},

we can assume that & is increasing. We shall therefore always assume that ¢ is
increasing.

We shall refer to L in Definition 3.2 as the almost Fréchet derivative of f
at 0. The next lemma lists some elementary properties of the almost Fréchet

derivative.
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LEMMA 3.3. Suppose that 6o > 0 and that f : {p € Xu : |l¢ll < &} = R
is a map which is almost differentiable at 0 and has almost Fréchet derivative L
at 0. If ¢ € X = C([-M,0]) is Lipschitzian, we have

(3.12) L(p) = lim e™*(f(e) = £(0))-

If f is almost locally Lipschitzian, the map L has a unique extension (also de-
noted by L) to a continuous linear map from Xy to R. If f satisfies H2.2 and
g and o are as in H2.2, then there exist nonnegative real numbers 8 and ~y with
v = —g'(0) so that

L(p) = —Bp(0) — ve(—0)

for all Lipschitzian ¢ € Xg.

PROOF. If Yy = C%1([~M,0]), the Banach space of Lipschitzian real-valued
maps ¢ : [-M,0] — R, our definition implies that f|Yas is Fréchet differentiable
at 0, so equation (3.12) follows immediately and L : Ypr — R is a continuous
linear map. If f is almost locally Lipschitzian, Lemma 1.1 implies that there is
a constant k such that |f(¢) — £(0)| < klj¢|| for all Lipschitzian ¢ € X with
lle|| < 8 and lip(y) < 8. (Here || - || denotes, as usual, the sup norm on Xp.)
It follows from equation (3.12) that if ¢ € X and ¢ is Lipschitzian, then

\L(g)| = |lim(f(ep) — F(O))] < 1iI:lS(1)1P|€|"1|f(€<P) - f(0)|
< timsuplel Kl = Hll.
E—
Since Yy is dense in (X, || - ||), we obtain from the previous inequality that L

extends uniquely to a continuous linear map from Xjs to R; and the norm of

this extension is bounded by k.
If f satisfies H2.2 and ¢ € X is Lipschitzian with ¢(0) = 0, we see that
L(p) = lim e f(ep) = lim e~ g(e4p(~70))-
This equation implies that g is differentiable at 0 and
L(p) = ¢'(0)¢(—0)-

The assumptions on g in H2.2 imply that ¢’(0) = —y < 0. In general, let 1 be
any fixed, nonnegative Lipschitz function in Xy, with 4(0) = 1 and 9(—7) =0,
and define 8 = —L(%). If ¢ € X and lip(p) < oo, our remarks above imply
that

L(p — ¢(0)9) = —y(¢(—70) — p(0)¥(—T0)) = —7y(—70).
It follows that

L(p) = L(p — ©(0)) + @(0) L(%) = —Bp(0) — vp(—T0)-
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The negative feedback condition for f implies that
—B=L($) = lim e f(e9) <0,
e—0+

as claimed. O

In order to establish our main results we also need an upper bound on the
minimal period of any P»-solution of equation (2.6).

LEMMA 3.4. Let p: Xy — K(—B, A, M) be the retraction given by equa-
tions (1.3) and (1.4), and let Q,, for 0 < a < 1, be the linear projection defined
by equation (2.3). Assume that f : K(—B, A, M) — R is almost Fréchet differen-
tiable at 0 (Definition 3.2) and satisfies H2.1 and H2.2. There erists a constant
N so that if = is o Py-solution of

(3.13) 2'(t) = Fa(p(z1)) := f(Qa(p(z+)))
for some a € [0,1], then the minimal period of x is less than or equal to N.

PROOF. Suppose that x is a P-solution of (3.13) for some a, with 0 <
a < 1. By a time translation we can assume that 2(0) = 0 and z(t) > 0 on
[~70,0). As usual, we define z; = inf{t > 7 : z(t) = 0} and 2, = inf{t >
z1 ¢ z(t) = 0}, so 23 is the minimal period of z. Select R so that |f(p)| < R
for all ¢ € K(~B, A, M), define R; = R + 7; ' max{A, B} and select k so that
f is Lipschitzian with Lipschitz constant ¥ on K(—B, A, M, R;). If Fy(p) =
F(Qa(p)), it is easy to see that F, is also Lipschitz with Lipschitz constant k
on K(—B,A, M, R;) and that |F,(¢)| < R for all p € K(-B, A, M). It follows
from Lemma 2.4 (see equations (2.20) and (2.21)) that there exists C; > 1, with
C) independent of ¢, such that for any Ps-solution z of equation (3.13) with
z(0) =0 and z(¢) > 0 for —79 <t <0,
sup{|z(t)| : 0 <t < 2z} < Crsup{r(z(t)) : —m <t <0},
sup{z(t) : z1 <t < 22} < Crsup{|r(z(t))| : 21 — 70 < ¢ < 0}.
Furthermore, by using the last part of Lemma 2.4, we see that for each § > 0,
there exists T = T(§, f) such that if  is a Pj-solution of (3.13) for some a with
0 <a<1,and z >T (respectively, 22 — 21 > T) then |z(t)| < S for T < t < 2
(respectively, |z(t)] < & for z; + T <t < 23). (Note that an examination of the
constants in the proof of Lemma 2.4 shows that T' can be chosen independently
of such a.) If 22 > 2T'(6, f) + 279, it follows that either z; > T'(5, f)+ 7 or
22 ~z1 2 T(6, f) + m0. If we assume, for definiteness, that z; > T'(6, f) + 70, we

(3.14)

obtain
sup{|z(t)| : 21 —T0 £t <z} <6.
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This implies, using equation (3.14), that
sup{z(t) : 21 <t < 22} < C1é.
By the periodicity of z and the fact that 2o — 21 > 7o (Lemma 2.3) we see that

sup{|z(t)| : 0 <t < 2} < Crsup{z(t) : —70 <t <0}
< Crsup{z(t) : z1 <t <z} < CP6.

Thus we conclude that if zo > 2T(, f) + 270, then
sup |z(t)| < CFé.
t

Taking the contrapositive, we conclude that if z is a P;-solution of equation
(3.13) and sup,|z(t)| > 4, then the minimal period z; of z satisfies

(3.15) 22 < 2T(Cy2%6, ) + 2710 =: T (6, f).

By using equation (3.15), we can restrict our attention to P-solutions z for which
sup; |z(t)| is small. In particular, we shall always assume that —B < z(t) < A
for all t, so p(z:) = z; for all ¢.

We shall prove Lemma 3.4 by finding upper estimates for z; and for 22 — z;.
We restrict attention to bounding 2z, since the argument for bounding 22 — 2;
is the same. Note that our remarks above imply that if 2; > T(C; 26, f) + 7o,
then sup, |z(t)] < 6.

We can assume that z; > 3M + 79, or we already have an upper bound. We

claim that
(3.16) lz(t)| > C2|z(t —2M)|  for 2M <t <z — .

For suppose that (3.16) fails for some to with 2M <ty < z; — 79. If we recall
that z is increasing on [M, z;] we obtain from equation (3.14) that

(3.17) sup{|z(s)| ;21 — 0 < s < 21}
< |a(to)| < C1 2|z(to — 2M))|
< C72Cy sup{z(s) : —19 < 5 <0}
However, equation (3.14) and the periodicity of x imply that
sup{z(s) : —70 < 5 < 0} < sup{z(s) : 11 < 8 < 2}
< Crsup{|z(s)] : 21 — 10 £ s L 21},

and this contradicts equation (3.17) and proves that equation (3.16) holds. As-
suming that z; > 3M + 79, we also obtain from (3.16) that

(3.18) |z(z1 — 10)| = CT2|z(21 — 1o — 2M)| > C2|z(t — 2M)|
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for z; — 170 <t < 2.
Recall that f is almost differentiable at 0, so Lemma 3.3 implies that

F(¥) = =B9(0) — v¥(-70) + R(¥),
|R(¥)| < o([l#]l + lip(¥)),

where § > 0 and v > 0, and ||¢|| + lip(4)) < 6o, and where o is an increasing
function with lim._,5+e7'0(e) = 0. To complete the proof we shall have to
exploit this differentiability. For any ¢, equation (2.19) gives (for g as in H2.2)

—klz(t)] + 9(z(t — 1)) < 2'(t) = f(Qa(21)) < Kl (t)] + g(x(t — 70)).
If C is a Lipschitz constant for g on [—B, A], we conclude that
(3.19) |2’ ()] < klz(t)] + Cla(t — 7o)
for all ¢. If 3M < T < 21 — 19 and if we recall that z is increasing on [M, z;] and
use equation (3.16), we obtain that
(3.20) I1Qa(ze)l < llz-|| = |2(r — M)| < |z(r — 2M)| < CZ|z(7)|.
Similarly, by exploiting (3.19) we see that
(821)  lip(Qa(er) < lip(z,) = sup{ja’(t)] : T~ M < ¢ <7}
< kl|z7 ]| + Cllzr—r |
= klz(t — M)| + Clz(r — 1 — M)|
< (k+ Ola(r — 2M)| < (k+ C)CHla(r)|.
Thus, for 3M < 7 < 21 — 79 we have
(3.22) 1Qa(a:)|| +1ip(Qa(zr)) < (k + C +1)CPjz(7)| := Cylz(7)|.

If 6y is as in Definition 3.2, we can assume, by virtue of equation (3.15), that
Calz(t)| < 8o for all ¢, so we obtain from (3.22) and the almost differentiability
of f at 0 that, for 3M <t <z, — 7,

2'(t) = f(Qal@t)) = —Bz(t) — vz(t — 70) + R(z),

|R(z:)| < o(Calz(t)]).

For the range z; —79 < 7 < 2; the final inequality in (3.20) is no longer valid;

(3.23)

however, we do have
lz(T — 2M)| < |z(z1 — 10 — 2M)| < C?|z(2 — 70)|,

giving

I1Qa(z-)ll < CfJz(21 ~ o).
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The final estimate in (3.21) must be similarly modified to give
lip(Qa(z-)) < (k + C)CHlz(21 — mo)|-

Thus, for 2; — 79 <t < 2z; we have the estimate

(3.24) |R(z:)| < o(Calz(z1 — 70)])

of the remainder term, in place of the estimate in (3.23) above.
We now consider two cases, depending on the size of 3 + 1.
CasE 1. Assume that 8+ C2y < 1/(270). Select &g so that

e~ lo(Cqe) < 1/(270) for 0 < € < gy.

Equation (3.15) yields an upper bound on the period of P-solutions z of equation
(3.13) with sup,|z(t)] > €o. Thus to complete the proof in Case I, it suffices to
assume that sup, |z(£)| < o and derive a contradiction. Using equation (3.18)
we see that for z; — 19 <t < z; we have |z(t)| < |z(21 — 70)| and

|z(t — 70)| < |&(z1 — 70 — 2M)| < CF|z(21 — 0,
and so by equation (3.24),
z'(t) = —Bz(t) — yz(t — 70) + R(z:)
< (B+ Cv)le(z1 — mo)| + 0(Calz(21 — 1))
= (B+ Cly + a(Calz(z1 — mo)|z(21 = 10)| ™) |z(21 = 7o)
< 75 Y| z(z1 — T0)|-

However, this implies that
z(z1) = z(z1 — 70 +/ z'(s)ds
Z1—To

< z(z1 — 710 +/ 76 |z(21 — T0)| ds < 0,

zZ31—7o0

which is a contradiction.

CASE I1. Assume that 8+ C}y > 1/(27), so that 8+ > 1/(2C%7;) := 2¢3.
We derive from equation (3.23) and the fact that « is increasing on [M, z] that,
for 3M <t <2z — 7,

' (t) = —Px(t) — vz(t — 0) + R(ze) 2 —(B +7)z(t) — o (Calz(2)]).
Select 1 > 0 so that

lo(Cre) < (B+7)/2 for0<e<ey.
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If sup, |z(t)| > €1, equation (3.15) yields an upper bound for the period of z.
Thus we assume that sup, |z(t)| < €1, and we derive from the above inequalities
that

'(t) > —((B+v)/2)x(t) > —Caz(t) for M <t < z; — 7.
This differel}tial inequality implies that

0> 2(t) > exp(—Cs(t —~ 3M))z(3M) for 3M <t <z — .
If we use this estimate for ¢ = 2; — 7y we find that

sup{|z(s)| : 21 — 70 < 8 < 21} = |z(21 — 70)]
< exp(—Cs(z1 — 3M — 7)) |z(3M)|
< exp(—Cs(21 — 3M — 70)) sup{[z(s)] : 0 <5< 2 }.

If we combine this estimate with equation (3.14), we obtain

sup{z(t) : —70 <t <0} <sup{x(t) : z1 <t < 2z}
< Crsup{|z(t)] : 21 — 0 <t < 21}
< Crexp(—Cs(z1 — 3M — 7)) sup{|z(s)] : 0< s < 2z}
< Cfexp(—Cs(z1 — 3M — 7p)) sup{z(t) : ~1g <t < 0}.

We conclude from this that
012 exp(—C3(zl —3M — To)) 2 1,

which yields an explicit upper bound for 2;. O

REMARK 3.3. The proof of Lemma 3.4 provides very crude, but explicit
upper bounds for the minimal period of a P;-solution of equation (3.13). If one
only wants to prove the existence of an upper bound, a shorter proof can be
given. Assume to the contrary that there exists a sequence (z”,a™), where z"
is a Py-solution of

(") (t) = Fan(p(2}))

and the minimal period p™ of =™ approaches co. By using equation (3.15) one

can see that if one defines
lz™|| := sup{|z™(¢)| : t € R},

then [|z"| — 0. As in Lemma 3.4 one can assume that z(0) = 0 and z™(¢) > 0
on [—7o,0). If one defines y™(t) = z"(t)]|z™|| "L, then by taking a subsequence
and using an argument like that in Theorem 3.1 below, one can assume that
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a™ — a, that 4™ (t) converges uniformly on compact subsets of R to a C* function
y(t) and that

(3.25) ¥ (t) = —By(t) — vyt — o).

However, by exploiting equation (3.14) and the assumption that p™ — oo, one
can obtain a contradiction from equation (3.25).

We shall also need a slight variant of Lemma 3.4. The proof is essentially

the same as that of Lemma 3.4 and is omitted.

LEMMA 3.4A. For j = 0,1, assume that h; : K(—B, A, M) — R is almost
Fréchet differentiable at 0 (Definition 3.2) and satisfies H2.1 and H2.2, with
the number 1o in H2.2 the same for hy and hi. For 0 < A < 1, define hy :
K(-B,A,M)—R by

ha(p) = (1 = A)ho(p) + A1 (p),

and let p: Xy — K(—B, A, M) be the retraction given by equations (1.3) and
(1.4). There ezists a constant N so that if x is a Py-solution of

z'(t) = ha(p(zt))
for some X € [0,1], then the minimal period of x is less than or equal to N.

We can now prove our main theorem concerning the existence of slowly os-
cillating periodic solutions of equation (3.1). Recall that hypotheses H2.1, H2.2
and H2.3 are given in Section 2.

THEOREM 3.1. Let A, B and M be positive reals and suppose that f : K(—B,
A, M) — R satisfies H2.1, H2.2 and H2.3. Assume that f is almost Fréchet
differentiable at 0 (Definition 3.2) with almost Fréchet derivative L at 0, so (by
Lemma 3.3)
L(p) = —Bp(0) = vp(~0) = lim e f(e0)
with 8 > 0 and v > 0. Select

R > sup{|f(¢)| : ¢ € K(~B, A, M)}

and let Gt (—B, A, M, 9, R) =: Gt be given by equation (2.2), and Ut (—B, A,
M, 70, R) =: Ut be given by equation (2.9). Let Ty : UT — G be given by
equation (2.25) and Theorem 2.1. Assume that either v < 3, or thaty > 3
and (v2 — B2)Y2 # v, where v = v(B/v,70) is defined in Lemma 3.1. Then
there exists 6 > 0 such that To(p) # ¢ for all ¢ € Ut with sup{p(s) : —7p <
s < 0} < 6, and the fized point indez ig+ (Lo, U™) is defined. If v < B, or if
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vy > ﬂ and (72 - 132)1/2 < V(ﬂ/’% 7-0)7 then iG+(FOsU+) = 0. If’)’ > ﬂ and
(v —p2)1/2 > v(B/v,m0), then ig+(To,UY) = 1 and equation (3.1) has a slowly
oscillating periodic solution x with —B < z(t) < A for all t.

PROOF. Let I': U™ x [0,1] — X be defined by equation (2.25). It is easy
to see from the form of F,, and from equation (2.7) that lip(T,(p)) < R for all
@ € UT. It follows from Theorem 2.1 that ¢ — p(T'a(y)) is a continuous map
of U to the compact, convex set G.

Our first claim is that

(3.26) o+ (Fg, U+) = ig+ (pl"l, U+).

Hypothesis H2.3 implies that I'o(U+) C G* and pI'y = I'y, so to prove equation
(3.26) it suffices to use the homotopy property of the fixed point index and prove
that
{(p:0) €U x [0,1] : p(T(p, ) = ¢}

is compact. Because Gt is compact, it suffices to prove that there exists § > 0
such that p(I'(p,a)) # ¢ for all (p,a) € Ut x [0,1] with sup{p(s) : —1p <
s < 0} < 4. To prove the latter claim, we assume the contrary and obtain a
contradiction. Thus, suppose that there exists a sequence (¢7,af) € U+ x [0,1]
with lim;_,oo(sup{y?(t) : —70 <t < 0}) =0 and p(T'(¢’, a%)) = »i. By taking
a subsequence we can assume that o’ — o. We define 27(t) = z(t; o7, a?) for
t > —7o, and set ¢’ = z1(¢’,a’) and p’ = z3(¢?, &’). Theorem 2.1 implies that
by deleting the first few terms of the sequence we can assume that —B < z7 () <
A for all ¢t and hence

p(C(¢’,a%)) =T(¢’, %) = ¢,

and so
d

27 (8) = f(Qus («])

for all t. Theorem 2.1 also implies that z7(t + p’) = 27(¢t) for all t > —7.
Furthermore, if we extend 7 for all ¢ by defining it to be periodic of period p7,
then z7 is a Pj-solution. In fact, by using equations (2.20) and (2.21) in Lemma
2.4 we see that there exists a constant Cs, independent of j, with

(3.27) 27| := sup{|z7(t)| : t € R} < Cosup{z’(t) : -1 <t < 0},

and so [|z7|| — 0.
We now define y(t) = z(t)[|z7|| =" and observe that 37(0) = 0 and ||37|| = 1,

and

(3.28) ¢@=AHﬂWV@m@»“
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Because f is bounded by R on K(—B, A, M) we see that zJ € K(—B, A, M, R)
for all j and all s. Because f is almost Lipschitzian, the restriction of f to
K(—B, A, M, R) is Lipschitz with Lipschitz constant k = kg. It follows that

= |F(Qus ()] < K|zl < K27

(3.29) ‘%zf (t)

and hence
%yj(t)‘ <k forallt.
The Ascoli-Arzela theorem implies that by taking a subsequence we can assume
that y/ converges uniformly on compact intervals of R to a continuous function y.
Because 27 () > 0 on [—7o, 0] and z7(0) = 0, we see that y(t) > 0 for —7p <t <0
and y(0) = 0. Equation (3.27) implies that sup{y’(t) : —70 <t <0} > C;y 1 so
we also have that sup{y(t) : —10 <t <0} > Cy ! Lemma 3.4 implies that p
is a bounded sequence, so by taking a further subsequence we can assume that
p! — p < 0o. It is a straightforward exercise, which we leave to the reader, to
prove that y is periodic of period p, and we already have shown that y is not
identically zero.
Equation (3.29) implies that for all s,

lip(Qas (25)) < lip(z]) < kll2/||.
If we use the definition of almost differentiability, we see that
F(Qas () = =B (s) — 127 (s — 7o) + 7 (s),
¥ ()] < o((k + 1)l|z7]),
where lim,_g+ e~lo(e) = 0. If we use (3.30) in (3.28) and recall that y7(s)

converges to y(s) uniformly on compact intervals, we obtain

(3.30)

y(t) = — /0 (By(s) + vu(s — 10)) ds.

Thus y satisfies equation (3.2), which contradicts Lemma 3.1. This completes
the proof of equation (3.26).

For ¢ € Gt define [j¢|, = sup{p(s) : —10 < s < 0}. Our argument
above shows that there exists 8, > 0 with (pI'1)(y) # ¢ for ¢ € Gt satisfying
0 < ||l¢llro < 8. By Theorem 2.1, we can shrink §, and assume that (oI'1)(p) =
T'1(¢) for ||¢[l-, < 6x. Remark 2.1 implies that I'; can be extended continuously
to G* by defining T';1(¢) = 0 for p € G with [|¢|l, = 0. For 0 < § < &, we
define V5 and Wy by

Ws={e € GT : |l¢lln <6},
Vs ={p € G* : |lg|lm > 6}
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If0 < 6 <6 < é,, it follows easily from the additivity property for the fixed
point index that

iG"’ (pF11 U+) = iG"' (prla ‘/51)5
ig+(pL'1, Vs,) + i+ (pl1, Ws) = ig+ (pT'1, GT) = 1.
(We know that pI'; is a continuous map of the compact, convex set G+ into itself

and hence is homotopic to a constant map of Gt to G, so ig+ (p'1,GT) = 1)
Combining this information with (3.26), we see that for 0 < § < §,,

(3.31) i(;+ (Po, U+) = ig+ (pl"l, U+) =1- ig+ (Fl, Wg)

Thus to complete the proof it suffices to evaluate ig+(I'1, W;) for § small.
For 8 and <y as in the statement of our theorem, and for 4 € U+ and 1 <
A <2, we consider solutions u(t) = u(t;%, ) of

w'(t) = (2 - M) f(Qi(p(u)))

(3.32) + (A = 1)(—PBu(t) — yu(t — 7)) for t > 0,
ul[-M,0] = .

By using Lemma 2.3 we see that we can define {3 (1, A) and ¢y (v, A) by

C] (’R/), )\) = inf{t 2 T0 * U(t; ’l/}, )\) = 0},
(¥, A) = inf{t > C1(¥, A) : u(t;9,A) = 0}.

Writing u(t) for u(t;4, A), and ¢; for ¢1(%, ), and so forth, we have by Lemma
2.3 that u(t) < 0for 0 <t < (3, that u(t) < O0for (3 — 79 < t < 1, and that
¢2—¢1 > 1o and u(t) > 0 for ¢; <t < (3. As usual, we allow ¢; = 0o or (2 = oo.
For 1 <A< 2and vy € Ut we define f)\(w) = f(w,/\) by

f("/}7 ’\) = Uy,

where u is the solution of (3.32) and {3 := {3(¥, A). If (1(%,A) = oo or (¥, A) =
00, we define T'(1), A) = 0. The same arguments used in Theorem 2.1 show that
T is a continuous map of U+ x [1,2] to Xps. We define T': U+ x [1,2] » Xy by

T'(%,A) = Q1(T(%, A),

and we extend I' to G* x [1,2] by defining I'(¢),A) = 0 for ¥ € G+ with
¥|[-70,0] = 0. By using Lemma 2.4, we see that there exists §; > 0 such
that (¢, A) € G* if ||¢||-, < 6;. Arguing as in Remark 2.1, we also see that T is
continuous on G* x[1,2]. Also, the same argument as in Theorem 2.1 shows that
f (1, A) = ¢ for (,A) € U x[1,2], then u(t+(2) = u(t) for all £ > —79, where
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u(t) := u(t; ¥, A) and {3 = {2(¢, A). Furthermore, if this solution is extended to
R by defining u(t + ¢2) = u(t) for all t < —7p, then u is a Pe-solution of

(3.33) u'(t) = (2 = MF(Qulp(u))) + (A — D(=Bu(t) — yult - 70))-

We now argue essentially as in the proof of equation (3.26). We claim that
for all sufficiently small § > 0,

(334) ig+ (Fl, W&) = iG+ (Fz, W&)

To prove equation (3.34), we use the homotopy property of the fixed point index
and observe that it suffices to prove that there exists 62 > 0 with I'(¢), ) # ¢
for (¥,A) € G* x [1,2] and 0 < ||¢|, < d2. If not, there exists a sequence
(i, M) € UT x [1,2], with |||, — 0 as j — oo and T'(3?, M) = 7. We
define ¢§ = ¢2(%7, XY) and define u7(t) to be the Py-solution of equation (3.33)
of period ¢ with w/(t) = u(t; 47, M) for t > —79. By using Lemma 2.4 we see
that there exists C3 > 0 with

lw?]| == sup{|w?(t)| : te R} < Cs sup{|v’(t)| : —mo <t <0},

so ||| — 0 as j — oo. Lemma 3.4A implies that there is a constant N with
¢J < N for all j. If we define v7(t) = uw/(t)|[w’[|~! and use the Ascoli-Arzela
theorem as in the proof of equation (3.26), we find that by taking an appropriate
subsequence we can assume that v7(¢) — v(t) for all ¢, with uniform convergence

on compact ¢ intervals, M — X, and v(t) is a P»-solution of
' () = —Bu(t) — yu(t — 70).

This contradicts Lemma 3.2 and proves equation (3.34).

We are now almost in a position to use Lemma 3.2 to complete the proof of
Theorem 3.1. Let K and Sg : K — K be as in Lemma 3.2 and for § > 0 define
Bs={p€ K : ||| <6} and D ={p € K : |¢| < A}. For § sufficiently small,
Lemma 2.4 implies that S (Bs) C D C K, so the commutativity property of
the fixed point index implies that

(3.35) ix(Sp,y: Bs) = in(Sp,y, Bs)-
We claim that
iD(Sg,a,, Bs) =ig+ (T, Wh).
The proof is a further application of the commutativity property. Define the
extension map j : D — G by j() = ¢, where

6(s) for —1p<s<0,
¥(s) =
0(—T0) for - M S s < —T0-
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Define the restriction map 7 : G* — D by n(#) = 8|[—7,0]. For fixed § > 0
sufficiently small, we view I's as a map from W; to G*. We leave to the reader
the easy verification that

I'y =Tyjm.
Because nonzero fixed points of I'; must lie in U+ and correspond to P;-solutions
of equation (3.2), we know that O is the only fixed point of I'y in W;. The
commutativity property implies that

(3.36) ig+ (T2, Ws) = ig+ ((Tag)m, Ws) = ip(w(T2j), Bs).
However, it is not hard to see that on Bs,
7(T25) = Sp,v,
so equations (3.35) and (3.36) yield
(3.37) ig+ (T2, Ws) = i (Sp., Bs)-

If we now combine equations (3.31), (3.34) and (3.37) we see that for all suffi-
ciently small § > 0,

(338) ig+ (F07U+) =1- iK(Sﬂ.’Y:Bﬁ)'

Equation (3.38) and Lemma 3.2 give the assertions about the fixed point index
ig+(To,UT). In particular, if ig+(To,UT) = 1, we know that Ty has a fixed
point in U*, and Theorem 2.1 then implies that equation (3.1) has a Ps-solution
z with —B < z(t) < A for all ¢. O

REMARK 3.4. Modify the hypotheses of Theorem 3.1 by assuming that f
satisfies H2.3A instead of H2.3 and by selecting R as in the statement of H2.3A.
For this R define f : K(~B,A,M,R) — R by f(p) = f(y) if |f(¢)| < R,
and f(p) = £R if £f(¢) > R. By using H2.3A we can see that if z is a Py
solution of equation (3.1) and z|[—M,0] € Ut(-B, A, M, 1y, R), then z is also
a Py-solution of '(t) = f(x,). Furthermore, the definition of Ty is unchanged if
one uses finstea.d of f. Thus, for purposes of proving Theorem 3.1 under these
weaker hypotheses, it suffices (for this choice of R) to use f instead of f. An
examination of the proof of Theorem 3.1 shows that the same arguments remain
valid, so all conclusions of Theorem 3.1 remain true if we assume H2.3A instead
of H2.3 and take R as in H2.3A. This technical observation. is useful in treating

some examples.
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REMARK 3.5. It is of interest to treat versions of Theorem 3.1 in which one
considers parametrized families of functional differential equations

(3.39) z'(t) = f(z,A) fora<A<b,

and seeks global bifurcation theorems for the Ps-solutions of equation (3.39).
Results of this type were given by Nussbaum in [15] and [18]. Extensions of these
results and more detailed expositions can be found in Section 4 of [18],and in [19]
and [20]. By using the determination of the fixed point index given in Theorem
3.1, R.D.N. has obtained global bifurcation theorems which are applicable to
equations of the type treated in Theorem 3.1. Some care is necessary because
Ty may not extend continuously to G*. Details will be given in another paper.

A related bifurcation theorem for equation (0.2) has been given by P.P. [22].

4. Applications

In this section we shall illustrate how Theorem 3.1 can be applied to prove
existence of P;-solutions for a wide variety of examples.

We begin with a lemma concerning almost Fréchet differentiability at 0.
For M > 0, recall that X3 = C([—M,0]) is the Banach space of real-valued
continuous functions ¢ : [-M, 0] — R with the sup norm ||¢||. We shall denote
elements ¢ € R™*! by ¢ = (0, ¢ty -+ ,Cm)-

LEMMA 4.1. For 8y > 0, let
U={¢eR™!: |G| < for 0 <i<m}

and suppose that h : U — R -is continuously differentiable. For a given M > 0,
let B={p € Xy : |¢ll < 8o} and assume that, for 0 < ¢ < m, there is a
continuous, almost locally Lipschitzian map r; : B — [0, M]. (Recall Definition
1.1.) Define f: B — R by

F(@) = h(p(=10(9)), o(=T1(#)); - .- s 0(=Tm(p)))-
Then f is continuous, almost locally Lipschitzian and almost Fréchet differen-
tiable at 0. The almost Fréchet derivative L of f at 0 is given by
(4.1) L(p) = =) dip(—03),
=0
where —\; = (6h/8¢;)(0) and o; = r;(0).
PROOF. The fact that f is continuous and almost locally Lipschitzian follows

from Proposition 1.1.
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If we select 6, satisfying 0 < 6, < 8o, and set V = {p € Xy : ||¢| +lip(y) <
81}, the same argument as in Proposition 1.1 shows that there is a constant k
such that r;|V is Lipschitz with Lipschitz constant &k for 0 < i < m. Because h
is C! we know that

(42) 6+ 3 xpl-ri(o)| < ol
i=0

where
EE%I+ e 1p(e) = 0.

If0 < 6 €& and ||| + lip(p) < 8, we obtain that

(4.3)

;Ai(w(—n(w» — o(-ro))| < (o) 2: Mlirse) =70
<o) (32 Il el < (31 )

i=0 i=0
Combining (4.2) and (4.3) we see that for 0 < ||¢|| + lip(p) < 6,

<ol + k(S n) o

i=0

(44) #0)+ 3 Nip(-o

i=0
and equation (4.4) implies that f is almost Fréchet differentiable at 0 with almost
Fréchet derivative given by equation (4.1). g

We wish to apply Theorem 3.1 to equations of the form
2'(t) = h(z(t), 2(t — r1(z2)), 2(t — r2(22)), - - - L 2( — T (24))).

In order to do this, it is convenient to list various hypotheses on & and r;, with
1 < i £ m. Recall that for A, B and M positive reals, K(—B,A,M) = {p €
Xum : —B< ¢ < A}; and if 0 < 79 £ M, then Gt (-B, 4, M, 1) is given by
equation (2.1). .

H4.1. There are positive numbers A, B and M and continuous maps r; :
K(—B,A,M) — [0,M], for 1 < i < m, such that each r; is almost
locally Lipschitzian. Furthermore, there exists 79 € (0, M] such that
ri(e) = 1p for all p € K(—B, A, M) with ¢(0) =0and for 1 < i < m.

Note that 79 is independent of 7, for 1 < ¢ < m.



154 J. MALLET-PARET — R. D. NUussBAUM — P. PARASKEVOPOULOS

H4.2. There are positive numbers A and B, and a locally Lipschitzian func-
tion h : H(—B, A) — R, where
H(-B,A) :={C€R™! : —B<(; < Afor 0<i<m}.
If
K™+ = {¢ eR™! : ¢; > 0for 0 <i<m},
then h(¢) < 0 for all ¢ € H(—B, A) with ¢ € K™+ and h(¢) > 0 for
all ¢ € H(-B, A) with —¢ € K™, If g(u) := h(0,u,u,... ,u), then
ug(u) < 0 for all u € [—B, A],u #0.

H4.3. There is a positive number 7o, an open neighborhood U of 0 in RmM+!
and a continuously differentiable function » : U — R. If -\ =
(8h/8¢;)(0) for 0 < ¢ < m, and if

m
Bi=X and 7:=Z,\,;,

i=1

then 0 < 3 < -y and
(4.5) (v* = B%)* > v(B/,70)

where v(8/v,70) is the unique solution v with 7/2 < v1p < 7 of
cos(vmp) = —B/7.

Recall (see Lemma 3.1) that equation (4.5) is satisfied if and only if the
equation
z = —f — yexp(-To2)
has a complex solution z with Re(z) > 0.
If h and 7y, for 1 < i < m, satisfy H4.1 and H4.2, we define f : K(—B, A, M)
—-R by

(4.6) f() = h((0), p(—71(9)), (=72())s - - - , (—Tm(0)))-

THEOREM 4.1. Assume that b and 75, for 1 < i < m, satisfy H4.1, H4.2
and H4.3 and that f is given by equation (4.6). In addition assume that there
exists R > 0 such that for every ¢ € GT(—B, A, M, 75, R) = Gt (see (2.2)) the

equation

()= f(zz)  fort>0,
z|[—M, 0] = ¢,
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has a solution z(t) = z(t; ) with —B < z(t) < A and |z'(t)] < R for all
t>0. IfUY =UY(~B,A, M, 7, R) (see (2.9)) and Ty : Ut — G+ is defined
by equation (2.25), then ig+(To,U*) = 1, and there exists a slowly oscillating
periodic solution y satisfying y'(t) = f(y:), and —B < y(t) < A and ¥t <R
for all t.

PROOF. This follows immediately from the variant of Theorem 3.1 stated
in Remark 3.4. Lemma 4.1 implies that f satisfies H2.1 and that f is almost
Fréchet differentiable at 0 with almost Fréchet derivative L given by

L(p) = —Bp(0) — yp(~T0)-

(Here 3 and v are as in H4.3.) Hypothesis H2.2 follows directly from H4.1 and
H4.2, and we directly assume that f satisfies H2.3A. O

We need assumptions which directly imply that —B < z(t; ) < A for all
t > 0 and for all Lipschitzian ¢ € G*(—B, A, M, 7).

COROLLARY 4.1. Assume that h and r;, for 1 <i < m, satisfy H4.1, H4.2
and H4.3 and that f is given by equation (4.6). For every ¢ € K (—=B,A, M)
with p(0) = A, assume that f(p) < 0; and for every ¢ € K(—-B,A, M) with
©(0) = —B assume f(p) > 0. Then there ezists a slowly oscillating periodic
solution y with y'(t) = f(y) and —B < y(t) < A for all t.

PROOF. In the notation of Theorem 4.1, Theorem 1.3 implies that for all
¢ € K(—B, A, M) with lip(p) < oo, we have —~B < z(t; ) < A for all ¢ > 0.
Thus Corollary 4.1 follows immediately from Theorem 4.1. O

COROLLARY 4.2. Let A,B,M and 7o be positive reals with 19 < M. As-
sume that h 15 a function which satisfies H4.2 and H4.3. For 1 < i < m,
let p; : [-B,A] — [0,M] be a Lipschitzian map such that 2i(0) = 15. For
¢ € K(—B,A, M), define ri(p) = p;(¢(0)) and let f be defined by equation
(4.6). Assume that if ¢ € K(—B,A, M) and ¢(0) = A, then flp) < 0; and
if ¢ € K(-B,A,M) and ¢(0) = —B, then f(p) > 0. Then there erists a
Ps-solution y which satisfies

y'(t) = f(w)
t=h(y(), y(t ~ pr(y(®)), y(t — p2(¥(®))), - - ., y(t — pm(¥(t))),

and —B < y(t) < A for il t.

PRroOF. This follows immediately from Corollary 4.1. 0
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REMARK 4.1. If m = 1, Corollary 4.2 yields all the existence results for
Py-solutions which were obtained in [12] and slightly generalized in [13]. As
noted in the introduction, the arguments in [12] and [13] do not generalize to

give Corollary 4.2.

REMARK 4.2. Corollary 4.1 allows far more general functions r; than are
used in Corollary 4.2. We mention two examples, both of which follow imme-
diately from Corollary 4.1. For 1 < ¢ < m, suppose that n; is a nonnegative
integer and o;; is a real number satisfying 0 < gy; < M for 1 < j <n;. Assume
that

pi i [-B, A]MH = ﬁ[—B,A] — [0, M]
=0

is a Lipschitzian map and that p;(¢) = 7o Whenever { € R™*! and (o, the first
component of ¢, equals 0. For ¢ € K(—B, A, M) and 1 <4 < m, define r:() by

ri(©) = pi((0), (—0ir), p(—0iz);s - - - , P(—Tin,))-

Assume that h satisfies H4.2 and H4.3 and f is defined by equation (4.6). If
¢ € K(—B, A, M) and ¢(0) = A (respectively, ¢(0) = —B) assume that f(p) <
0 (respectively, f(p) > 0). Then there exists a Pp-solution  of z'(t) = f(zs)
satisfying —B < z(t) < A.

As a second example, suppose that, for 1 < ¢ < m, the function o; :
K(—B,A, M) — [0, M] is almost locally Lipschitzian and that o;(y) = 0 when-
ever ¢(0) = 0. Let p; be as in Corollary 4.2 and define r:(p) = pi((—ai(¥))).
Then r; satisfies H4.1, and if A satisfies H4.2 and H4.3 and f (given by equa-
tion (4.6)) satisfies the condition of Corollary 4.1, one obtains a Py-solution z of

' (t) = f(z4)-

As an immediate consequence of Corollary 4.1, we also obtain the following

result.

COROLLARY 4.3. Assume that h and r;, for 1 < i < m, satisfy H4.1, H4.2
and H4.3 and that f satisfies equation (4.6). For every { € [-B, A™*! such
that (o (the first component of ¢) equals A (respectively, equals —B) assume
that h(¢) < O (respectively, h(C) > 0). Then there exists a P,-solution y with
¥ (t) = f(y) and —B < y(t) < A for all t.

One may lose considerable information by using Corollary 4.3 instead of
Corollary 4.1. The next corollaries illustrate this point.
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COROLLARY 4.4. Let A, B, M and 1y be positive reals with T0 S M. Assume
that b : [-B, A] x [-B, A] — R satisfies H4.2 and H4.3 (with m = 1) and that

(4.7) sup{h(4,¢1) : —B< (1 <0} <0.

Letry : K(—B, A, M) — [0, M] be a continuous, almost locally Lipschitzian map.
Assume that r1(p) = 1o (respectively, r1(p) =0) for all p € K (—B, A, M) such
that ©(0) = O (respectively, ©(0) = —B). Then there ezists a slowly oscillating
periodic solution y which satisfies i (t) = h(y(t), y(t —r1(y:))) and —B < y(t) <
A for all t.

PROOF. We know that h and r; satisfy H4.1, H4.2 and H4.3. If p €
K(-B,A,M) and ¢(0) = A, equation (4.7) and the negative feedback condi-
tion on A imply that

flo) =h(4,¢) <0
If p € K(—B, A, M) and ¢(0) = —B, it follows that

f(¢) = h(-B,-B) >0,

and so Corollary 4.4 is a consequence of Corollary 4.1. O

REMARK 4.3. Corollary 4.4 can be easily applied to examples in which

h(Co,C1) = —Ado + Ag(¢a),

where (19(¢1) < 0 for all {; # 0, and where ¢/(0) = —k < —1, and \ is sufficiently
large. In this case A = sup{g(¢1) : —B < (1 < 0}. Details are left to the reader.

Our next corollary is meant as an illustrative example of Corollary 4.1.

COROLLARY 4.5. Let ¢;, for 1 < i < m, be positive numbers with ¢ < Cit1
for1<i<m. Let k;, for 1 <i< m, be positive reals such that

m—1 m
(4.8) D ki<l and Y k>l
i=1 i=1

Let A > 0 be such that
m 2 1/2
W(58) 1) >
i=1

-1
cosu=—(2ki) and T/2<v<mT.

where
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Define

m
B=c3! and A=c;} Zki'
i=1
Then there ezists a Pe-solution = of the equation

2(8) = —Az(t) — A Y kax(t — 1 — ciz(t)),
i=1
with —B < z(t) < A for all 1.

PROOF. Set M =1+ Y7 k; and 7o = 1 and define ; : K(—B, A, M) —
[0, M] by 7i(p) = 1+ cip(0), for 1 < i < m. One can see that H4.1 is satisfied.

In our case,

h{Go, Gty -+ 1 Gm) = =Alo = D Meii,

i=1
and h satisfies H4.2 and H4.3. If ¢ € K(—B, A, M) and f is given by equation
(4.8), then

F(9) = =2p(0) = XD kip(—1 — ci(0)).

i=1
If p(0) = —B = —c;;!, then using the definition of A gives

) =2 + 15! sto( 1- cip(0))

(k + 1)t - ch_l(, 1 ))

Thus f(y) > 0 for ¢(0) = —B provided

lcm+1—(mz1 )(Zk)— §>0.

i=1 =1

Using (4.8), we find that

m m—1
S>kn+1-Y ki=1-Y k20
i=1 i=1
If ©(0) = A, we find that
m
Flg) S -AA+ X kiB=0.
i=1

Thus the hypotheses of Corollary 4.1 are satisfied. O
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Corollary 4.1 is-obtained from Theorem 4.1 with the aid of Theorem 1.3.
Similarly, one can use Theorem 1.4 or Theorem 1.5 to obtain other versions of
Theorem 4.1. The arguments are straightforward.

There are less obvious corollaries of Theorem 3.1. We mention without proof
a result which has been obtained by one of the authors (R.D.N.) and concerns
equations of the form

(49) 2(t) == (alt - rs(z).

=

To describe the theorem, we need to list some assumptions on fj and ;.

H4.4. For 1 € j < m there are functions fj' : R — R which are locally
differentiable and C! on a neighborhood of 0. For all nonzero ¢ we
have (f;(¢) > 0. There exists v; < oo with

lim sup M = ;.
Koo €

If M >0and r: X3 =C([—M,0]) = R is a map we shall write

lim »~r = 7
oo TPV = 70

if, for every 6 > 0, there exists C = C(6) with
Ir(yp) — 00| < &

for all ¢ € Xy such that |p(0)| > C(6).

H4.5. For some positive M, and for 1 < j < m, there are continuous, almost
locally Lipschitzian maps r; : Xar — [0, M]. There exist numbers
70 > 0 and g9 > 0 (independent of j) such that ri(p) = 7o for all
@ € X with ¢(0) = 0 and such that

lim  ri(p) = op.
(oo 1 (#) = 0

If pj : R — [0, M], for 1 < j < m, are locally Lipschitzian maps such that
pO=n wd  lm o) =00

for each j, and if one defines ;(p) = p;((0)), then H4.5 is obviously satisfied.
However, one can easily construct much more complicated examples.
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H4.6. If v;, 0p and 7o are as given in H4.4 and H4.5, then

o0 1 <3/2 and 0y f;(0)>n/2.
j=1

Jj=1

COROLLARY 4.6. Assume that hypotheses H4.4, H4.5 and H4.6 are satisfied.

Then there erists a slowly oscillating periodic solution z of equation (4.9).

REMARK 4.4. Corollary 4.6 generalizes a result by Yang Kuang and H. L.
Smith in {9]. Smith and Kuang consider equations of the form

(4.10) z'(t) = —f(x(t - p(=(%))))-

They assume that f : R — R is locally Lipschitzian and C! near 0 and that
uf(u) > 0 for all nonzero u. It is assumed that

sup{u" f(u) : u e R—{0}} =7 < o0
The map p: R — [0,00) is C? and satisfies

p(0)=7>0 and Iulli_r_)noo o{u) = op.
Furthermore, it is assumed that
(4.11) |u1|ill>loo |up’(w)| = 0.

Finally, it is supposed that yog < 3/2 and 70f'(0) > /2. Under these assump-
tions, Kuang and Smith prove the existence of a Pz-solution of (4.10).

Corollary 4.6 is more general in allowing multiple time lags. However, even
for one time lag, Corollary 4.6 makes assumptions on the limit of u™'f(u) as
|u| — oo, rather than on the supremum of this quantity for all u € R. Also, no
assumption like equation (4.11) is needed.

Even for simple examples like
' (t) = —kz(t — p(z(t))),
_u2
plu)=(1+e"*)/2,
it is unlikely that Corollary 4.6 or the Kuang-Smith result [9] is best possible.

Corollary 4.6 implies existence of Pp-solutions of equation (4.12) for /2 < k < 3.
However, numerical studies (see [9]) suggest existence of P-solutions for a much

(4.12)

larger range of k > 7 /2.
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