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ON NIRENBERG’S PROBLEM AND RELATED TOPICS

YANYAN L1t

Dedicated to Jean Leray

0. Introduction

Let (8™, go) be the standard n-sphere. The following question was raised by
Professor L. Nirenberg. Which function K (z) on S? is the Gauss curvature of a
metric g on S? conformally equivalent to go? Naturally, one may ask a similar
question in higher dimensional cases, namely, which function K(z) on S” is the
scalar curvature of a metric g on 8™ conformally equivalent to go? In [20]-[22]
we have given some existence results on the Nirenberg problem for n > 4 which
are quite natural extensions of previous results of A. Chang & P. Yang ([7]) and
A. Bahri & J. M. Coron ([2]) for n = 2,3. A related critical exponent equation in
R™ has also been studied and some existence results have been given in [17]-{22].
In this note we summarize the main results in [17]-[22] and outline the proofs.
For n = 2, if we write g = e2”gg, the Nirenberg problem is equivalent to finding
a function v on 82 which satisfies the equation

(0.1) —Agv + 1= K(z)e*,
where A4, denotes the Laplace-Beltrami operator associated with the metric gy.
For n > 3, if we write g = v¥/("~2gq, the problem is equivalent to finding a
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positive function v on S™ which satisfies the equation
(0.2) —Agyv + e(n)Rov = c(n) K (z)p+D/ ("2,

where c(n) = (n — 2)/(4(n — 1)), Ry = n(n — 1). We observe that a necessary
condition for solving the problem is that K has to be positive somewhere. For
n = 2 this follows from the Gauss-Bonnet theorem, while for n > 3, it follows
from multiplying (0.2) by v and integrating by parts on S™. It turns out that
there is at least one more obstruction (Kazdan-Warner obstruction, see [15])
to solving the problem which is obtained by exploiting the centered dilation
conformal transformations of 8™. See also [3] for more obstructions in the same
spirit. In particular, the problem is not solvable if 8™ is embedded as usual in
R™*! and K € C*(S™) is strictly monotone in one direction. For instance, there
is no solution for K(x) = z™*! + 2. There has been much work devoted to the
existence and multiplicity results, trying to understand under what conditions
(0.2) is solvable. For details, see the introduction and references in [21]. We will
only recall a few results in the following:

THEOREM (J. Moser [23]). Let K € C*(S?) be positive somewhere and
K(—z) = K(z) for all x € S?. Then, there is at least one solution to (0.1).

THEOREM (A. Chang & P. Yang [7] for n = 2, A. Bahri & J. M. Coron {2] for
n=3). Forn = 2,3, let K € C?(S™) be positive and have only nondegenerate
critical points z1,... , Ty of Morse index ky,... ,ky,. Assume further that

—Ag K(z;) #0, Vi=1,...,m.
If Z—A,,o K(a:,-)>0(_1)ki # (—1)", then there is at least one solution to the Niren-

berg problem.

THEOREM (A. Chang & P. Yang [8]; we only state a weaker form). For
n > 4, let K € C%(S™) be positive and have only nondegenerate critical points
Z1,... ,Ty of Morse index ki,... ,ky. Assume further that

AL K(z)#0, Vi=1,...,m.
If Z—Agnk(zi)w(_l)ki # (—1)", and || K —1]|eo(sn) < £(n) (where e(n) is some

small positive number depending only on n), then there is at least one positive
solution to (0.2).
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THEOREM (J. F. Escobar & R. Schoen [13]; we only state a special case). For
n > 3, let K € C""%(8™) be positive somewhere and K(—z) = K(z) for all
z € S™. Assume further that there is ot least one mazimum point of K at which
oll partial derivatives of K of order less than or equal to n — 2 vanish. Then
there is at least one positive solution to (0.2).

The following question is very natural and has attracted much attention.

QUESTION. Are the results of A. Chang & P. Yang and of A. Bahri & J. M.
Coron for n = 2,3 true also for n > 47

The answer to the above question is still unknown. In [21] we have established
the following result. (More general results are given in [21]-[22].)

THEOREM 0.1 ([21]). For n > 3, suppose that K € C*(S") is some positive
function such that for any critical point qy of K, there ezists some real number
B = Blg) € (n — 2,n) such that in some geodesic normal eoordinate system
centered at qq,

K(y) = K(0)+ Y _a;ly;|° + R(y),

j=1
where a; = aj(go) #0, 37, a; #0, R(y) is CWPI-11 near 0 and satisfies
lim Y |V*R(y)lly| P = 0.
WI=0 o <jarzisl
Suppose also that
>, (—1)ie) 5 (—1)m,
V0 K(90)=0,327_, 2;(q0)<0

where
i(go0) = #{aj(g0) | aj(g0) <0,1<j<n}.
Then there is ot least one positive solution to (0.2).

A key step in establishing Theorem 0.1 is the following a priori estimates in
L°°-norm for positive solutions of (0.2).

THEOREM 0.2 ([21]). Under the hypotheses of Theorem 0.1, for any € > 0,
there exists some positive constant C(K,n,€) such that for alle < p < 1, any
positive solution v of (0.2) with K replaced by K,, = uK + (1 — p)Ry satisfies

C(K,n,e) ! <v(q) < C(K,n,e), Vqe8™
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We have also established in [19] and [21] the following result:

THEOREM 0.3 ([19], [21]). Forn > 3, suppose that K € C°(S™) and satisfies
K(zg) > 0 for some zg € 8™. Then, for any € > 0 and any integers k > 1 and
m > 2, there exists K¢ k,m € CO(S™) with ||Kekm — Kllcogny <€, Kegom = K
in S™ \ Bc(zo), such that, for each 2 <1 < m, the equation

~Agyv + c(n)Rov = ¢(n) Ke g m )0+ (n=2)

has at least k positive solutions with [ bumps.

COROLLARY 0.1. The scalar curvature functions of metrics conformal to gg

are dense in CO(S™).

REMARK 0.1. See [19] for the precise meaning of “! bumps” in the statement
of Theorem 0.3. Roughly speaking, we say that a solution has ! bumps if most

of its mass is concentrated in [ disjoint small balls.

Next, we look at a related problem,

(0.3)

{ —Au = K(2)ulrt2/(»=2)  in R",
u > 0.

There has been much work on (0.3). See the introduction and references in
[21]. We point out that if both K and u behave well at infinity, then (0.3) is
equivalent to (0.2) after making a stereographic projection. Let E be the closure
of C®(R™) (n > 3) (set of all smooth functions with compact support) under the
norm |jullg = (fgn |Vu|2)1/ %, E is clearly a Hilbert space. In [17] we established
the following result:

THEOREM 0.4 ([17]). Suppose that K € C*(R®) and satisfies

(i) For some positive constant T > 0, K(x1 + €T, z,73) = K(21, 72, T3)
for all integers £ and x = (1, x2,73) € R3.
(ii) Kmax = maxycgs K(z) > 0 is achieved and

K_l(Kmax) ={z eR" | K(z) = Kmax}

has at least one bounded connected component, denoted by C.
Then (0.3) has infinitely many solutions in E modulo translations by T in the

x1 variable.

Theorem 0.4 has been extended to higher dimensional cases under some

additional flatness hypothesis on K near C.
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THEOREM 0.5 ([19], [21]). For n > 4. we suppose that K € C™" 4(R") and
satisfies
(1) For some positive constant T > 0, K(z1 + 4T, 2,,... En) = K(z1, x5,
-, Tn) for all integers £ and x = (z, ... ,Zn) € R™,
(i) Kmax = maxpepe K(z) > 0 is achieved and K (Kmax) = {z €
R"| K(z) = Kmax} has at least one bounded connected component, de-
noted by C.

Further assume that for some constants B>n—2andC,

(0.4) [0°K(y)| < C|VEK(y)|B-1eD/B-1) " for 4 near C and 2 <la|<n-2.
Then (0.3) has infinitely many solutions in E modulo translations by T in the
1 variable.

COROLLARY 0.2. Let K be a C! function in R3 which is periodic in z; and
positive somewhere. Suppose that the mazimum of K is achieved at least at one
isolated point. Then (0.3) has infinitely many solutions in E modulo translations
by the period of K in the 1 variable.

COROLLARY 0.3. Forn > 4, let 2m > n—2 be some integer. Suppose that K -
is a C®™ function in R™ which is periodic in z) with K(0) = max,cgn K(z) > 0

and, for some A; > 0 (1 < j < n), K(z) = K(0) - i1 HTE™ + o(|z)2m) for

x close to 0. Then (0.3) has infinitely many solutions in E modulo translations
by the period of K in the x, variable.

REMARK 0.2. We tend to believe that Theorem 0.5 still holds without as-
suming (0.4). However, we have not been able to prove it yet.
1. Outline of the proof of Theorem 0.2
The following result is established by R. Schoen [26]:

THEOREM (R. Schoen). Let {K;} be o sequence of functions bounded n
C?(S3) norm such that for some positive constant A,

Ki(q) > 1/A,, for all g € S3.

Let {v;} be solutions of
{ —Agv; + 3y; — FKi(z)vP =0 on S?,
v; >0 on 83,

where p; < 5, lim;_,oo p; = 5. Then, after passing to a subsequence, either

(1.1) v(g) £ C for all i and q € 83,
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or

(1.2) {v;} has precisely one isolated simple blow-up point.

REMARK 1.1. The notion of isolated simple blow-up was introduced by
R.-Schoen ([26]), see also Definition 0.3 in [21]. As a consequence, if (1.2) occurs,
then for i large v; satisfies

max |g — g:|> " Vvi(g) < C,
ges?
and
zlégsgve(qi)h — gilvi(q) £ C,

where g; € S? is the unique maximum point of v;.

Following the approach of R. Schoen, we have established in [21] the following
result:

THEOREM 1.1. For n > 4, let {K;} be a sequence of functions bounded in
C"—2(S"™) norm such that for some positive constants A;, Cand 3>n—-2,
Ki(q)>1/A,  forallgeS®,
IVeKi(q)| € C|VKi(q)|P-1eD/B-1 forallge 8", 2< ol <n—2
Let {v;} be solutions of
{ —Agovi + c(n)Rov; — c(m)Ky(z)v]* =0 on ST,
v >0, on S™,
where p; < (n+2)/(n—2), im;cops = (n +2)/(n — 2). Then after passing to

a subsequence, either

(1.3) v;(g) <C  forall i and g €S",
or
(1.4) {v;} has precisely one isolated simple blow-up point.

REMARK 1.2. As a consequence, if (1.4) occurs then for i large v; satisfies
max |g ~ ¢:[*® Vvi(g) < C,
g€sS™
and
max v;(gi)lg — ;" *vilg) < C,
gqesn
where ¢; € S™ is the unique maximum point of v;.

By using a contradiction argument, Theorem 0.2 can be derived from The-
orem 1.1 and an application of the Kazdan-Warner identity. See [21] for the
details.
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2. Outline of the proof of Theorem 0.1

Set,

X = {u € H'(S™) 15"1-1/ [uf?r/ =2 = 1},
Sn

/ x]u'2n/(n—2) — 0}

For P € S™,1 < t < 00, we define a conformal transformation by

So={uEX

ppt: 8" — 8", y — ty,

where y is the stereographic projection coordinates of points on 8™ while the
stereographic projection is performed with P as the north pole to the equatorial
plane of S”. For a conformal transformation ¢ : S* — S™, we define I,: X —-X
by

Tou = u o p|det dp|»~2/2n,

where |det dp| denotes the Jacobian of ¢ satisfying
©"go = |det dip|*/ gy,

and gp is the pull back metric of the flat metric 3 -:dz? of R™H to S™. It is well
known that the scalar curvature of gy is Ry = n(n — 1).
Let B denote the open unit ball in R*t1, B = S™. We define

T:85xB-X

by

u=mn(w,&) = T(P_:’lw,

where w € 8, £ =sP,0< s < LPeSYs=0-1)/t,1<t < oo. It is easy
to see that »

T‘me = T"";.ltw’

<P1_:,1¢ =@-_Pt = Ppt-1,

wp,1 = identity for all P € 8™,

It follows that
{ u=m(wf) = Ty p.w,

w= TﬁPP.t u.

The following result is established in [21]:
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THEOREM 2.1. 7:Sp x B = X is a C? diffeomorphism.

REMARK 2.1. The analog of Theorem 2.1 for dimension n = 2 was derived
earlier by K. C. Chang and J. Liu in [6].

Let K satisfy the hypotheses of Theorem 0.1 and set K, = uK + (1—p)Ro

for 0 < p < 1. For 0 < a < 1, we define T}, : C2*(S™) — C*°(8") by

Tuive (g + c(n)RO)_l(Ku|v|4/(”_2)'u).
It follows from Theorem 0.2 and some standard elliptic regularity theorem that
for any 0 < € < 1, there exists some positive constant C(K, n,¢) such that
(2.1) {veC>*(S™)|v(q) >0 Vg €S~

(I-T,)v=0forsomee<pu<1}CO,,
where
0. = {ve C*>*(™) | C(K,n, )" < v < C(K,n,¢), ||[v]c2e(gn) < C(K,n,€)}
It is obvious that T}, : O, — C%(8") is compact. We set
iy = deg(I — T}, O, 0),
where deg denotes the Leray-Schauder degree of the map. It follows from (2.1)
and the homotopy invariance of the Leray-Schauder degree (see [16] and [24])
that for any 0 < € < 1, 4; = 4.. To establish Theorem 0.1, we only have to show
that i # 0 for ¢ > 0 small enough. We observe that | Kz — Rollpeo(sn) < Ce.
When the scalar curvature function is close to Ry in L* norm, the problem has
been investigated by Chang, Yang and Gursky ({8], [5]). Following Chang-Yang
({8]) we have given in [21] a seemingly more transparent and simpler presentation
of the results. It follows that there exists § > 0 such that for € > 0 small we
have
deg(I — Tz, 0. NUs, 0) = > (~1)¥®) — (-1)™,
Voo K(90)=0,2"7_; a;(g0)<0

where

Us = {m(w, &) |w e So, |w-1|| <86 &€ B}
is a tubular neighborhood of {x(1,£)|¢ € B} in X. On the other hand, from
Theorem 0.2 follow the uniqueness theorem (up to the conformal group of s™)
of M. Obata. ([25]), and some standard compactness arguments that for ¢ > 0
small enough all positive solutions v € C%*(8™) of (I — T)v = 0 belong to Us.
It follows immediately that

e = ) (1)) — (~1).

Va0 K(q0)=0,3"7 -1 a;(g0)<0

This concludes the proof of Theorem 0.1.
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3. Outline of the proof of Theorems 0.4 and 0.5

What we established in [19] and [21] is stronger than Theorems 0.4 and 0.5.
For example, we know that under the hypotheses of Theorems 0.4 and 0.5, either
(0.3) has a sequence of one-bump solutions, or for any m > 2 there are infinitely
many m-bump solutions. Here we only outline a proof of Theorems 0.4 and 0.5.
This can be achieved by a contradiction argument. In the following, we always
assume the contrary of Theorems 0.4 and 0.5. We will then construct infinitely
many two-bump solutions, which leads to a contradiction. We first consider a

compactified problem,

51) { —Au = K(2)(2/(1 + [z]2))(n=D7/2 4D/ (=D~ i Rn

u >0,

where 7 > 0 is small. We refer to (3.1) as a compactified problem in the sense
that for 7 > 0 small, if u; — « in E, we have

2 (n—2)1/2 2 /(n2)
U — n/(n—-2)—r 0.
L. (1 T lez) s~ -

The first step in establishing Theorems 0.4 and 0.5 is to construct two-bump:
solutions of (3.1) for small 7 > 0. Along with the construction of solutions, we
obtain good control of the distribution of the mass. Roughly speaking, the mass
will concentrate near two small balls far apart and the centers of the two balls
will stay uniformly bounded for all small 7 > 0. Condition (ii) in Theorems 0.4
and 0.5 is essential in obtaining such a control. This step has been achieved in
(19] (see Theorem 3.1 there). There are two main ingredients in this step. One
is an adaptation of the variational gluing technique developed by E. Séré ([27]),
Coti Zelati and P. H. Rabinowitz ([10]-[11]) for periodic ode’s and subcritical
pde’s. We follow more closely [10]-[11]. The other is some a priori estimates
established in [17] and [19] (Props. 2.1-2.3 in {17}, Props. 1.1-1.4 in [19]) which
are essential to make the variational gluing technique applicable.

The second step is to show that, along a subsequence, u, converges in CZ
norm to a positive solution of (0.3). A priori {u,} might blow up and, as a result,
weakly converge to 0. We have to rule out this possibility. Under the hypotheses
of Theorems 0.4 and 0.5, we can apply Theorem 0.2 (or rather the proof, since
the liypotheses of Theorem 0.2 are not exactly satisfied here) to conclude that
{u-} can only have isolated simple blow up points and cannot blow-up at more
than one point. Using the Harnack inequality and the fact that the only blow-up

point is isolated simple, we conclude that {u,} converges strongly to 0 in C2_
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norm away from the blow-up point. This violates the structure of {u,} since,
according to our construction, {u,} has two bumps.

Let us give a more detailed description. It follows from condition (ii) of
Theorems 0.4 and 0.5 that there exists some bounded open neighborhood O of
C such that

%K(.’L‘) < Kmax — 61,

where 6; > 0 is some positive number. For large positive integer £, we set
o) = {z|z + (£T,0,...,0)€ 0}, OP = {z|z — (£T,0,... ,0) € O}.

For € > 0 small we define Vp(2,¢) C E by declaring u € V(2,¢) if u € E and
there exist ay,a2,A1, A2 €R and = (z,22) € 021) X ng) such that

AL, Ag > 1/&‘,
lo; — (Kmex)® ™4 <, i=1,2,
llu — a18(z1, A1) — a2b(x2, Ao)|lE < €,

where

A )(n—2)/2

8(zi, As)(y) = (n(n — 2))+D/ (-2 (—1 TRy - i
4 1

Similarly, for § > 0 small, we define V(1,6) C E by letting u € V(1,68) ifu € E
and there exist a1, A\; € R and z; € O such that

AL > 1/6,

lor — (Kmax) 2 ™/4] < 6,
flu — 016(x1, M)|le < 6.
It is well known that for any z; € R™ and A; > 0,
6($i, A1,) € E1

—A8(zi, \) = 6(z;, \) T/ (=2 i R,

By adapting the variational gluing technique and some a priori estimates
mentioned earlier, the following result is established in [19]. In fact, it is a

corollary of Theorem 3.1 in [19].
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THEOREM 3.1. Under the hypotheses of Theorems 0.4 and 0.5, either
(3.2) {u € E|u is a positive solution of (0.3)} NV (1,6)=0, for all §> 0,

or, for any € > 0, there ezists £. > 0 such that, for all £ > 1., there exists Te>0
such that, for all 0 < T < Ty, there exists ug,r € Ve(2,€) which solves (3.1).

If (3.2) occurs, then the conclusion of Theorems 0.4 and 0.5 can be deduced
without much difficulty. Otherwise, for € > 0 small and £ > 7., it follows from
the proof of Theorem 0.2 that, along a subsequence, u; = lim, _, ug,r € Vo(2,¢)
is a solution of (0.3). It is not difficult to see that all these solutions are different.

4. OQOutline of the proof of Theorem 0.3

We only outline the proof of Theorem 0.3 for n = 3, k = 1, m = 2 and
K € C'(S®). The proof of the more general result as stated in Theorem 0.3
is similar in nature. The details are in [19] and [21] (Theorem 3.1 in [19] and
Theorem 0.7 in [21]). Let zo € S? be the north pole and make a stereographic
projection to the equatorial plane of S3. The equation (0.2) is transformed to

—Au = (1/8)K(x)u’® in R3,
u>0 in R3,

where K € C'(R?) and lim;)—,o0 K (%) = Koo > 0. Let 9 € C*(R3) satisfy

(4.1) I¥llcz2(re) < oo,
(42) Jim w(z) =1,
and
3
(4.3) sz,. (x)z: <0  Vz #0.
i=1

REMARK 4.1. It is well known that under (4.1), (4.2) and (4.3), 9 violates
the Kazdan-Warner condition and therefore

(4.4) —Au = pu® in R®

has no nontrivial solution in E. Recall that the Kazdan-Warner condition is

3
/Z ¥z, (2)z;u8 =0
i=1



232 Y. Y. LI

for any solution u € E of (4.4).

For £ > 0 small, as in the statement of Theorem 0.3 and for large positive

integer £, we set
Ky(x1,20,23) = K(x1,,22,73) + e{¥0(x1 + £, 72, 23) + P(71 — £, T2, 23) — 2},

OV = {z = (21,23,3) | [(z1 + £, 22, 3)| < 1},

and
ng) = {z = (21,22, %3) | |(z1 — £, 22, 73)| < 1}.

Consider the equation corresponding to Kj:

(4.5) { —Au = (1/8)K¢(z)u’ inR®,

u>0 in R3.

Using an argument similar to the proof of Theorem 0.4, we can prove that, for
any € > 0 small, there exists £ such that for £ > £, equation (4.5) has at least
one solution u € V(2,¢) C E. This completes the proof of Theorem 0.3 in the
casen=3,k=1,m=2and K € C(S3).
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