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1. Introduction

We consider the existence and multiplicity of solitary waves of the generalized
Kadomtsev–Petviashvili equation

(1) ωt + ωxxx + (f(ω))x = D−1
x ωyy,

where

D−1
x h(x, y) :=

∫ x

−∞
h(s, y) ds.

See [5] for references concerning this equation. A solitary wave is a solution of
the form

ω(t, x, y) = u(x− ct, y),

where c > 0 is fixed. Substituting in (1), we obtain

−cux + uxxx + (f(u))x = D−1
x uyy

or

(−uxx +D−2
x uyy + cu− f(u))x = 0.

Existence results have been established by de Bouard and Saut ([3, 4]) for pure
power nonlinearities using a minimization method, and by Willem ([10]) for more
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general nonlinearities including nonhomogeneous ones using the Ambrosetti–
Rabinowitz mountain-pass theorem. As observed in [4], a physical example of a
nonhomogeneous nonlinearity is contained in [8].

In this note, we shall consider multiplicity of solitary waves. To state our
results, we first give some preliminaries.

In this section, c > 0 is fixed.

Definition. On Y := {gx : g ∈ D(R2)} we define the inner product

(2) (u, v) :=
∫

R2
[uxvx +D−1

x uyD
−1
x vy + cuv]

and the corresponding norm

(3) ‖u‖ :=
( ∫

R2
[u2

x + (D−1
x uy)2 + cu2]

)1/2

.

A function u : R2 → R belongs to X if there exists (un) ⊂ Y such that

(a) un → u a.e. on R2,
(b) ‖uj − uk‖ → 0 as j, k →∞.

The space X with inner product (2) and norm (3) is a Hilbert space.

Now consider the problem

(P) (−uxx +D−2
x uyy + cu− f(u))x = 0, u ∈ X.

We assume

(f1) f ∈ C1(R,R) and for some 2 < p < 6 and c0 > 0,

|f ′(u)| ≤ c0|u|p−2,

(f2) there exists 2 < α < p such that, for every u ∈ R\{0},

0 < αF (u) ≤ uf(u)

where

F (u) :=
∫ u

0

f(s) ds,

(f3) for every u ∈ R\{0}, f(u)u < f ′(u)u2,
(f4) there exist 0 < a < b such that, for every u ∈ R,

a|u|p ≤ F (u) ≤ b|u|p.

The weak solutions of (P) are the critical points of the functional ϕ defined on
X by

(4) ϕ(u) :=
∫

R2

[
1
2 (u2

x + (D−1
x uy)2 + cu2)− F (u)

]
.
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In order to obtain multiplicity results, we shall reformulate the problem to one
defined on the unit sphere in X. For u ∈ S, where S is the unit sphere in X,
and λ > 0, one finds

ϕ(λu) =
λ2

2
−

∫
R2
F (λu),

d

dλ
ϕ(λu) = λ−

∫
R2
f(λu)u,

d2

dλ2
ϕ(λu) = 1−

∫
R2
f ′(λu)u2.

As in [1], it is easy to verify that, for every u ∈ S, there exists a unique λ(u) > 0
such that

d

dλ
ϕ(λu)

∣∣∣∣
λ=λ(u)

= 0 and ϕ(λ(u)u) = max
λ≥0

ϕ(λu).

We define a new functional on S by

(5) ψ(u) := ϕ(λ(u)u).

Lemma 1. Under assumptions (f1)–(f3), if u ∈ S is a critical point of ψ,
then λ(u)u is a critical point of ϕ.

If we replace f(u) by the nonlinear term d|u|p−2u, where d > 0, we obtain
the associated functionals ϕd defined on X and ψd defined on S. We shall prove
that the infima

(6) m := inf
u∈S

ψ(u), md := inf
u∈S

ψd(u)

are always achieved and positive. We shall use the following notations:

K(ψ) := {u ∈ S | ψ′(u) = 0},
ψ−1((α, β)) := {u ∈ S | α < ψ(u) < β},
ψc := {u ∈ S | ψ(u) ≤ c}.

For any set A ⊂ X invariant with respect to translations, we denote by A/R2

the quotient of A with respect to translations.
Our main assumption is

(∗) there exists γ satisfying 0 < γ ≤ mb such that

ψ−1
b ((mb,mb + γ)) ∩K(ψb) = ∅

and that ψmb

b /R2 contains only isolated points.

Theorem 1. Under assumptions (f1)–(f4) and (∗), if

b/a < (1 + γ/mb)(p−2)/2,

then (P) has at least two geometrically distinct weak solutions.



264 Z.-Q. Wang — M. Willem

2. A compactness condition

In this section, we shall give a characterization of all (PS) sequences for
ϕ (defined in (4)) in X. Similar results were obtained in [6] for Hamiltonian
systems.

Lemma 2. (i) The following imbeddings are continuous:

X ⊂ Lp(R2), 2 ≤ p ≤ 6.

(ii) The following imbeddings are compact:

X ⊂ Lp
loc(R

2), 1 ≤ p < 6.

Proof. For (i), see [2], p. 323. For (ii), see [4], Lemma 3.3. �

Lemma 3. If (un) is bounded in X and if for some r > 0,

sup
(x,y)∈R2

∫
Br(x,y)

|un|2 → 0 as n→∞,

then un → 0 in Lp(R2) for 2 < p < 6.

Proof. See [10], Lemma 4. �

Lemma 4. There exists c1 > 0 such that ϕ(u) ≥ c1 for all u ∈ K(ϕ) \ {0}.

Proof. Note first that 0 is an isolated critical point of ϕ. If there is {un} ⊂
K(ϕ) \ {0} such that limn→∞ ϕ(un) ≤ 0, we get

lim
n→∞

(
1
2
‖un‖2 −

∫
F (un)

)
≤ 0

and
‖un‖2 −

∫
f(un)un = 0.

Hence
lim

n→∞
(α/2− 1)‖un‖2 ≤ 0,

which is a contradiction. �

Lemma 5. Let {un} ⊂ X be such that ϕ(un) → c 6= 0 and ϕ′(un) → 0
as n → ∞. Then there are ` ∈ N (depending on c), v1, . . . , v` ∈ K(ϕ) \ {0},
a subsequence of {un} and corresponding {(xi

n, y
i
n)} ⊂ R2 for i = 1, . . . , ` such

that ∥∥∥un −
∑̀
i=1

vi( · + xi
n, · + yi

n)
∥∥∥ → 0 as n→∞,(7)

∑̀
i=1

ϕ(vi) = c,(8)
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and
(xi

n − xj
n)2 + (yi

n − yj
n)2 →∞ as n→∞, i 6= j.

Proof. First, by (f2) for n large,

c+ 1 +
1
α
‖un‖ ≥ ϕ(un)− 1

α
〈ϕ′(un), un〉 ≥

(
1
2
− 1
α

)
‖un‖2.

Hence, un is bounded in X. By Lemma 3, we may assume there exist δ > 0,
ν > 0 and (x1

n, y
1
n) ∈ R2 such that∫

Br(x1
n,y1

n)

|un|2 ≥ δ.

Define u1
n(x, y) = un(x+ x1

n, y + y1
n) and Br = Br(0, 0). Then

(10) ‖u1
n‖L2(Br) ≥ δ

and
ϕ(u1

n) = ϕ(un), ‖ϕ′(u1
n)‖ = ‖ϕ′(un)‖, ‖u1

n‖ = ‖un‖.
Therefore going if necessary to a subsequence, {u1

n} converges to v1 both weakly
in X and strongly in Lp

loc(R2) for 2 ≤ p < 6. By (10),

‖v1‖L2(Br) ≥ δ

and v1 6= 0.
Next, we show that v1 is a critical point of ϕ. For every w ∈ Y , we have

〈ϕ′(v1), w〉 = lim
n→∞

〈ϕ′(u1
n), w〉 = 0.

By Lemma 4, ϕ(v1) = c1 > 0.
Next, we consider the new sequence u2

n = u1
n − v1 and we shall show

(11) ϕ(u2
n) → c− ϕ(v1)

and

(12) ϕ′(u2
n) → 0.

Therefore, we may repeat the proof above finishing the proof of the lemma.
First,

ϕ(u1
n) = ϕ(u2

n + v1) = ϕ(u2
n) + ϕ(v1) + (u2

n, v1)(13)

−
∫

R2
(F (u2

n + v1)− F (u2
n)− F (v1)).

Note that (u2
n, v1) → 0 as n→∞. So it suffices to show that the last integral in

(13) tends to zero as n→∞. For any ε > 0, we may choose R > 0 such that

(14)
∫

R2\BR

F (v1) ≤ ε and
∫

R2\BR

|v1|2 < ε.
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In the following c denotes various constants independent of u. By (f1),∫
R2\BR

|F (u2
n + v1)− F (u2

n)|

≤
∫

R2\BR

|f(u2
n + ξv1)| · |v1|

≤
∫

R2\BR

{|u2
n|+ |v1|+ c(|u2

n|+ |v1|)p−1}|v1|

≤
( ∫

R2\BR

|u2
n|2

)1/2( ∫
R2\BR

|v1|2
)1/2

+
∫

R2\BR

|v1|2 + c

( ∫
R2\BR

(|u2
n|+ |v1|)p

)(p−1)/p( ∫
R2\BR

|v1|p
)1/p

= O(ε).

Combining this with the fact that u2
n → 0 in Lp

loc(R2) for any 2 ≤ p < 6, we
get (11). To show (12), let ω ∈ Y . Then

〈ϕ′(u2
n), ω〉 = 〈ϕ′(u1

n), ω〉 −
∫

R2
(f(u2

n)− f(u1
n) + f(v1))ω.

Since ϕ′(u1
n) → 0, it suffices to show

sup
‖ω‖≤1

∣∣∣∣ ∫
R2

(f(u2
n)− f(u1

n) + f(v1))ω
∣∣∣∣ → 0 as n→∞.

Let ε > 0, and choose R > 0 again such that (14) holds. Then∣∣∣∣ ∫
R2\BR

f(v1)ω
∣∣∣∣ ≤ ∫

R2\BR

(|v1|+ c|v1|p−1)|ω|

≤ ε‖ω‖+ Cε‖ω‖.

And∣∣∣∣ ∫
R2\BR

(f(u2
n)− f(u2

n + v1))ω| ≤
∫

R2\BR

|f ′(u2
n + ξv1)| · |v1| · |ω|

≤
∫

R2\BR

C(|u2
n|+ |v1|)p−2|v1| · |ω| ≤ O(ε)‖ω‖.

Using the convergence of u2
n → 0 in Lp

loc(R2) again, we get (15). �

Since there is a one-to-one correspondence between the critical points of ϕ
in X and the critical points of ψ on S, the following lemma is a consequence of
Lemma 5.
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Lemma 6. Let {un} ⊂ S be such that ψ(un) → c ∈ [m, 2m) and ψ′(un) → 0
as n → ∞. Then there exist (xn, yn) ∈ R2 such that un( · + xn, · + yn) (up to
a subsequence) converges to u0 ∈ S, and ψ′(u0) = 0, ψ(u0) ∈ [m, 2m).

Recall that the least energy for ψ on S is defined by

m = inf
u∈S

ψ(u).

Theorem 2. Under assumptions (f1)–(f3), the least energy m is always
achieved and therefore (P) has a nontrivial weak solution. If we further as-
sume f to be odd in u, then (P) has a pair of nontrivial geometrically distinct
weak solutions.

Proof. It is easy to see that Lemma 6 implies that m is attained.
If f is odd, ψ is even on S. Then it suffices to show that for u 6= 0, −u

cannot be a translation of u. Indeed, if for some (x0, y0) ∈ R2,

−u(x, y) = u(x+ x0, y + y0), ∀(x, y) ∈ R2,

then

u(x+ 2x0, y + 2y0) = −u(x+ x0, y + y0) = u(x, y), ∀(x, y) ∈ R2,

i.e., u is a periodic function, which is impossible. �

Remark. A weak convergence argument was used in [10] by Willem to show
the existence of solutions of (P), which allows weaker assumptions on f .

3. Multiplicity results

To prove our main results, we follow the approach used in [1] where mul-
tiplicity results for homoclinic solutions were proved for a class of autonomous
Hamiltonian systems. The basic tool is the Lyusternik–Schnirelman category
theory.

Lemma 7. For any c ∈ [m, 2m), ψ has at least cat(ψc) critical points in ψc.

Proof. If the standard (PS) condition were satisfied in ψc, this would be
just a special case of the Lyusternik–Schnirelman theory. Though (PS) is not
satisfied by ψ in ψc, the following property (usually called property (C)) is sat-
isfied: For any c ∈ [m, 2m), if c is the only critical value of ψ in [c − ε, c + ε]
for some ε > 0 and U is a neighbourhood of K(ψ) ∩ ψ−1(c), then there exists
δ > 0 such that for all u ∈ ψ−1([c − ε, c + ε]) \ U , ‖ψ′(u)‖ ≥ δ. As was noted
in [1] this property is enough to establish the Lyusternik–Schnirelman theory in
ψc for c ∈ [m, 2m). �

Our main theorem will be proved if for some c ∈ [m, 2m), we can get

cat(ψc) ≥ 2,
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because if ψ has only one critical point modulo translations the category of this
point together with its translations is 1.

To estimate the category of the level sets for ψ, we shall compare them with
the ones of ψa and of ψb. First, some preliminaries.

For u ∈ X, we define [u] = {u( · +x0, · +y0) | (x0, y0) ∈ R2}. We may abuse
the notation denoting by [u] a point in X/R2.

Lemma 8. Let A ⊂ X be such that A/R2 is an isolated set. Then for any
u ∈ A, there exists an open set Uu in X such that

(1) [u] ⊂ Uu.

(2) If v ∈ [u], then Uv ≡ Uu, i.e., Uu is translation-invariant.
(3) Uu ∩ Uv = ∅ if u, v ∈ A, [u] 6= [v].
(4) [u] is a deformation retract of Uu.

Proof. For any u ∈ A, consider [u] ∈ A/R2. Then there is an ε-neighbour-
hood V[u] in X/R2. By the fact that A/R2 is isolated, we may choose V[u] such
that V[u] ∩ V[v] = ∅ for [u], [v] ∈ A/R2, [u] 6= [v]. Then consider the projection
map π : X → X/R2, which is continuous. Define

Uu = π−1(V[u]).

Then it is obvious that (1)–(3) are satisfied. For (4), note that V [u] is contractible
to [u] and therefore Uu is contractible to [u] in X. �

Lemma 9. Let (f1)–(f4) and (∗) be satisfied. Then there exists ε0 > 0 sat-
isfying γ/mb > ε0 > 0 such that setting δ = δ(γ,mb, ε0, c) = (γ/mb − ε0)c, we
have

ψc
b ⊂ ψc+δ ⊂ ψc+δ

b .

Proof. By (f4), for every u ∈ X,

ϕb(u) ≤ ϕ(u) ≤ ϕa(u)

and thus
ψb(u) ≤ ψ(u) ≤ ψa(u), ∀u ∈ S.

This proves the second inclusion for any c and δ.
Next, we choose ε0 > 0 such that b/a = (1 + γ/mb − ε0)(p−2)/2. Since b > a,

we have 0 < ε0 < γ/mb. Then for all 0 < ε ≤ ε0, if ψb(u) ≤ c,

ψ(u) ≤ ψa(u) =
p− 2
2p

a−2/(p−2)‖u‖2p/(p−2)
Lp(R2)

≤ p− 2
2p

b−2/(p−2)(1 + γ/mb − ε)‖u‖2p/(p−2)
Lp(R2)

= (1 + γ/mb − ε)ψb(u)

≤ c+ (γ/mb − ε)c. �
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Lemma 10. Let A ⊂ B ⊂ C. Assume A is a deformation retract of C. Then
cat(B) ≥ cat(A).

Proof. This is more or less standard; for a reference, see [1]. Though it was
not clearly stated there the proof of Lemma 6 in [1] works here. �

Finally, we prove our Theorem 1.

Proof of Theorem 1. As was noted earlier, by Lemma 7 it suffices to
show that cat(ψc) ≥ 2 for some c ∈ [m, 2m).

First, applying Lemma 8 to A = ψmb

b , we get an open covering {Uu}u∈A/R2

satisfying (1)–(4) of Lemma 8. In particular, by Theorem 2,

cat
( ⋃

u∈A/R2

Uu

)
= cat(A) ≥ 2.

Next, we claim we can choose ε > 0 such that

(16) ε(1 + γ/mb − ε0) < ε0mb

and

(17) ψmb+ε
b ⊂

⋃
u∈A/R2

Uu,

where ε0 > 0 is given in Lemma 9. To see (17) is true, assume not. Then there
exist εn → 0 and un ∈ ψmb+εn

b such that un /∈
⋃

u∈A/R2 Uu. Hence {un} is a
minimizing sequence for ψb on S. By Ekeland’s variational principle (see e.g.
[7]), we may assume {un} is a (PS)mb

sequence for ψb. By Lemma 6, there
exist (xn, yn) ∈ R2 such that vn(x, y) = un(x + xn, y + yn) converges in S to
v0, and ψ′b(v0) = 0, ψb(v0) = mb. That is, v0 ∈ A. But because

⋃
u∈A/R2 Uu is

translation-invariant, v0 /∈
⋃

u∈A/R2 Uu, a contradiction. Thus (17) holds.
Thus we have

A ⊂ ψmb+ε
b ⊂

⋃
u∈A/R2

Uu

with A being a deformation retract of
⋃

u∈A/R2 Uu. By Lemma 10, we get

cat(ψmb+ε
b ) ≥ cat(A) ≥ 2.

Finally, by (16), ε′ := ε0(mb + ε)− (1 + γ/mb)ε > 0. By Lemma 9,

ψmb+ε
b ⊂ ψmb+γ−ε′

⊂ ψmb+γ−ε′

b .

By (∗) and property (C), ψmb+ε
b is a deformation retract of ψmb+γ−ε′

b . By Lemma
10 again,

cat(ψmb+γ−ε′
) ≥ cat(ψmb+ε

b ) ≥ 2.

The proof is complete. �
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Remark. Inspecting our proof, we see that our arguments imply that ψ has
as many geometrically distinct critical points on S as ψb does.
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