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0. Introduction

Let M be a compact smooth Riemannian manifold of dimension m with
smooth boundary M. Let V be a smooth unitary vector bundle over M and let
P be a second order partial differential operator on C°°(V') with positive definite
leading symbol. We impose suitable boundary conditions B for P and assume
Pg is strongly elliptic and self-adjoint. Let f € C*°(V). To study the short time
behavior of the fundamental solution to the heat equation e~*P5 f, we introduce
an auxiliary smooth test function f € C®(V) and define

(0.1) B(F,F. P,B)(t) = /M (e7tP2 £, F) da.

Standard elliptic methods, see for example the discussion in [9, Lemma 1.3] show
that as ¢ | 0% there is an asymptotic series of the form

(0.2) B(f, F. P.B)(t) ~ Y Bu(f, f, P, BY™2.

n=0
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We say that P is an operator of Laplace type if the leading symbol of P is scalar
and is given by the metric tensor. This means that locally P has the form

(0.3) P = —(¢"*Iy 8,0, +a*8, +b)

where a” and b are endomorphisms of V; we adopt the Einstein convention and
sum over repeated indices. The (3, have been computed for n < 3 with mixed
boundary conditions [12], for n < 4 with Dirichlet boundary conditions (8], [9],
[12], and for n < 6 with Neumann boundary conditions [8], [12]. We also refer
to related work [5], [6], [7], [19].

These invariants have not been studied previously for operators which are
not of Laplace type. In this paper, we will study an operator whose leading
symbol is not scalar; such operators are often said to be “non-minimal” in the
physics literature. Let AP M be the bundle of p-forms; AIM =T*M. Let

dp : C°APM — C*®°APY1 M, and

(0.4)
8, : C®APH M — C°APM

be exterior differentiation d, and the adjoint, interior differentiation 6p. Let A
and B be positive constants, let £ be an endomorphism of 7* M, and let

(0.5) D := Adybo + Bbrdy — E on C*T*M.

Then the leading symbol of D is positive definite. We impose absolute (B%),
relative (B7), or Dirichlet (BP) boundary conditions; Dy is strongly elliptic and
self-adjoint, see [15, S4.6] for details. We note that D is an operator of Laplace
type only if A= B.

Operators of this form where E is a linear combination of the Ricci tensor p
and its trace, the scalar curvature 7, arise in many contexts. In mathematical
physics, they are used in the study of quantum gravity and gauge fields in curved
space-time [3], [4], [13], [16], [20] and also in classical continuum mechanics {2],
[11], [18]. In differential geometry, we refer to [10] for an application in conformal
geometry, to [1] for an application in quasi-conformal geometry, and to [14] for
an application related to conformal Killing vector fields.

In this paper, we will compute §,(D, B) forn =0,1,2. Let w,w € C®T*M.

THEOREM 0.1 (absolute boundary conditions).
(a) Bo(w,w, D, B*) = (w-@)[M].

(b) Bi(w,d, D, B%) = =21~ 1/2 A2 (W@ ) [OM].
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(¢) Ba(w,@,D,B*) = —(Abow - 6o@ + Bd\w - d1& — Ew - @) [M]
+ A(_wmaa:a - wa:amm - wm;mam
— WmWmm + %Laawmﬁm)[c')M ]

THEOREM 0.2 (relative boundary conditions).

(8) Bo(w,w,D,B") = (w-@)[M].

(b) Bi(w,@, D, B") = 27~ Y2BY2(w,&,)[0M).

(c) Ba(w,,D,B") = —(Abow - 8o + Bdyw - d1& — Ew - &)[M]

+ B(_ Wa:aWm — Wma:q — wa.;maa
- wawa;m + La.bwbaa + %Laawbmb)[aM].

Our results for Dirichlet boundary conditions are incomplete; there is one
undetermined coefficient.

THEOREM 0.3 (Dirichlet boundary conditions).
(a) Bo(w,w,D,BP) = (w-@)[M].
(b) Bi(w,@, D, BP) = —2r~Y2(AY20,,8m + BY w,,)[0M].

(¢) B2(w,w,D,BP) = —(Abpw - 6o@ + Bdyw - dy&> — Ew - w)[M]
+(ca(A, B)(wa:q @m + WmTa:a)
—A(WmmWm + Wmim@m) — B(Wa;m, + Waldg;m)
+3ALsa Wmm + BLapws@a + 3BLgqwys)[0M].

In Section 1, we establish notation and recall some previous results concern-
ing operators of Laplace type. In Section 2, we derive the functorial properties of
these invariants which we shall need and complete the proof. It is a pleasant task
to thank M. van den Berg, S. Desjardins, and B. Orsted for many stimulating

conversations on this subject.

1. Notational conventions and analytic results

We use Greek indices v, g to index local coordinate frames 8, and dz” for
the tangent T'M and cotangent T*M bundles. We use Roman indices i, j to
index local orthonormal frames {e;} for these bundles. These indices range from
1 through m. Let V¢ be the Levi-Civita connection on M. Let ext!(-) be left
exterior multiplication and let int!(-) be the dual, left interior multiplication;

these are covariant constant, i.e.

(1.1) Viext' =0 and VYint! = 0.
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We express exterior differentiation d and interior differentiation 6, the formal

adjoint, in the form:
(1.2) d = ext'(e;)V¢, and 6= —int!(e;)VY..

Near the boundary, let z = (y,7) for y = (3,... ,y™ ') be local coordinates
so that r is the geodesic distance to the boundary and so the curves z(r) = (y,r)
are unit speed geodesics which are perpendicular to the boundary when r = Q.
Greek indices ¢, 3 range from 1 through m — 1 and index the coordinate frames
for TOM and T*OM. We choose an orthonormal frame {e;} so that e,, = 9, is
the inward unit geodesic normal; Roman indices a, b range from 1 through m —1
and index the corresponding frame for the tangent space of the boundary. The
second fundamental form is defined on the boundary of M and measures the
extent to which the boundary fails to be totally geodesic:

(1.3) Loy = 9(V2 b, em).
Let dz and dy be the Riemannian measures on M and M. If ¢ € C°°(M) and
if ¢ € C®(OM), let
(14) yiM = [ p@)de and som= [ pwd
M oM

Let “” be multiple covariant differentiation with respect to the Levi-Civita
connection of M. Similarly let *“” denote multiple tangential covariant differen-
tiation on the boundary of M with respect to the Levi-Civita connection of the
boundary. Since the normal index is treated differently, “:” and “” differ by the
second fundamental form.

The following technical lemma is immediate so we omit the proof.

LEMMA 1.1.
(a) Let w =w;e; € C°T*M. Then

Whia = Whia — LapWm and  Wmia = Wm:a + Lopwp.
(b) Let w, € C®APM. Then
(dpwp - Wpt1 — wp - Spwp1)[M] = —{wp - intl(em)wp+1}[6M].
(¢) Let w,@ € C°T*M. Then
—(Aw - B)[M] = — {(bow - bo) + (diw - d1@) } [ M]

+ (—wa:awm — WnWg:e — wm;mwm

- wa;maa + Laawmam + LabwbcTJa)[BM].
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Let V be a smooth vector bundle over M which is equipped with a smooth
pointwise positive definite inner product -. We assume given an orthogonal
splitting
(1.5) Vlem=Vtev-.

Extend the splitting to be covariant constant on the normal geodesic rays near
the boundary. Let II* be the projections of V on V*. Assume given an auxiliary
endomorphism S of V*+|gar; extend S to be zero on V~|gp. We define mixed

boundary conditions B by
(1.6) Bf = I*(fym + Sf)loa & 117 (£)lons-

Let P be a second order partial differential operator on C*°(V) with positive
definite leading symbol. Let

(1.7) domain(Pg) := {f € C®°(M) : Bf =0}

We assume Pg is self-adjoint and elliptic as discussed in [15, S11]; this is true
for all the operators we shall be considering.

The heat content asymptotics have been computed for operators of Laplace
type. Let D := —(f,;;+Ef) be a self-adjoint operator of Laplace type on C*®(V).

THEOREM 1.2 (Desjardins-Gilkey [12]).
(a) Bo(f,f,D,B) = (f - HM].
(b) £r(f,f, D,B) = ~2x~/*(T~f - I~ f)[oM].
(¢) Balf, f, D, B) = ~(Df - H)[M] + {(IT* fira + ST ) - F
+3LoJI~f - T~ f I~ f - TI~ . }[OM].
Absolute and relative boundary conditions appear in index theory. Let
(1.8) w= frdy’ + frmdy’ Adr € C®AM.

We take Neumann boundary conditions on the tangential component and Dirich-
let boundary conditions on the normal component to define

(1.9) B®w = (8, fr)dy’ lom ® f1,mdy’ lome € CA(OM) © CPA(OM)

so these are boundary conditions of the sort we have been discussing. Let % be
the Hodge operator. Relative boundary conditions are defined dually by

(1.10) B i=%B%x.
We denote the kernel and range of an operator by

(1.11) MN() and R().
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Let H?(-) denote the singular cohomology groups. The Hodge-de Rham theorem

gives isomorphisms
(1.12) MN(Apps) ~ HP(M) and N(Appr) ~ HP(M;dM)

so these boundary conditions are important topologically speaking. In this set-
ting, the Hodge * operator defines Poincaré duality:

(1.13) *: N(Ap5e) ~ N(Dmp,pr)-

EXAMPLE 1.1. Absolute boundary conditions correspond to Neumann and
relative boundary conditions correspond to Dirichlet boundary conditions on M.
If we assume M is connected, then

(1.14) N(Agps)=1-C and D(Agpr) =0.

We use Theorem 1.2 to compute the heat content asymptotics for A;.

LEMMA 1.3.

(a') ﬂl(w7[‘;)A176a) —27r_1/2(wm63m)[3M]

(b) Bo(w,@, A1, B%) = —(Spw - 6o + drw - d1@)[M]

+ (_wa:aam - w’mwa:a - wm;mwm

— Winmsm + 5 LaawWm@m)[OM].
() Bi(w,@,A1,B7)
(d) Ba(w,@, A1, B7) = —(bow - 8ol + dyw - dr)[M]

+ (_wa:a,ajm - wma;a:a, - wa;m‘:}a

— wawa;m + Lapwpia + %Laawbwb)[aM].

—2m~ Y2 (w,@,)[0M].

(&) Bi(w,@,A1,BP) = =212 (weBq + wmiim) [OM].
(f) Bo(w, @, A1, BP) = —(ow - 60@ + diw - d10)[OM]

+(_‘wa:aam - wmga:a - w‘i;mmi - wmai;m
—~ —~— 1 -~
+ gL,mwmwm + Lapwhda + 5 Laewss) [OM].

PrOOF. We use Theorem 1.2. Let w = weey + Wmem- Then
(1.15) B%w = {(wa;m — Labws)€a + Wmem}|am
so ITtw = w,e, and Seq = —Lapep. Then (a) is immediate and

(1.16) ﬂz(w,m, Aq, Ba') =— (Alw . CJ) [M] + {(wa;m — Labwb)ﬁa

+ %mem&m — Wn@m;m) HOM];
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(b) follows from Lemma 1.1(c). Similarly,

(1'17) Bw= {waea + (‘Um;m - Laa.wm)em}'BM
so [Tt (w) = wmem, and Se, = —Lgqaey. Then (c) is immediate and
(1.18)

Pa(w, &, A1, BT) = = (Aw - &) [M] + {(wmim ~ Laawm)@m
+ 3 Laaws@s — Wolda;m }[OM];
(d) again follows from Lemma 1.1(c). Finally,
(1.19) BPw = {waeq + wmemHonr,
so It = 0. Then (e) is immediate and

(120) ﬂ2(wvaa AlvBr) = _(Alw ° ‘;)[M] + {%Laawi‘:}i - Wiwi;m}[aM].

2. Functorial properties

We begin with some useful, if elementary, observations. Throughout this

section, let
(2.1) D := Adpéy + Bbyd1 — E on C*T*M.
Let w = w;e; € C°T*M. Let B € {B,B2,B"}.
LEMMA 2.1.
(a) Bo(w, &, D, B) = (w - &)[M].
(b) Bn(w,&,D,B) = B,(w,w, D, B).
(c) If Bw =0, then B,(w,&, D,B) = —(2/n)Bn-2(Dw, &, D, B).
(d) IfOM =0, then B2n—1 = 0 and Bon(w,&, D, B) = (-1)"(D"w-&)[M]/n!.
PROOF. Let {@,,),} be a spectral resolution of Dgs. Let
(2.2) Yo =(w:$)[M] and ¥, = (T ¢,)[M]
be the Fourier coefficients. Then

(2.3) Bw,3,D,B)(t) = e M7,

We set t = 0 to prove (a) by checking
(2.4) Bo(w,@,D,B) =Y 7.7, = (w-&)[M].
v
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Since (2.3) is symmetric, (b) follows. If w satisfies the boundary conditions, then

(2'5) (Dw . ¢u)[M] = (w : D¢u)[M] = Au(“‘) ' ¢V)[M]
Consequently, (Dw - ¢,)[M] = A7, s0
(26) 8,(w, &, D, B)(t) = — 3 he M m 7,

= — f(Dw,w, D, B)(t).
We equate terms in the asymptotic expansions to prove (c). If the boundary is
empty, all functions satisfy the boundary conditions. We may therefore express
(2.7) Bn(w,@, D, B) = —(2/n)Bn-2(Dw, &, D,B).

(e) now follows by induction since f_1 =0 and fo = (w-@)[M). O

The following lemma will enable us to dimension shift. We make the following
assumptions. Let M = M; x Mz be a Riemannian product where OM; = 0.

Decompose
(2.8) T*M =T*M; & T* M,.
Let w,@ € C®°T*M; be independent of the point in M. Let

E= (El 0 for E; € C*®°End(T*M;),
0 E

(2.9) D; = Addo + Bé1dy — By on C®T* M,
D = Adyby + Bé1rd1 — E on C*T*M.
LEMMA 2.2. Bn(w,@, D, B) = vol(M1)fn(w, @, D2, B).
PROOF. Let {¢,, .} be a spectral resolution of Dy 5 on C°T*M,. Then

B¢, = 0 and D¢, = A, ¢, since the auxiliary coordinates play no role. We
expand w =Y., V¢ and & = ), ¥ ¢, Then

210) Do = ¢ Prno = T

v

We note (¢, - ¢,.)[M] = vol(M1)(¢, - ¢.)[Mz]. This yields the identity
(2.11) B(w,,D,B)(t) = vol(M1) Y e~?v¢, &, = vol(M1)B(w, @, D2, B)(t)-

a

The interior integrands are not determined by Lemma 2.1(d) as we can al-
ways integrate by parts at the cost of introducing additional boundary terms.
The boundary integrands are also not uniquely determined; we can integrate by
parts tangentially to exchange tangential derivatives in the boundary integrands.
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The local formulae for the boundary integrands are built universally and poly-
nomially from the metric tensor, its inverse, the covariant derivatives of the Wi,
the covariant derivatives of the curvature tensor R, the covariant derivatives of
the endomorphism E, and the tangential covariant derivatives of the second fun-
damental form L. By Weyl’s work [21], these polynomials can be formed using
only tensor products and contraction of tensor arguments (indices); this yields
the Weyl spanning set. The structure group is the orthogonal group O(m — 1)
and the normal direction plays a distinguished role.

LEMMA 2.3. There egist constants c; = c;(A, B, B) independent of m so that
(a) 51 (w,&, D, B) = (clwaﬁa + czwmﬁm)[aM].
(b) ﬂg(w,ﬁ, D, B) = —{A(S()w . 60& + Bdlw . dlﬁ —FEw- 5}[M]
+ {63 (w,,;m:TJa + wawa;m) +c4 (wm&a:a + wa:aam)
+c5 (wm;mam + wmwm;m) + CGLabwaab
+ crLoewp@p + CsLaamem}[aM] .

PROOF. We use Lemma 2.1(d) to see B does not invclve an interior integral
and integrate by parts to express the interior integral for 8; in the form given.
We use dimensional analysis (see for example [9, Lemma 2.3]) to see that if A is
a monomial appearing in the boundary integral for 3, of degree (kr,kg, kL) in
(R, E, L) and if ky explicit covariant derivatives appear in A, then

(2.12) 2kp +2kp + kp +ky =n— 1.

By Lemma 2.1(b), 8, is symmetric. We write down a suitable basis for the
space of boundary invariants to complete the proof; we use Lemma 2.2 to see
the constants involved are dimension free. |

We will complete the proof of Theorems 0.1, 0.2, and 0.3 by evaluating the
constants ¢; which appear in Lemma 2.3. Since these constants do not involve
the endomorphism F, we set E = 0 henceforth. There are useful shuffle formulas
if B € {B®, B"}; this is the feature of these boundary conditions that makes them
so tractible and important.

LEMMA 2.4. Let D = Adyby + Bé1d;.

(a) Let f € C°(M) and let w € C®°T*M. Then

ﬂn(dOfa w, Da Ba) = An/2ﬂn(d0f7 w, Al’ Ba)-
(b) Let w € C®T*M and let & € C°A2M. Then
Bn(w,6,2,D,B") = B"/?3,(w,6,9,A,,B").
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PROOF. We use the Hodge decomposition theorem to decompose
(2.13) L2T*M = Rg(de) ® Ru(61) @ N(A1,8)

with B € {B%, B"}; we are using at this point the observation that if ¢ is an
eigenfunction of A; which satisfies absolute or relative boundary conditions, then
both dobop and 6:d;¢ are eigenfunctions of A; satisfying the given boundary
conditions; this fails for Dirichlet boundary conditions.

We use (2.13) to find a spectral resolution for A; g of the form

(2.14) {91 dih<icoos {5, i }1<i<oos {Px, 0} 1<k<ko
where kg = dim 9(A; g) and:

(2.15) O<A <L, dobod; = Aidi, and B¢; =0,
(2.16) O<pm<pa<..., &idi;=p¥;, and By; =0,
(2.17) d1hk = 0, _50hk = 0, and Bhk =0.

Then (2.14) also gives the spectral resolution of Dg with appropriately modified
eigenvalues {A);, Bpy;, 0}.

Suppose first B = B2. Let ¥ € {%;,hx} so §oyp = 0. Since By = 0, the
normal component ¥,,,)ap = 0. By Lemma 1.1(b),

(2.18) (dof - 9)[M] = ( - 0%)[M] = (f - ¥m)[0M] = 0.

Consequently, only the Fourier coefficients of dof relative to the ¢; enter so that
e *P(dof) = Z e~ A% {(dof - ¢:)[M]} i,

(2:19) B(dof,0, D, B2)(t) = f(dofy, Ay, BO)(AL),  and
Bn(dof,w, D, B%) = A™*B(do f,w, A1, B).

Next suppose B = B". Let ¢ € {@;, hx} so that di¢ = 0. Since B"¢ =0, the
tangential component @qlsm = 0. Expand

(2.20) & = 1 ®opeq A€y + Pamea A €m; int! (€)@ = —®ameaq.

By Lemma 1.1(b),

(2.21) (¢ 6:2)[M] = (di1¢- ®)[M] — ($a®arm)[OM] = 0.

Consequently, only the Fourier coefficients of 6, relative to the 1; enter so that
e t0(5:8) = Y e tBH {(6:2 - ;) [M]}obj,

(2.22) B(6:®,w, D, BT)(t) = B(6:8,w, A1, B7)(Bt),
Bn(6:®,w,D,B7) = B"?(3,(6:®,w, A1, B7).
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O

If only the normal variable enters, the equations decouple. Let T be the

(m — 1)-dimensional torus with periodic parameters (y',...,3™"!). Give M :=
T x [0, 7] the warped product metric:

(2.23) ds? := gap(r)dy® o dy® + dr o dr.

Let w = w(r) and & = &(r) only depend on the normal parameter. Decompose

w=w? ®w? into tangential and normal components where

N,

(2.24) wl :=w,e, and WV i=wpmem.

LEMMA 2.5. B,(w,@, D, B) = A™?8,(w™,&",A,, B)
+ B8, (wT,&T, Ay, B).

PRrOOF. We decompose
(2.25) Dw = Bb1di (wT) @ Adpbp(w®), Bw=BwT @ BuV.

Since 61d;(w”) has no normal component and dofow? has no tangential compo-
nent, the action of e~*2#® on w decouples so that

(2.26) e~tD8 — g—tBA1 T o —tAAy N

O

We can now complete the proof of Theorems 0.1, 0.2, and 0.3; we use Lemma
2.1 to compute 3. Adopt the notation of Lemma 2.5. Since w and & depend only
on the normal coordinate, wq.qWm = Winie.q = 0. This is the only additional
relationship, however, which is imposed on the invariants of Lemma 2.3 and
consequently ¢; for ¢ # 4 is determined by Lemmas 1.3 and 2.5.

We apply Lemma 2.4 to express 8,(dof,&,D,B%) and $,(6:9,, D, B") in
terms of G3,(-,&,A1,-). This determines the unknown coefficient ¢, for these
two boundary conditions; there is no such argument available to determine cq in
Theorem 0.3(c). This completes the proof of all the assertions in this paper.

REFERENCES

[1] L. AHLFORS, Conditions for quasiconformal deformations in several variables, Contri-
butions to Analysis, a collection of papers dedicated to L. Bers, Academic Press, New
York, 1976; Quasiconformal deformations and mappings in R*, J. Analyse Math. 30,
74-97.

[2] H. P. BALTES AND E. R. HILF, Spectra of Finite Systems, Bibliographisches Institut,
‘Mannheim, 1976.

[3] N. H. BARTH AND S. M. CHRISTENSEN, Quantizing fourth-order gravity theories: the
functional integral, Phys. Rev. D 28 (1983), 1876-1893.



80
4]
(8]
(6]
7
(8]
(9]

(10]

11]

(12]

(13]
(14]

(15]

(16]

(17]

(18]

19]

20]

[21]

P. B. GILKEY

A. O. BARVINSKY AND G. A. VILKOVISKY, The generalized Schwinger-De Witt technique
in gauge theories and quantum gravity, Phys. Rep. 119 (1985), 1-74.

M. VAN DEN BERG, Heat equation on a hemisphere, Proc. of the Roy. Soc. Edinburgh
118A (1991), 5-12.

M. vaN DEN BErc AND E. B. Davigs, Heat flow out of regions in R™, Math. Z. 202
(1989), 463—482.

M. VAN DEN BERG AND J.-F. LE GALL, Mean curvature and the heat equation, preprint.
M. vaN DEN BERG, S. DESJARDINS, AND P. GILKEY, Functorality and heat content
asymptotics for operators of Laplace type, Topolog. Methods in Nonlinear Anal. (to
appear).

M. VAN DEN BERG AND P. GILKEY, Heat content asymptotics of a Riemannian manifold
with boundary, J. Funct. Anal. (to appear).

T. BRANSON CONFORMALLY GOVARIANT EQUATIONS ON DIFFERENTIAL FORMS CoMM
ix PDE, Comm. in Partial Differential Equations 7 (1982), 393-431; see also, Math.
Scand. 57 (1985), 293-345.

V. S. BULDYREV AND V. E. NoMoFILOV, Asymptotic solutions of an elliptic equation
system on a Riemannian manifold concentrated in the vicinity of a phase trajectory, J.
Phys. A 14 (1981), 1577-1585.

S. DESJIARDINS AND P. GILKEY, Heat content asymptotics for operators of Laplace type
with Neumann boundary conditions, Math. Z. (to appear).

R. ENDO, Prog. Theor. Phys. 71 (1984), 1366-1384.

J. GasqQui AND H. GoLDscHMIDT, Déformations Infinitésimales des Structures Con-
formes Plates, Birkhéuser, 1984.

P. GILKEY, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theo-
rem, 2nd ed., CRC Press.

V. P. GusyNIN, E. V. GORBAR, AND V. V. ROMANKOV, Heat kernel ezpansions for
nonminimal differential operators and manifolds with torsion, Nuclear Phys. B 362
(1991), 449-471.

G. KENNEDY, R. CRITCHLEY, AND J. S. DOWKER,'Fim'te temperature field theory with
boundaries: stress tensor and surface action renormalization, Ann. Physics 125 (1980),
346-400.

V. D. KUPRADZE, Potential Methods in the Theory of Elasticity, Israel Program of
Scientific Translation, Jerusalem, 1965.

D. M. McAvITY, Heat kernel asymptotics for mized boundary conditions, Class. Quant.
Grav. 9 (1992); see also, Surface energy from heat content asymptotics, J. Phys. A: Math.
Gen. 26 (1993), 823-830.

L. PARKER AND D. J. ToMs, Renormalization-group analysis of grand unified theories
in curved spacetime, Phys. Rev. D 29 (1984), 1584-1608.

H. WEYL, The Classical Groups, Princeton University Press, 1946.

Manuscript received July 15, 1993

PETER B. GILKEY
Department of Mathematics
University of Oregon
Eugene, Oregon 97403, USA

E-mail address: gilkey@math.uoregon.edu

TMNA : VOLUME 3 — 1994 - N°1



