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Let X be a compact Hausdorff space, and {fi} and {gi} two families of real-
valued continuous functions defined on X and indexed by the same set I. We
consider the question of existence of a probability Radon measure µ on X and a
real number λ such that

(1)
∫

X

gi dµ = λ

∫
Y

fi dµ, i ∈ I.

If λ and µ satisfy (1), then λ is called an equilibrium value and µ an equilibrium
measure of the systems {fi}, {gi} in this order. If µ is supported by a point x0,
then x0 is called an equilibrium point of the systems {fi}, {gi}.

Let S be the standard (n − 1)-simplex in Rn, i.e. S is the set of all those
points x = (x1, . . . , xn) of Rn with all xi ≥ 0 and

∑n
i=1 xi = 1. In [3] Ky Fan has

shown the existence and uniqueness of an equilibrium value and an equilibrium
point of systems {f1, . . . , fn}, {g1, . . . , gn} of continuous functions defined on S

under the following conditions:

(a) Each fi is convex on S.
(b) Each gi is concave and positive on S.
(c) fi(x) ≤ 0 for x ∈ Si := {(x1, . . . , xn) ∈ S : xi = 0}.
(d) For each x ∈ S, there is an index i for which fi(x) > 0.
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In [3] it is actually shown that the unique equilibrium value λ is positive and is
given by

(2)
1
λ

= min
x∈S

max
1≤i≤n

fi(x)
gi(x)

= max
x∈S

min
1≤i≤n

fi(x)
gi(x)

.

The approach in [3] uses the Sperner lemma and depends on S being a
simplex; here we generalize this result to the case where S is replaced by an
arbitrary nonempty compact convex set in a Hausdorff topological vector space
and the families of functions are indexed by a compact Hausdorff space. Our
assumptions are also slightly more general than those considered in [3]. It is
worthwhile to point out beforehand that we use nowhere the Sperner lemma
or its analogues, but rely on minimax theorems which are consequences of the
Hahn–Banach Theorem. The reader is referred to [2] and [3] for connections
of the existence of an equilibrium value and an equilibrium point with other
problems in mathematics.

For a compact Hausdorff space X we shall denote by P (X) the space of all
probability Radon measures on X endowed with the w∗-topology on the dual
space of C(X), the space of all real continuous functions defined on X with
sup-norm. Thus P (X) is a compact convex set in a Hausdorff topological vector
space. As a preliminary observation we have the following lemma regarding the
first equality in (2):

Lemma 1. Let X and Y be nonempty compact Hausdorff spaces and let f

and g be real functions defined on X × Y with the following properties:

(A) Both f and g are continuous on X and Y separately.
(B) For each x ∈ X there is y ∈ Y such that f(x, y) > 0.
(C) g(x, y) > 0 for all x ∈ X and all y ∈ Y .

Then there is λ > 0 such that

(3)
1
λ

= min
x∈X

max
y∈Y

f(x, y)
g(x, y)

;

and this λ satisfies the following equality:

(4) min
x∈X

max
ν∈P (Y )

∫
Y

(λf(x, y)− g(x, y)) dν(y) = 0.

Proof. Since maxy∈Y f(x, y)/g(x, y) is lower semicontinuous in x, it follows
that minx∈X maxy∈Y f(x, y)/g(x, y) exists and is positive by (B) and (C). Let λ

be the reciprocal of this positive number; then (3) holds.
From (3) for each x ∈ X there is y ∈ Y such that λf(x, y)− g(x, y) ≥ 0. But

each point of Y supports a measure in P (Y ), hence

min
x∈X

max
ν∈P (Y )

∫
Y

(λf(x, y)− g(x, y)) dν(y) ≥ 0.
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On the other hand, there is x0 ∈ X such that λf(x0, y)− g(x0, y) ≤ 0 for all
y ∈ Y . Thus maxν∈P (Y )

∫
Y

(λf(x0, y)− g(x0, y)) dν(y) ≤ 0 and hence

min
x∈X

max
ν∈P (Y )

∫
Y

(λf(x, y)− g(x, y)) dν(y) ≤ 0.

We have thus established (4) and the lemma is proved.

There is an interpretation of (4) in terms of von Neumann’s model of ex-
panding economics when Y is a finite set; for this we refer to [4, p. 310], [6],
and [8].

We are now ready to state and prove our result which concerns systems of
functions indexed by a compact set.

Theorem 1. Let X be a nonempty compact convex set in a Hausdorff topo-
logical vector space and Y a nonempty compact Hausdorff space and let f , g

be real-valued functions defined on X × Y which are continuous on X and Y

separately with f(·, y) convex and g(·, y) concave on X for each y ∈ Y . Suppose
that D = {x ∈ X : g(x, y) > 0 ∀y ∈ Y } is nonempty and the family of sets
{y ∈ Y : f(x, y) > 0}, x ∈ D, is a basis for the topology of Y . Then for any
positive number λ which satisfies (4) there is x0 ∈ X such that

(5) g(x0, y) = λf(x0, y) ∀y ∈ Y.

Proof. For x ∈ X and ν ∈ P (Y ) let

h(x, ν) :=
∫

Y

(λf(x, y)− g(x, y)) dν(y).

It follows from well-known minimax theorems (see, for example, [1], [5], [7]) and
(4) that there exist x0 ∈ X and ν0 ∈ P (Y ) such that

(6) min
x∈X

max
ν∈P (Y )

h(x, ν) = max
ν∈P (Y )

min
x∈X

h(x, ν) = h(x0, ν0) = 0.

Obviously, (6) is equivalent to the combination of the following two inequalities:

h(x, ν0) ≥ 0 ∀x ∈ X;(7)

h(x0, ν) ≤ 0 ∀ν ∈ P (Y ).(8)

We claim first that if G is a nonempty open subset of Y , then ν0(G) > 0.
Choose x ∈ D such that ∅ 6= {y ∈ Y : f(x, y) > 0} ⊂ G. For this chosen x let
H := {y ∈ Y : f(x, y) > 0}. Then using (7) with this x we have

0 <

∫
Y

g(x, y) dν0(y) ≤ λ

∫
Y

f(x, y) dν0(y)

≤ λ

∫
H

f(x, y) dν0(y) ≤ λν0(H) max
y∈Y

f(x, y),

from which it follows that ν0(G) ≥ ν0(H) > 0.
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Since each y ∈ Y supports a measure in P (Y ), we infer from (8) that

(9) g(x0, y) ≥ λf(x0, y) ∀y ∈ Y.

Hence if we let G := {y ∈ Y : g(x0, y) > λf(x0, y)} we have to show that G

is empty in order to complete the proof. Suppose that G is nonempty. Then,
since G is open, ν0(G) > 0 by the claim of the preceding paragraph and hence∫

G
(λf(x0, y)− g(x0, y)) dν0(y) < 0. Now using (9) we have

0 = h(x0, ν0) =
∫

G

(λf(x0, y)− g(x0, y)) dν0(y) < 0,

a contradiction which shows that G is empty. The proof is complete.

Returning to the conditions (a)–(d) of Ky Fan mentioned at the beginning
for finite systems of functions, we see that the conditions of Theorem 1 are
satisfied with Y = {1, . . . , n}. For example, for a given i between 1 and n, let
x ∈ S be such that xi = 1 but xj = 0, for j 6= i. Then fj(x) ≤ 0, for j 6= i

by (c), and hence fi(x) > 0, thus {j : fj(x) > 0}x∈S is a basis for the discrete
topology of {1, . . . , n}. Therefore Ky Fan’s existence theorem for an equilibrium
value and an equilibrium point for finite systems follows from Lemma 1 and
Theorem 1.

When the functions f and −g are not both convex on X as in Theorem 1,
we have the existence of an equilibrium measure instead of an equilibrium point:

Theorem 2. Let X and Y be arbitrary nonempty compact Hausdorff spaces
and let f and g be real-valued functions defined on X ×Y which are continuous
on X for each y ∈ Y and equicontinuous on Y as families indexed by x ∈ X.
Suppose that D = {x ∈ X : g(x, y) > 0 ∀y ∈ Y } is nonempty and the family of
sets {y ∈ Y : f(x, y) > 0}, x ∈ D, is a basis for the topology of Y . Then for any
positive number λ which satisfies (4) there is an equilibrium measure µ0 ∈ P (X)
with λ as an equilibrium value for {f(·, y)}y∈Y and {g(·, y)}y∈Y in this order.

Proof. Apply Theorem 1 with X replaced by P (X) and with f and g

replaced by F and G respectively, where

F (µ, y) =
∫

X

f(x, y) dµ(x),

G(µ, y) =
∫

X

g(x, y) dµ(x), µ ∈ P (X), y ∈ Y.
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