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Introduction

This survey is intended to complement the authoritative book of Beer [6]
as well as his survey paper on Wijsman and other forms of set convergence [9].
These works provide ample historical references as well as applications for various
forms of set convergence. With this in mind, let us briefly outline our objectives
in this paper.

First, we will present some of the basic properties of dual Kadec–Klee norms
that in the context of our study of set convergence are extremely useful. We
will often include rather complete arguments because we have yet to find a
convenient reference containing the basic facts. The remainder of the first section
will discuss some further properties of Kadec–Klee norms. Since Kadec–Klee
norms, as defined below, play (explicitly or implicitly) an absolutely key role in
geometric Banach space theory and its applications, this discussion is significant
in its own right. Their utility in the context of set convergence will be abundantly
illustrated in our discussion.

After presenting some basic properties of Kadec–Klee norms, we will discuss
their interplay with set convergence. The second section gives a brief account of
how they entered into the study of set convergence.
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In the third section, we present some full arguments for results that tie to-
gether our work from [15] and [16] showing that under the existence of certain
Kadec–Klee renormings some weaker forms of epi-convergence actually imply
much stronger and more useful forms of epi-convergence. Many of the results in
the third section have not been explicitly stated elsewhere, although the tech-
niques are a natural combination of those from [15, 16]. In particular, the im-
plications that a Kadec–Klee norm on the predual space has on the convergence
of dual functions is more fully explored than has previously been done.

The fourth section mentions briefly Beer’s result concerning Wijsman con-
vergence with respect to each equivalent norm and some of its implications.

We will be primarily interested in the following forms of set convergence. A
net of closed convex sets {Cλ} is said to converge Wijsman (resp. weak compact
gap, slice) to a closed convex set C if d(W,Cλ) → d(W,C) for each singleton
(resp. weak compact convex, bounded convex) set W ⊂ X. We will denote this
by {Cλ} →W C (resp. {Cλ} →WG C, {Cλ} →S C). If the sets C,Cλ are weak∗

closed in X∗ and d(W,Cλ) → d(W,C) for each weak∗ compact convex set W and
the distance is measured with respect to the dual norm, then the convergence is
said to be w∗-slice, and we write {Cλ} →S∗ C. With Wijsman and weak compact
gap convergence it is crucial to stipulate which norm on X is being used for
measuring the “gaps” between the sets, while for slice convergence it is not [7].
For lsc convex functions fλ, f on X, we will say {fλ} converges Wijsman (resp.
weak compact gap, slice) to f if {epi fλ} converges Wijsman (resp. weak compact
gap, slice) to epi f in X × R endowed with the norm ‖(x, t)‖ = max{‖x‖, |t|}.
In [15] there are results detailing other allowable norms on X × R as well as
limitations.

Wijsman convergence was introduced by Wijsman in the seminal paper [26]
where it was shown to be preserved under Fenchel conjugation in finite-dimen-
sional spaces. In the fundamental paper [21], Mosco introduced a form of conver-
gence which is extremely useful in reflexive spaces; for example, as Mosco showed
in a subsequent article, it is preserved under Fenchel conjugation in reflexive
spaces (see [1, 6]). A sequence of lsc convex functions {fn} is said to converge
Mosco to the lsc convex function f if for each x ∈ X, f(x) ≤ lim inf fn(xn)
whenever xn →w x and if there exists xn → x such that f(x) = lim fn(xn). This
definition can also be formulated in terms of convergence of convex sets, and it
is not hard to check it is equivalent to slice convergence in reflexive spaces; see
[6] for further information.

We will consider real Banach spaces X and their continuous duals will be
denoted by X∗. The collection of proper lsc convex functions on X will be
denoted by Γ(X). The closed unit ball of X will be denoted by BX where the
norm under consideration will be clear from the context. By the Mackey topology
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on X∗, we mean the topology of uniform convergence on weakly compact sets
of X.

1. Some properties of Kadec–Klee norms

In this section we gather a few facts concerning Kadec–Klee norms. Let
τ1 and τ2 denote two vector topologies on X with τ2 at least as strong as τ1

(we will deal with the weak∗, weak, Mackey and norm topologies). We will say
a norm is (sequentially) τ1-τ2-Kadec–Klee if the τ1 and τ2 topologies coincide
(sequentially) on the sphere. If τ2 is the norm topology, we simply say the norm
is τ1-Kadec–Klee. The utility of a Kadec–Klee norm is that it allows us to exploit
compactness in a weak topology in the context of a stronger original topology.
The reader is referred to [18] for most prerequisite unreferenced Banach space
information.

Theorem 1.1. For a Banach space X, the following are equivalent.

(a) The dual norm on X∗ is w∗-τ -Kadec–Klee (w∗-Kadec–Klee).
(b) For each Y ⊂ X, the dual norm on Y ∗ is w∗-τ -Kadec–Klee (w∗-Kadec–

Klee).
(c) For each separable Y ⊂ X, the dual norm on Y ∗ is sequentially w∗-τ -

Kadec–Klee (sequentially w∗-Kadec–Klee).

Proof. The implication (a)⇒(b) is simple and well-known (see for example
[14, Proposition 1.4]), and (b)⇒(c) is straightforward. The implication (c)⇒(a)
is contained in [14, Theorems 2.1 and 2.3] where it is derived as a consequence
of several results concerning set convergence. Because of this, we will present a
direct proof here.

(c)⇒(a). We will prove this in the w∗-τ -Kadec–Klee case, the other case is
analogous. Suppose the dual norm on X∗ is not w∗-τ -Kadec–Klee. Then we can
choose a net {x∗λ} and a weakly compact set K ⊂ X such that {x∗λ} →w∗ x∗,
‖x∗λ‖ = ‖x∗‖ = 1 and

sup
K
|x∗λ − x∗| > ε for all λ and some ε > 0.

Let {un} ⊂ X be such that ‖un‖ = 1 and x∗(un) > 1− 1/n. Let λ1 ≤ λ2 ≤ . . .

be chosen so that x∗λ(un) ≥ 1 − 1/n whenever λ ≥ λn. Now choose {x∗i } ⊂
{x∗λ} and {xi} ⊂ K as follows. Let x∗1 = x∗λ1

and x1 ∈ K be chosen so that
|(x∗1 − x∗)(x1)| > ε. Suppose {x∗1, . . . , x∗k−1} and {x1, . . . , xk−1} have been
chosen so that |(x∗j − x∗)(xj)| > ε for 1 ≤ j ≤ k − 1 and |(x∗i − x∗j )(xj)| ≥ ε for
1 ≤ j < i ≤ k − 1. Because x∗λ →w∗ x∗, we can choose x∗k = x∗λ where λ ≥ λk

and
|(x∗k − x∗j )(xj)| ≥ ε for j = 1, . . . , k − 1.

Now choose xk ∈ K such that |(x∗k − x∗)(xk)| > ε.
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Let Y = span({xi}∞i=1 ∪ {ui}∞i=1). Then Y is separable and K1 = K ∩ Y is a
weakly compact subset of Y . Now let y∗i = x∗i |Y . Because Y is separable, BY ∗

is w∗-sequentially compact and so yij
→w∗ y∗ for some subsequence and some

y∗ ∈ BY ∗ . Observe that

y∗(un) = lim
j

x∗ij
(un) ≥ 1− 1

n
.

From this, we know ‖y‖ = 1. Moreover, for n > m, |(y∗n−y∗m)(xm)| ≥ ε. Because
xm ∈ K1, this means that {yij

} does not converge Mackey to y∗. Thus the dual
norm on Y ∗ is not sequentially w∗-τ -Kadec–Klee. �

The following result follows easily from the above theorem; it is also easy to
prove directly from Alaoglu’s theorem.

Corollary 1.2. Suppose BX∗ is w∗-sequentially compact. If the dual norm
on X∗ is sequentially w∗-τ -Kadec–Klee (sequentially w∗-Kadec–Klee), then it is
w∗-τ -Kadec–Klee (w∗-Kadec–Klee).

The next result shows connections between the equivalence of topologies and
the existence of Kadec–Klee norms. Such results have been known for some time
(cf. Troyanski’s paper [24] and its references).

Theorem 1.3. The topologies τ1 and τ2 agree (sequentially) on BX if and
only if every equivalent norm on X is (sequentially) τ1-τ2-Kadec–Klee.

Proof. If τ1 and τ2 agree (sequentially), then it is clear that every norm on
X is (sequentially) τ1-τ2-Kadec–Klee.

Suppose τ1 is strictly weaker than τ2 (sequentially). Then there is a (se-
quence) {xλ} ⊂ BX and x0 ∈ BX such that {xλ} →τ1 x0 but {xλ} 6→τ2 x0. By
translation, we may assume x0 6= 0. Choose φ ∈ (X, τ1)∗ such that φ(x0) > 0.
Perturbing {xλ} by an appropriate norm convergent net, we may assume φ(xλ) =
φ(x0) for all λ and xλ, x ∈ 2BX . Now let B = {x : ‖x‖ ≤ 2, |φ(x)| ≤ φ(x0)}.
Then B is the unit ball of an equivalent norm ||| · ||| and |||xλ||| = |||x0|||, while
{xλ} 6→τ2 x0. �

Observe that the unit ball B of the new norm constructed in the above proof
is τ1-closed provided the unit ball of the original norm is τ1-closed. Because
dual norms always have w∗-closed unit balls, we are able to deduce the following
corollary which probably contains the more interesting cases of Theorem 1.3.
First recall that a space is said to be Schur if its weak and norm topologies
agree sequentially. The typical examples of Schur spaces are the spaces `1(Γ),
where Γ is any nonempty set.



Renorming and Set-Convergence 215

Corollary 1.4. Let X be a Banach space. Then:

(a) X is finite-dimensional if and only if weak∗ and norm convergence agree
sequentially in X∗ if and only if each (dual) norm on X∗ is sequentially
w∗-Kadec–Klee.

(b) X 6⊃ `1 if and only if Mackey and norm convergence agree sequentially
in X∗ if and only if each (dual) norm on X∗ is sequentially τ -Kadec–
Klee.

(c) Weak∗ and Mackey convergence agree sequentially in X∗ if and only if
each (dual) norm on X∗ is sequentially w∗-τ -Kadec–Klee.

(d) X is a Schur space if and only if each equivalent norm on X is sequen-
tially w-Kadec–Klee.

Proof. Part (a) is due to Josefson and Nissenzweig who independently
showed the deep result that weak∗ and norm convergence differ sequentially
in the dual ball of any infinite-dimensional Banach space (see [18, Chapter XII]).
Part (b) is a result based on Rosenthal’s powerful `1 theorem that is derived
in the unpublished manuscript [22]; see [12, Theorem 5] for the details of the
proof. �

With these results at hand, we can provide relationships between dual Kadec–
Klee norms and Asplund spaces (every separable subspace possesses a norm sep-
arable dual). Let us recall that an Asplund space cannot contain an isomorphic
copy of `1. On the other hand, James constructed a space that does not contain
`1 and yet it is not Asplund. We refer the reader to van Dulst’s book [20] for a
comprehensive discussion on this topic.

Theorem 1.5. For a Banach space X, the following are equivalent.

(a) The dual norm on X∗ is w∗-Kadec–Klee.
(b) X is Asplund and the dual norm on X∗ is sequentially w∗-Kadec–Klee.
(c) BX∗ is w∗-sequentially compact and the dual norm on X∗ is sequentially

w∗-Kadec–Klee.
(d) X 6⊃ `1 and the dual norm on X∗ is w∗-τ -Kadec–Klee.

Proof. (a)⇒(b). Let Y be a separable subspace of X and suppose ‖ · ‖ is a
dual w∗-Kadec–Klee norm on X∗. Let {φn}∞n=1 be w∗-dense in BY ∗ . For a fixed
φ ∈ SY ∗ , we choose φj →w∗ φ. Because the dual norm is sequentially w∗-Kadec–
Klee on Y ∗, φj → φ. Therefore Y ∗ is separable and so X is Asplund (see [23,
Theorem 2.34]). The implication (b) implies (c) follows because Asplund spaces
have w∗-sequentially compact dual balls [18, p. 230]. According to Corollary
1.2, (c) implies (a) and so clearly (c) implies (b) and hence (d). If (d) holds,
then for every separable subspace Y of X, the dual norm on Y ∗ is sequentially
w∗-τ -Kadec–Klee. Because Y 6⊃ `1, according to Corollary 1.4(b) the dual norm
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on Y ∗ is, in fact, sequentially w∗-Kadec–Klee. Invoking Theorem 1.1 shows that
(a) holds. �

The next remark outlines some further results involving dual w∗-Kadec–Klee
norms. We refer the reader to [17, Chapter VII] for the proofs of these assertions.

Remark 1.6. Let X be a Banach space.

(a) If X is weakly compactly generated and Asplund, then X admits a norm
whose dual norm is locally uniformly rotund and hence w∗-Kadec–Klee.

(b) If X∗ is weakly compactly generated, then X admits a norm whose dual
norm is locally uniformly rotund.

(c) There are spaces admitting Fréchet differentiable norms, such as C[0, ω1],
that cannot be renormed so that the dual norm is sequentially w∗-
Kadec–Klee.

(d) A norm on X whose dual norm is w∗-Kadec–Klee need not be Gateaux
differentiable. The usual norm on c0 is a typical example of this, as is
any nonsmooth norm on a finite-dimensional space.

Let us mention that weakly compactly generated spaces include all reflexive
and all separable spaces. In fact, results much stronger than (a) and (b) can be
found in [17]. However, as far as we know, the following question is open.

Question 1.7. If the norm on X has a dual norm that is sequentially w∗-
Kadec–Klee, is the dual norm w∗-Kadec–Klee? Equivalently, if X admits a norm
whose dual is sequentially w∗-Kadec–Klee, is X an Asplund space?

In contrast to this question, using Theorems 1.1 and 1.5 one can prove the
following example. The details of the proof can be found in [14, Example 4.3].

Example 1.8. On `∞ there is a norm whose dual norm is sequentially w∗-
τ -Kadec–Klee, but not w∗-τ -Kadec–Klee.

In the case of τ -Kadec–Klee norms, we obtain the following example which
also contrasts with Theorem 1.1.

Remark 1.9. Consider any nonreflexive Banach space such that X∗∗ is sep-
arable, for example the James space. Then every double dual norm on X∗∗

is sequentially τ -Kadec–Klee, while no such norm is τ -Kadec–Klee. Hence τ -
Kadec–Klee norms are not sequentially separably determined.

Proof. Because X∗∗ is separable, X∗ cannot contain `1 and so [12, Theorem
5] says Mackey and norm convergence agree sequentially on X∗∗. However,
an easy modification of the Lindenstrauss–Tzafriri proof of the Milman–Pettis
theorem (see [18, p. 131]) shows that a double dual τ -Kadec–Klee norm would
force reflexivity. �
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The existence of w-Kadec–Klee norms on X has implications regarding w∗-
slice convergence in X∗, as we will discuss at the end of Section 3. At present, we
wish to highlight a few of the more prominent properties of such norms. Rather
large classes of spaces admit norms that are w-Kadec–Klee (see [17, Chapter
VII]) as was established over twenty years ago in the following significant result
of Troyanski.

Theorem 1.10 (Troyanski). If X is weakly compactly generated, then X

admits a locally uniformly rotund norm, and in particular a w-Kadec–Klee norm.

As is thoroughly discussed in [17], Troyanski’s result has been extended to
broader classes of spaces than the weakly compactly generated spaces, but we
will not pursue that level of generality here. However, the following result is
definitely worth mentioning (see [17, Chapter VII]).

Theorem 1.11. If X∗ is weakly compactly generated, then X admits a norm
that is locally uniformly rotund and whose dual is locally uniformly rotund.

From Theorem 1.3 it is clear that one can have sequentially w-Kadec–Klee
norms on `1 that are not w-Kadec–Klee. In contrast to this, one has the following
result (see [24, Lemma 1.1]).

Proposition 1.12. Suppose X is separable and does not contain `1. If the
norm on X is sequentially w-Kadec–Klee, then it is also w-Kadec–Klee.

The following deep result of Troyanski shows what needs to be added to a
w-Kadec–Klee norm to ensure the existence of a locally uniformly rotund norm
on a Banach space (see [24, 17]).

Theorem 1.13 (Troyanski). A Banach space X admits an equivalent locally
uniformly rotund norm if and only if it admits a w-Kadec–Klee norm and a
strictly convex norm.

The space `∞ is the classical example of a space that has a strictly convex
norm, but does not admit any sequentially w-Kadec–Klee norm (see [17, Chapter
II]). Relatedly, Haydon, in a string of striking examples, constructed Asplund
spaces that admit strictly convex norms but do not admit sequentially w-Kadec–
Klee norms and also Asplund spaces that admit w-Kadec–Klee norms but no
strictly convex norms (see [17, Chapter VII]). For some further interesting results
concerning Kadec–Klee norms on certain classes of spaces, we refer the reader
to the paper of Dowling et al. [19] and its references.

2. Renorming and set convergence

Notions of set convergence arise naturally in many different mathematical
settings. In turn, properties of the norm often play a crucial role in allowing
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comparison of various forms of set convergence. This is well illustrated in [25]
where Tsukada obtains necessary and sufficient conditions for the best approxi-
mations to a sequence of closed convex sets to converge. In the language of set
convergence, the main result is as follows.

Theorem 2.1 (Tsukada). Suppose X is Banach space renormed so that both
the norm on X and its dual norm are Fréchet differentiable. Then Wijsman and
Mosco convergence coincide for sequences of closed convex sets in X.

Subsequently, the work of Beer [4] showed that it was necessary for the
dual norm to be sequentially w∗-Kadec–Klee for Tsukada’s result to hold (and
so in the reflexive setting for the dual norm to be w-Kadec–Klee). Moreover,
in reflexive spaces, the connection between w-Kadec–Klee norms and Fréchet
differentiability is the following long-known result (see [17]).

Theorem 2.2. Let X be a Banach space. Then the dual norm on X∗ is
Fréchet differentiable if and only if X is reflexive and the norm on X is both
w-Kadec–Klee and strictly convex.

We note that reflexive spaces admit Fréchet differentiable norms whose dual
norms are not locally uniformly rotund (see [27]).

From here, Borwein and Fitzpatrick produced a complete answer as to when
Wijsman and Mosco convergence coincide sequentially with a chain of equiva-
lences that at first glance do not appear to be related [13].

Theorem 2.3 (Borwein–Fitzpatrick). For a Banach space X, the following
are equivalent.

(a) X is reflexive and its dual norm is (sequentially) w∗-Kadec–Klee.
(b) Wijsman and Mosco convergence coincide for sequences of closed convex

sets in X.
(c) For every closed nonempty subset F ⊂ X, there is a dense, equivalently

a generic, set of points in X∗ \ F that admit nearest points in C.

At about the time the preceding result appeared, it was discovered that
Mosco convergence is not preserved under duality in nonreflexive spaces; see [10].
Shortly thereafter, slice convergence became more prominent because of papers
such as [2, 5]; see also [6]. Indeed, it was known (and is straightforward to check)
that slice convergence coincides with Mosco convergence in reflexive spaces. In
[5], Beer showed that slice convergence is preserved under polarity/Fenchel dual-
ity provided one considers dual slice convergence on the dual space. Because of
this duality result, the question as to whether the Borwein–Fitzpatrick theorem
[13] could be extended to nonreflexive spaces with slice convergence replacing
Mosco convergence became rather interesting. In [11], a detailed analysis of con-
vergence of level sets and dual topologies was given continuing the original work
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of Beer in [4]. In particular, it was observed Wijsman and slice convergence agree
for level sets of linear functionals if and only if the dual norm is w∗-Kadec–Klee,
and it was conjectured that the result would hold for general closed convex sets.
The full result was obtained by the authors in [14]; notice its similarities with
Theorem 1.1.

Theorem 2.4. For a Banach space X, the following are equivalent.

(a) The dual norm on X∗ is w∗-Kadec–Klee.
(b) For each separable subspace Y of X, Wijsman and slice convergence

coincide sequentially with respect to the inherited norm.
(c) Wijsman and slice convergence coincide in every subspace of X.

The proof of this result relied heavily on separation techniques and a char-
acterization of slice convergence given by Attouch and Beer [2] and some subtle
variations thereof. We will discuss this in the next section. We should also men-
tion that analogues of this result concerning Wijsman versus Mosco and weak
compact gap convergence are also valid provided we use w∗-τ -Kadec–Klee norms;
see [14, Theorem 2.3].

3. Characterizations of epi-convergence

We begin with Attouch’s and Beer’s particularly nice characterization of slice
convergence used in their path to determining the relationship between slice
convergence of a sequence of convex functions and the epigraphical convergence
of their subdifferentials. First, we single out the following two conditions from
their work which we have chosen to call (AB1) and (AB2).

(AB1) If x0 ∈ dom(∂f), there exist xn → x0 such that lim supn→∞ fn(xn) ≤
f(x0).

(AB2) If y0 ∈ range(∂f), there exist yn ∈ X∗ with ‖yn − y0‖ → 0 and

lim sup
n→∞

f∗n(yn) ≤ f∗(y0).

The importance of these conditions is demonstrated in the following result
[2, Theorem 3.1] and some of its applications; see [2, 6].

Theorem 3.1 (Attouch–Beer). Let X be a Banach space and suppose fn, f ∈
Γ(X). Then {fn} →S f if and only if (AB1) and (AB2) are satisfied.

A natural question is whether an analogous characterization holds for Wi-
jsman or other forms of gap convergence. For this it is natural to consider the
following variations of (AB2).

(ABT
2 ) If y0 ∈ range(∂f), there exist yn ∈ X∗ with ‖yn‖ → ‖y0‖ such that

{yn} converges to y0 in the topology T on X∗ and

lim sup
n→∞

f∗n(yn) ≤ f∗(y0).
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We will use (AB∗2) or (ABτ
2) to denote this condition when T is respectively the

weak∗ or Mackey topology on X∗.
Let us note that it is relatively easy to show (AB1) and (AB∗2) (resp. (ABτ

2))
imply Wijsman (resp. weak compact gap) convergence. The converse is far more
subtle, and is based on the following theorem which was obtained by the present
authors in set form in [14, Remark 2.2] and in its current form in [15, Corollary
3.2] (along with further information concerning the properties of the correspond-
ing product norm on X × R).

Theorem 3.2. Let X be a separable Banach space and suppose fn, f ∈
Γ(X). Then {fn} →W f if and only if (AB1) and (AB∗2) are satisfied.

Observe that if the dual norm is sequentially w∗-Kadec–Klee, then (AB∗2)
becomes (AB2). This, along with the above theorem and a separable/sequential
reduction argument, was the original approach for proving Wijsman and slice
convergence coincide when the dual norm is w∗-Kadec–Klee. This naturally
leads to the following questions. First, is Theorem 3.2 valid in arbitrary nonsep-
arable spaces? Second, is it sufficient to have a sequentially w∗-Kadec–Klee dual
norm for Wijsman convergence to imply slice convergence for sequences? To our
knowledge the second question remains open, while it follows that the first has a
negative answer by the functional analogue of [16, Theorem 3.1]. Moreover, the
functional analogue of [16, Proposition 3.2] also shows that (AB1) and (ABτ

2)
can be properly stronger than weak compact gap convergence even in separable
spaces.

We thus turn to the task of presenting analogues of the Attouch–Beer con-
ditions which do characterize Wijsman, weak compact gap or slice convergence.
These characterizations are based on combining arguments from [15, 16] so we
are including rather complete details, which also give a flavour of the techniques
involved in the quoted arguments.

The following functional versions of conditions given in [16, Theorem 3.3] are
what we believe are the appropriate variations of the Attouch–Beer conditions;
they will enable us to characterize certain forms of “gap-convergence” for nets
of functions.
(3.1) If x0 ∈ dom(∂f), d((x0, f(x0)), epi fλ) → 0.
(3.2T ) If y0 ∈ range(∂f), then there exists {yλ,µ} converging to y0 with

respect to a given topology T on X∗ such that ‖yλ,µ‖ → ‖y0‖ and

lim sup
µ

(lim sup
λ

f∗λ(yλ,µ)) ≤ f∗(y0).

We will write (3.2), (3.2τ ) or (3.2∗) when T is respectively the norm, Mackey or
weak∗ topology on X∗. We will also say that a norm on X×R is fully compatible
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with the original norm on X if its dual norm on X∗ × R satisfies

‖(yλ, t)‖ → ‖(y0, t)‖ whenever yλ →w∗ y0 and ‖yλ‖ → ‖y0‖.

Notice that the `p-product norms on X ×R for 1 < p ≤ ∞ are fully compatible,
while the `1-product norm is not.

Theorem 3.3. Suppose fλ, f are functions in Γ(X).

(a) {fλ} →W f (with respect to each fully compatible norm on X × R) if
and only if (3.1) and (3.2∗) are satisfied.

(b) {fλ} →WG f (with respect to each fully compatible norm on X × R) if
and only if (3.1) and (3.2τ ) are satisfied.

(c) {fλ} →S f if and only if (3.1) and (3.2) are satisfied.

Proof. Let us prove (b), for example, because all the cases have similar
proofs. Throughout we will let C := epi f and Cλ = epi fλ.

⇒: Suppose {fλ} converges weak compact gap to f , that is, {Cλ} converges
weak compact gap to C in X×R endowed with the norm ‖(x, t)‖ = max{‖x‖, |t|}.
Fix (x0, f(x0)) ∈ C. Then Wijsman convergence forces d((x0, f(x0)), Cλ) → 0,
so (3.1) holds.

Let us now show that (3.2τ ) holds. We let y0 ∈ ∂f(x0) and so (y0,−1)
attains its supremum on C at (x0, f(x0)). By [16, Theorem 3.3] there is a net
{(yλ,β , tλ,β)} converging to (y0,−1) in the Mackey topology on X∗×R such that

lim sup
β

(lim sup
λ

{sup
Cλ

(yλ,β , tλ,β)})) ≤ sup
C

(y0,−1).

Now tλ,β → −1 and so letting ỹλ,β := |tλ,β |−1yλ,β we have

(3.3) lim sup
β

(lim sup
λ

{sup
Cλ

(ỹλ,β ,−1)}) ≤ sup
C

(y0,−1)

and ‖ỹλ,β‖ → ‖y0‖ and ỹλ,β →τ y0. But now (3.3) implies

lim sup
β

(lim sup
λ

f∗λ(yλ,β)) ≤ f∗(y0).

⇐: Suppose (3.1) and (3.2τ ) are satisfied. We will show {Cλ} converges weak
compact gap to C with respect to every fully compatible norm on X×R. First, re-
gardless of the norm on X×R, it follows from the Brønsted–Rockafellar theorem
(see [23, Theorem 3.17]) and (3.1) that limλ d((x, r), Cλ) = 0 for each (x, r) ∈ C.
Thus, for any set W ⊂ X×R, lim supλ d(W,Cλ) ≤ d(W,C). Now suppose X×R
is endowed with a fully compatible norm and W is a weakly compact set. We
may suppose d(W,C) > r > 0 and it suffices to show lim infλ d(W,Cλ) ≥ r. Thus
for F = W + Br, we have d(F,C) > 0. Consequently, [5, Lemma 4.10] shows
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there is a y0 ∈ ∂f(x0) such that F lies below the graph of f(x0) + y0( · − x0).
In other words,

(3.4) sup
C

φ0 + r‖φ0‖ ≤ inf
W

φ0 where φ0 := (y0,−1).

By (3.2τ ), we fix yλ,β →τ y0 such that ‖yλ,β‖ → ‖y0‖ and

lim sup
β

(lim sup
λ

f∗(yλ,β)) ≤ f∗(y0).

Because the norm on X×R is fully compatible with ‖·‖, we have ‖φλ,β‖ → ‖φ0‖
where φλ,β := (yλ,β ,−1). For ε > 0, we fix (λ0, β0) with

(3.5) sup
W
|φλ,β0 − φ0| < ε‖φ0‖ and f∗(yλ,β0) ≤ f∗(y0) + ε‖φ0‖ for λ ≥ λ0.

Therefore, for λ ≥ λ0, we have

‖φλ,β0‖d(W,Cλ) ≥ inf
W

φλ,β0 − sup
Cλ

φλ,β0 = inf
W

φλ,β0 − f∗λ,β0
(yλ,β0)

≥ inf
W

φλ,β0 − f∗(y0)− ε‖φ0‖ [by (3.5)]

≥ inf
W

φ0 − f∗(y0)− 2ε‖φ0‖ [by (3.5)]

= inf
W

φ0 − sup
C

φ0 − 2ε‖φ0‖

≥ (r − 2ε)‖φ0‖. [by (3.4)]

Because ‖φλ,β‖ → ‖φ0‖, using an appropriately chosen β0 in the above inequality
establishes that lim infλ d(W,Cλ) ≥ r. �

Examples showing that some restrictions, such as full compatibility, are
needed on the norm to obtain Theorem 3.3 are presented in [15].

The next result links Wijsman convergence with the convergence of Lipschitz
regularizations (we use the term Lipschitz regularization to denote the infimal
convolution of f with a multiple of the norm: f(x, µ) := inf{f(y) + µ‖x − y‖ :
y ∈ X}). In his influential monograph [1], Attouch was the first to explore
connections between epi-convergence and convergence of certain infimal con-
volutions of the functions. Subsequently, Azé [3] produced a characterization
of Mosco convergence in terms of certain Lipschitz regularizations in “nicely”
renormed reflexive spaces. This work in turn had a strong influence on [15].
In fact, Beer, who in [8] obtained characterizations of slice convergence that
involved the convergence of Lipschitz regularizations of both the functions and
their conjugates, conjectured to us that Azé’s theorem could be extended to non-
reflexive spaces renormed so that the dual norm is w∗-Kadec–Klee. The work
in [15] substantiates Beer’s conjecture and is one of the main by-products of the
following theorem; see Corollary 3.6(a).
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Theorem 3.4. Let X be a Banach space. Then the following are equivalent:

(a) fλ( · , µ) converges pointwise to f( · , µ) for all µ > µ∗ := d(0,dom f∗);
(b) (3.1) and (3.2∗) are satisfied;
(c) {fλ} converges Wijsman to f (with respect to each fully compatible norm

on X × R).

Proof. (a)⇒(b). One obtains (3.1) directly from [15, Prop. 1.5]. To show
that (3.2∗) holds, we first let y0 ∈ ∂f(x0) for some x0. For all r ≥ ‖y0‖ we have
y0 ∈ ∂f(x0, r) and f(x0, r) = f(x0) (see [15, Lemma 1.1]). Let r = ‖y0‖ and let
rn ↓ r. Index the norm compact convex sets by inclusion: {Kα}. Fix α0 such that
x0 ∈ Kα for α > α0. Now fλ( · , rn) is rn-Lipschitz and so fλ( · , rn) converges
uniformly to f( · , rn) on compact sets. Now we form the net β = (α, n) ordered
so that β′ ≥ β if α′ ≥ α and n′ ≥ n. Because fλ( · , rn) converges uniformly on
compact sets to f( · , rn) for each n, there exist λ(α, n) such that

(3.6) f(x, rn) +
1
n
≥ fλ(x, rn) ≥ f(x0) + y0(x− x0)−

1
2n

for λ ≥ λ(α, n), x ∈ Kα.

Let α0 be chosen so that x0 ∈ Kα0 . Consequently, (3.6) implies

(3.7) f(x0) +
1
n
≥ fλ(x0, rn) ≥ f(x0)−

1
2n

for λ ≥ λ(α, n), α ≥ α0.

Now for β = (α, n), α ≥ α0 and λ ≥ λ(α, n), one uses (3.6) with the sandwich
theorem to find functionals yλ,β and numbers aλ,β such that

f(x0) + y0(x− x0)−
1
n
≤ yλ,β(x) + aλ,β for x ∈ Kα,(3.8)

yλ,β(x) + aλ,β ≤ fλ(x, rn) for all x.(3.9)

Because fλ(x, rn) is rn-Lipschitz, we know ‖yλ,β‖ ≤ rn. If λ 6≥ λ(α, n), we let
yλ,β = y0.

We now show that the net {yλ,β} converges weak∗ to y0. This will be accom-
plished by showing lim infλ,β yλ,β(h) ≥ y0(h) for each h ∈ X. For this, we fix
h ∈ X and choose α1 ≥ α0 such that h ∈ Kα for all α ≥ α1. We may restrict
our attention to the tail of the net where α ≥ α1. If λ 6≥ λ(α, n), then yλ,β = y0.
Thus, we need only further concern ourselves when λ ≥ λ(α, n). Now (3.7), (3.8)
and (3.9) imply

(3.10)
f(x0) + y0(h− x0)−

1
n
≤ yλ,β(h) + aλ,β ,

yλ,β(x0) + aλ,β ≤ f(x0) +
1
n

.

The second inequality in (3.10) implies yλ,β(x0)+aλ,β−1/n ≤ f(x0). Using this
on the left side of the first inequality yields yλ,β(x0) + aλ,β + y0(h− x0)− 2/n ≤
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yλ,β(h) + aλ,β , which in turn implies

y0(h− x0)−
2
n
≤ yλ,β(h− x0).

Therefore, lim infλ,β yλ,β(x) ≥ y0(x) for all x ∈ X. Hence {yλ,β} converges weak∗

to y0 as desired. Consequently, lim infα,β ‖yα,β‖ ≥ ‖y0‖ and so limα,β ‖yα,β‖ =
‖y0‖.

Finally, we show lim supβ(lim supλ f∗λ(yλ,β)) ≤ f∗(y0). From (3.7) and (3.8)
we have

(3.11) yλ,β(x0) + aλ,β ≥ f(x0)−
1
n
≥ fλ(x0, rn)− 2

n
for λ ≥ λ(α, n), α ≥ α0.

Now (3.9) and (3.11) imply yλ,β ∈ ∂2/nfλ(x0, rn). Since fλ( · , rn) ≤ fλ( · ), this
yields

(3.12) f∗λ(yλ,β) ≤ (fλ( · , rn))∗ ≤ yλ,β(x0)− fλ(x0, rn) +
2
n

.

Suppose (λ, β) is such that α ≥ α0 and |(yλ,β − y0)(x0)| < 1/n by weak∗ conver-
gence. Then for λ ≥ λ(α, n), we have

f∗λ(yλ,β) ≤ yλ,β(x0)− f(x0) +
3
n

[by (3.12) & (3.7)]

≤ y0(x0)− f(x0) +
4
n

= f∗(y0) +
4
n

.

This completes the proof that (3.2∗) holds.
(b)⇒(c). This follows from Theorem 3.3(a).
(c)⇒(a). Because {fλ} converges Wijsman to f , this follows from the equiv-

alence of (a) and (c) in [15, Theorem 4.3]. �

We now gather some consequences first of Theorem 3.3 and then of Theo-
rem 3.4.

Corollary 3.5. Suppose X is a Banach space and fλ, f ∈ Γ(X).

(a) If {fλ} →W f and the dual norm on X∗ is w∗-Kadec–Klee, then
{fλ} →S f .

(b) If {fλ} →W f and the dual norm on X∗ is w∗-τ -Kadec–Klee, then
{fλ} →WG f .

(c) If {fλ} →WG f and the dual norm on X∗ is τ -Kadec–Klee, then
{fλ} →S f .

Proof. This follows directly from Theorem 3.3 and the properties of Kadec–
Klee norms. �
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Corollary 3.6. Let X be a Banach space, f, fλ ∈ Γ(X) and suppose
fλ( · , µ) converges pointwise to f( · , µ) for all µ > µ∗ := d(0,dom f∗).

(a) If the dual norm on X∗ is w∗-Kadec–Klee, then {fλ} converges slice
to f .

(b) If the dual norm on X∗ is w∗-τ -Kadec–Klee, then {fλ} converges weak
compact gap to f with respect to each fully compatible norm on X ×R.

Proof. By Theorem 3.4 we know {fλ} converges Wijsman to f . Hence the
result follows from Corollary 3.5. �

Contrast the failure of Wijsman convergence of sequences of convex functions
to imply (AB1) and (AB∗2) with the characterization of Theorem 3.3. This shows
why it would be difficult, if indeed possible, to prove a variant of Corollary 3.5(a)
for sequences of convex functions if the norm were only assumed sequentially w∗-
Kadec–Klee. We leave this as the following open question.

Question 3.7. (a) If the dual norm on X∗ is sequentially w∗-Kadec–Klee,
does Wijsman convergence of sequences of closed convex sets in X imply slice
convergence?

(b) If the dual norm on X∗ is sequentially w∗-τ -Kadec–Klee, does Wijsman
convergence imply weak compact gap convergence for sequences of closed convex
sets in X, or even less arduously Mosco convergence?

Notice, of course, that if the answer to Question 1.7 turns out to be posi-
tive, then Theorem 2.4 has already solved Question 3.7(a). However, in light of
Example 1.8, `∞ would be natural place to begin looking at Question 3.7(b).
We should point out that the sequential variant of Corollary 3.5(c) fails in a
separable space such that all norms have dual norms that are sequentially τ -
Kadec–Klee. Indeed, this was shown in [16, Proposition 3.2], where a sequence
of w∗-compact convex sets converging weak compact gap (in fact w∗-slice) but
not slice to a w∗-compact convex set was constructed in the dual of the James
space; cf. Remark 1.9.

Finally, let us outline how some of the previous techniques can be applied to
w∗-slice convergence.

Theorem 3.8. {f∗λ} →S∗ f∗ if and only if

(i) if y0 ∈ dom(∂f∗), then d((y0, f
∗(y0)), epi f∗λ) → 0.

(ii) if x0 ∈ range(∂f∗) ∩X, then there exist xλ,µ → x0 such that

lim sup
µ

(lim sup
λ

fλ(xλ,µ)) ≤ f(x0).

Proof. ⇒: For this, one can first follow the argument of [16, Theorem 3.3]
to provide a modified w∗-slice version where the functionals are w∗-continuous
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because all sets used in the proof are w∗-closed so the separating functionals can
be chosen from X. One then argues as in Theorem 3.3 to convert to functional
form.

⇐: One argues as in Theorem 3.3 and uses a w∗-continuous separating sub-
gradient. �

Corollary 3.9. Suppose the norm on X is w-Kadec–Klee and that {f∗λ}
→W f∗ with respect to the dual norm on X∗. Then {f∗λ} →S∗ f∗.

Proof. It is clear that Theorem 3.8(i) holds, so it remains to verify Theorem
3.8(ii). For this, one can check that the proof of [16, Theorem 3.3] along with
the proof of Theorem 3.3 shows that for x0 ∈ range(∂f∗) ∩ X, there exists
{xλ,µ} →w∗ x0 such that ‖xλ,µ‖ → ‖x0‖ and

lim sup
µ

(lim sup
λ

fλ(xλ,µ)) ≤ f∗(x0).

Because the norm on X is w-Kadec–Klee, we have ‖xλ,µ − x0‖ → 0. This shows
Theorem 3.8(ii) holds, and completes the proof. �

Corollary 3.10. Suppose fλ, f ∈ Γ(X) and the norm on X is w-Kadec–
Klee. If f∗λ( · , µ) converges pointwise to f∗( · , µ) for all µ > d(0,dom f), then
{fλ} →S f .

Proof. It follows from Theorems 3.4 and 3.8 that {f∗λ} →S∗ f∗. Thus the
result follows from Beer’s bicontinuity result [5]. �

It is apparently unknown whether sequential variants of Corollaries 3.9 and
3.10 are valid when one only posits sequentially w-Kadec–Klee norms.

4. Convergence with respect to all norms

From Theorems 1.10 and 2.3, one can deduce that if a sequence of closed
convex sets converges Wijsman with respect to each equivalent norm in a reflexive
space, then it convergences slice. In fact, much more is true as is shown by the
following interesting result of Beer [7, Theorem 3.1].

Theorem 4.1 (Beer). For a normed linear space X, a net of closed convex
sets {Cλ} converges Wijsman to C with respect to each equivalent norm on X

if and only if {Cλ} converges slice to C.

From this result and its proof, Beer was also able to show that the slice
topology on the closed convex sets of a Banach space X is Polish when X∗ is
separable. Theorem 4.1 is also closely related to the stability of various forms of
gap convergence in superspaces. It is not that difficult to check that slice conver-
gence is preserved in superspaces (see [14, Prop. 4.1]). In contrast, however, [14,
Example 4.2] constructs a sequence of convex sets converging Wijsman in a space
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X, isomorphic to c0, which does not converge Wijsman in X × R with respect
to some norm extending the norm on X. Using Theorem 4.1, [16, Theorem 2.2]
completely determines when such examples can exist:

Theorem 4.2. For a Banach space (X, ‖ · ‖) and Cλ, C closed convex sets
in X, the following are equivalent.

(a) {Cλ} →W C with respect to each norm on X × R extending ‖ · ‖.
(b) {Cλ} →W C with respect to every norm on X.
(c) {Cλ} →S C in every superspace of X.

There is also a dual version of this for w∗-slice convergence (see [16, Theorem
2.5]), which is, naturally, based on the dual version of Theorem 4.1. Theorem
4.2 serves as a further reminder of the superior permanence properties possessed
by slice convergence compared to weaker forms of gap convergence; and whence
as to why Wijsman convergence with respect to norms whose dual norms are
w∗-Kadec–Klee is so well behaved.
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