
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 8, 1996, 275–294

POSITIVE ENTIRE SOLUTIONS OF
QUASILINEAR ELLIPTIC PROBLEMS

VIA NONSMOOTH CRITICAL POINT THEORY

Monica Conti — Filippo Gazzola

We prove that a variational quasilinear elliptic equation admits a positive
weak solution on Rn. Our results extend to a wider class of equations some
known results about semilinear and quasilinear problems: all the coefficients
involved (also the ones in the principal part) depend both on the variable x and
on the unknown function u; moreover, they are not homogeneous with respect
to u.

1. Introduction

We investigate the existence of a positive function u ∈ H1(Rn) (n ≥ 3)
solving in distributional sense the quasilinear elliptic equation

(1) −
n∑

i,j=1

Dj(aij(x, u)Diu) +
1
2

n∑
i,j=1

∂aij

∂s
(x, u)DiuDju

= −b(x)u+ g(x, u) in Rn;

here H1 := H1(Rn) denotes the completion of C∞c := C∞c (Rn) (the space of
smooth functions with compact support in Rn) with respect to the norm

∀u ∈ C∞c ‖u‖ =
( ∫

Rn

(|∇u|2 + u2)
)1/2

;
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it is well known that there exist continuous imbeddings H1 ⊂ Lp(Rn) for all p ∈
[2, 2∗], where 2∗ = 2n/(n− 2) is the critical Sobolev exponent. The assumptions
on the coefficients aij , b, g and the exact statements of our results are quoted in
Section 2.

To determine weak solutions of (1) we look for critical points of the functional
J : H1 → R defined by

∀u ∈ H1 J(u) =
1
2

∫
Rn

n∑
i,j=1

aij(x, u)DiuDju +
1
2

∫
Rn

b(x)u2 −
∫

Rn

G(x, u)

where G(x, ξ) =
∫ ξ

0
g(x, t) dt. The first difficulty we have to face is that we

cannot work in the classical framework of critical point theory; indeed, under
reasonable assumptions on aij , b, g, the functional J is continuous but not even
locally Lipschitz unless either the functions aij(x, s) are independent of s or n = 1
(see [10]). Nevertheless, the derivative of J exists in the smooth directions, i.e.
for all u ∈ H1 and ϕ ∈ C∞c we can define

J ′(u)[ϕ]

=
∫

Rn

( n∑
i,j=1

[
aij(x, u)DiuDjϕ+

1
2
∂aij

∂s
(x, u)DiuDjuϕ

]
+ b(x)uϕ− g(x, u)ϕ

)
.

According to the nonsmooth critical point theory developed in (for the reader’s
convenience we quote the basic tools in Section 5), we know that critical points
u (in a suitable sense) of J satisfy J ′(u)[ϕ] = 0 for ϕ ∈ C∞c and hence solve
(1) in distributional sense. Therefore we follow this theory as it seems to be the
natural framework to study by variational methods quasilinear equations of the
kind of (1) (see [3, 10, 11, 12]).

In the last few years there has been a growing interest in the existence of pos-
itive solutions to variational semilinear and quasilinear equations on unbounded
domains; these problems are suggested by various branches of mathematical
physics (see [8, 21] and references therein). It seems difficult to give complete
references of the results existing in the literature; however, let us make an at-
tempt to indicate the ones which are more closely related to our problem.

Semilinear and quasilinear problems in bounded domains may be studied and
solved by standard variational techniques as in [1, 23]; it is well known that in
unbounded domains these arguments do not apply due to the lack of compactness
of the problem (the PS condition does not hold); the a priori estimate techniques
fail as well, as such estimates are not, in general, sufficient to guarantee a “good”
behaviour at infinity of the solution or to prevent the solution from being the
trivial one (see [22]). However, for some problems, also in unbounded domains a
form of compactness can be recovered by using the techniques of [21]; a typical
situation is when the coefficients involved in the problem tend to some limits at
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infinity: in this case the related problem at infinity allows us to find a range of
levels at which the PS sequences are in fact relatively compact (see [7, 21, 22]
for semilinear problems and [5] for a quasilinear case). Quasilinear equations
on unbounded domains have been studied, among others, in [5, 14, 18, 20, 24];
in all these papers, the principal part of the differential equation is of the kind
div[ϕ(∇u)] for suitable functions ϕ.

The structure of (1) is different, the coefficients involved depend both on
x and u and this yields some further difficulties. First, we cannot obtain the
critical point of J as a constrained critical point on a suitable unit ball as in
[21] because the terms involved in (1) are not homogeneous with respect to u;
moreover, we cannot follow the approximation procedure of [14, 17] because
it requires a certain monotonicity of the principal part of the functional (see
Section 3). Second, in the autonomous case, the equation does not necessarily
admit a radially symmetric solution on Rn: a form of compactness induced by
this symmetry can be exploited to prove existence results (see [8] and references
therein); in this paper we obtain a positive solution of (1) (when the coefficients
are independent of x) by applying the concentration-compactness principle [21]
directly on PS sequences. Third, we cannot give a representation result for PS
sequences as in [5, 6, 7] because the gradient of the functional J is not defined;
however, if the quasilinear equation (1) “converges” to a semilinear problem at
infinity we can still prove a weak form of the representation result and obtain
a positive solution of (1). We point out that to prove our results we do not
wonder about the relative compactness of PS sequences of the functional J but
we determine a solution of (1) only by means of the weak convergence of PS
sequences.

2. Main existence results

Throughout this paper we require the coefficients aij (i, j = 1, . . . , n) to
satisfy

(2)


aij ≡ aji,

aij(x, ·) ∈ C1(R) for a.e. x ∈ Rn,

aij(x, s),
∂aij

∂s
(x, s) ∈ L∞(Rn × R,R);

moreover, on the matrices [aij(x, s)] and [s(∂aij/∂s)(x, s)] we make the following
assumptions:

(3) ∃ν > 0,
n∑

i,j=1

aij(x, s)ξiξj ≥ ν|ξ|2 for a.e. x ∈ Rn, ∀s ∈ R, ∀ξ ∈ Rn,
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(4)


∃p ∈ (2, 2∗), γ ∈ (0, p− 2),

0 ≤ s
n∑

i,j=1

∂aij

∂s
(x, s)ξiξj ≤ γ

n∑
i,j=1

aij(x, s)ξiξj

for a.e. x ∈ Rn, ∀s ∈ R, ∀ξ ∈ Rn.

We will first prove an existence result for the following autonomous equation:

(5) −
n∑

i,j=1

Dj(aij(u)Diu) +
1
2

n∑
i,j=1

a′ij(u)DiuDju = −λu+ |u|p−2u in Rn.

Theorem 1. Assume that the functions aij do not depend on x, i.e. aij(x, s)
= aij(s) and that (2)–(4) hold; then, for all λ > 0, problem (5) admits a positive
nontrivial solution u ∈ H1(Rn).

To prove an existence result for a nonautonomous case some other assump-
tions are needed. We first require that b ∈ L∞(Rn) is strictly positive:

(6) ∃b, b > 0 b ≥ b(x) ≥ b for a.e. x ∈ Rn;

let p be as in (4) and assume that there exist β > 0, α ∈ Lr(Rn) for some
r ∈ [2n/(n+ 2), 2) and q ∈ (2, 2∗) such that

(7)


g : Rn × R → R is a Carathéodory function,

g(x, 0) = 0 for a.e. x ∈ Rn,

g(x, s) ≤ α(x) + βsq−1 ∀s > 0 and for a.e. x ∈ Rn,

0 ≤ pG(x, s) ≤ sg(x, s) ∀s > 0 and for a.e. x ∈ Rn.

If we assume that

(8)



lim
|x|→∞

aij(x, s) = δij uniformly in s ∈ R ∀i, j = 1, . . . , n,

lim
|x|→∞

s · ∂aij

∂s
(x, s) = 0 uniformly in s ∈ R ∀i, j = 1, . . . , n,

lim
|x|→∞

b(x) = λ for some λ > 0,

lim
|x|→∞

g(x, s)
sp−1

= 1 uniformly in s > 0,

then, as |x| → ∞, the quasilinear equation (1) becomes a semilinear equation:
for positive solutions the following problem at infinity is obtained:

(9) −∆u+ λu = up−1 in Rn.

Equation (9) has been exhaustively studied in the literature (see e.g. [7, 8]): it
admits a strictly positive solution for all λ > 0 and p ∈ (2, 2∗). Assumptions
(8) state that the quasilinear equation (1) and the related functional J tend to
regularize as |x| → ∞: this nicer behaviour will allow us to prove
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Theorem 2. Assume (2)–(4) and (6)–(8); moreover, assume that

(10)


n∑

i,j=1

aij(x, s)ξiξj ≤ |ξ|2 ∀s ∈ R ∀ξ ∈ Rn for a.e. x ∈ Rn,

b(x) ≤ λ for a.e. x ∈ Rn,

g(x, s) ≥ sp−1 ∀s > 0 and for a.e. x ∈ Rn.

Then (1) admits a nontrivial positive solution in H1(Rn).

In the particular case where (1) is a semilinear problem of the kind −∆u +
b(x)u = g(x, u), the existence of positive entire solutions has been determined
under various assumptions on the nonlinearity g(x, ·) (see [6, 13, 17] and the rich
references therein). Theorem 2 generalizes in some sense such existence results
to the quasilinear case.

3. Some remarks on the assumptions

• The assumption (4) is typical of quasilinear problems: it appears, for in-
stance, in [2, 10] where different techniques are employed.

• By assumptions (2) and (4) we have

(11) u ∈ H1 ⇒
n∑

i,j=1

∂aij

∂s
(x, u)DiuDjuu ∈ L1(Rn)

and therefore J ′(u)[u] can be written in integral form.
• A particular attention must be paid when in (7) we have the limit case

α ∈ L2n/(n+2)(Rn): take r ∈ (2n/(n+ 2), 2); then for all ε > 0 there exist
α1 ∈ Lr and α2 ∈ L2n/(n+2) such that

(12) α = α1 + α2 and ‖α2‖2n/(n+2) ≤ ε;

this will be used in Section 4.4.
• Let us explain why we cannot use the procedure of [14, 17]: one should

minimize the functional J constrained on the set M = {u ∈ H1 \{0} : J ′(u)[u] =
0} and one should prove the crucial implication

u ∈M ⇒ J(u) = max
t≥0

J(tu).

In our context, by (11) it still makes sense to define the set M ; consider the
simple case where g(x, s) = |s|p−2s, take u ∈M and define the function

f(t) = J(tu) =
t2

2

∫
Rn

n∑
i,j=1

aij(x, tu)DiuDju+
t2

2

∫
Rn

b(x)u2 − tp

p

∫
Rn

|u|p.
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We have

f ′(t) = t

∫
Rn

n∑
i,j=1

aij(x, tu)DiuDju+
t2

2

∫
Rn

n∑
i,j=1

∂aij

∂s
(x, tu)DiuDjuu

+ t

∫
Rn

b(x)u2 − tp−1

∫
Rn

|u|p

and, since J ′(u)[u] = 0,

f ′(t) =
t

2

∫
Rn

〈[Ψ(x, tu)−Ψ(x, u)]∇u,∇u〉+ t(1− tp−2)
∫

Rn

|u|p

where Ψ(x, s) =
[
2aij(x, s) + ∂aij

∂s (x, s) · s
]
. Observe that f ′(1) = 0 and that

to ensure that t = 1 is at least a local maximum we would need the following
“monotonicity” assumption:

∀s2 > s1 ≥ 0 the matrix Ψ(x, s1)−Ψ(x, s2) is positive semidefinite

for a.e. x ∈ Rn, which, together with (4), implies that the coefficients aij do not
depend on s.

• Some information about the (local) behaviour of solutions of (1) follows
by applying Theorem 2.2.5 of [12]: if in (7) we also require that α ∈ Ls with
s > n/2 then any solution is locally bounded, and further results can be obtained
by well-known techniques of regularity theory.

• Our last remark states that we can obtain positive solutions of (1) by
determining critical points of the modified functional J+ defined by

J+(u) :=
1
2

∫
Rn

n∑
i,j=1

aij(x, u)DiuDju+
1
2

∫
Rn

b(x)u2 −
∫

Rn

G(x, u+) ∀u ∈ H1,

where u+ denotes the positive part of u, i.e. u+(x) = max(u(x), 0).

Lemma 1. Assume (2)–(4), (6), (7) and let u ∈ H1 satisfy J ′+(u)[ϕ] = 0 for
all ϕ ∈ C∞c ; then u is a weak positive solution of (1).

Proof. We first prove that u ≥ 0: consider the function Tu defined by

Tu =


0 if u ≥ 0,

u if 0 ≥ u ≥ −1,

−1 if u ≤ −1;

as Tu ∈ H1 ∩ L∞, we can evaluate J ′+(u) on Tu and we obtain

0 = J ′+(u)[Tu] =
∫
{0≥u≥−1}

n∑
i,j=1

aij(x, u)DiuDju

+
1
2

∫
Rn

n∑
i,j=1

∂aij

∂s
(x, u)DiuDju · Tu+

∫
Rn

b(x)u · Tu.
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By (3), (4), (6) we know that the r.h.s. of the above expression is positive and
can vanish only if Tu ≡ 0; therefore, u ≥ 0. Since J ′+(v)[ϕ] = J ′(v)[ϕ] for all
ϕ ∈ C∞c and all v belonging to the cone of positive functions of H1, u solves
equation (1). �

Therefore, without loss of generality we can suppose that

(13) g(x, s) = 0 ∀s ≤ 0 for a.e. x ∈ Rn,

and, from now on, we make this assumption.

4. Proofs of the results

4.1. The behaviour of PS sequences. We first prove the following
boundedness criterion which applies, in particular, to PS sequences:

Lemma 2. Assume (2)–(4), (6), (7); then every sequence {um} ⊂ H1 satis-
fying

|J(um)| ≤ C1 and |J ′(um)[um]| ≤ C2‖um‖

is bounded in H1.

Proof. Consider {um} ⊂ H1 such that |J(um)| ≤ C1. Then by (7) (and
(13)) we get

Im :=
1
2

∫
Rn

n∑
i,j=1

aij(x, um)DiumDjum−
1
p

∫
Rn

g(x, um)um+
1
2

∫
Rn

b(x)u2
m ≤ C1;

by (11) we can compute J ′(um)[um] and by the assumptions we have∣∣∣∣ ∫
Rn

n∑
i,j=1

aij(x, um)DiumDjum +
1
2

∫
Rn

n∑
i,j=1

∂aij

∂s
(x, um)DiumDjumum

−
∫

Rn

g(x, um)um +
∫

Rn

b(x)u2
m

∣∣∣∣ ≤ C2‖um‖.

Therefore, by (4) and computing Im − 1
pJ

′(um)[um] we get

p− 2− γ

2p

∫
Rn

n∑
i,j=1

aij(x, um)DiumDjum +
p− 2
2p

∫
Rn

b(x)u2
m ≤ C3‖um‖+ C1;

finally, by (3) and (6) there exists C4 > 0 such that C4‖um‖2 ≤ C3‖um‖ + C1

and the result follows. �

From now on by ω b Rn we mean that ω is an open bounded subset of Rn;
we prove a local compactness property which is a slightly more general version
of a result of [10]:
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Lemma 3. Assume (2)–(4) and let {um} be a bounded sequence in H1 sat-
isfying

∫
Rn

n∑
i,j=1

aij(x, um)DiumDjϕ+
1
2

∫
Rn

n∑
i,j=1

∂aij

∂s
(x, um)DiumDjumϕ

= 〈βm, ϕ〉 ∀ϕ ∈ C∞c

with {βm} strongly convergent in H−1(ω) for all ω b Rn to some β ∈ H−1(Rn).
Then, up to a subsequence, {um} converges strongly in H1(ω) for all ω b Rn.

Proof. Up to a subsequence we have um ⇀ u in H1 for some u ∈ H1, um →
u in L2(ω) for every ω b Rn and um(x) → u(x) for a.e. x ∈ Rn. Moreover, by a
trivial extension to unbounded domains of Theorem 2.1 of [9], ∇um(x) → ∇u(x)
for a.e. x ∈ Rn. By arguing just as in Lemma 2.3 of [10] we obtain

(14)
∫

Rn

n∑
i,j=1

aij(x, u)DiuDjϕ+
1
2

∫
Rn

n∑
i,j=1

∂aij

∂s
(x, u)DiuDjuϕ

= 〈β, ϕ〉 ∀ϕ ∈ C∞c .

Now choose ω b Rn and a positive smooth cut-off function χ : Rn → R such
that χ = 1 on ω and Ω := suppχ b Rn. From (11), (14) and by a density
argument, we have

∫
Rn

n∑
i,j=1

aij(x, u)DiuDj(χu) +
1
2

∫
Rn

n∑
i,j=1

∂aij

∂s
(x, u)DiuDju(χu) = 〈β, χu〉

and by Fatou’s Lemma, we get

lim inf
m→∞

∫
Rn

n∑
i,j=1

∂aij

∂s
(x, um)DiumDjum(χum)

≥
∫

Rn

n∑
i,j=1

∂aij

∂s
(x, u)DiuDju(χu);

therefore,

(15) lim sup
m→∞

∫
Rn

n∑
i,j=1

aij(x, um)DiumDj(χum) ≤
∫

Rn

n∑
i,j=1

aij(x, u)DiuDj(χu).
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This allows us to show that ∇um → ∇u in L2(ω); indeed, by (3),∫
ω

|∇um −∇u|2 ≤ 1
ν

∫
ω

n∑
i,j=1

aij(x, um)Di(um − u)Dj(um − u)

≤ 1
ν

∫
Ω

n∑
i,j=1

aij(x, um)Di(um − u)Djum · χ

− 1
ν

∫
Ω

n∑
i,j=1

aij(x, um)Di(um − u)Dju · χ =: Im;

we claim that Im → 0 as m → ∞. The second term in Im vanishes because
aij(x, um)Di(um − u) ⇀ 0 in L2(Ω). So, let us treat the first term in Im: we
split it as

1
ν

∫
Ω

n∑
i,j=1

aij(x, um)Di(χ(um − u))Djum

− 1
ν

∫
Ω

n∑
i,j=1

aij(x, um)DiχDjum · (um − u);

since um → u in L2(Ω), the last term vanishes, hence∫
ω

|∇um −∇u|2 ≤ Im ≤ 1
ν

∫
Ω

n∑
i,j=1

aij(x, um)Di(χ(um − u))Djum + o(1)

≤ 1
ν

∫
Ω

n∑
i,j=1

aij(x, u)Di(χu)Dju

− 1
ν

∫
Ω

n∑
i,j=1

aij(x, um)Di(χu)Djum + o(1)

where the last inequality comes from (15). Now the assertion follows from the
fact that

aij(x, um)Djum ⇀ aij(x, u)Dju in L2(Ω)

for all i = 1, . . . , n. �

The previous results allow us to prove

Proposition 1. Assume (2)–(4), (6), (7) and that {um} ⊂ H1 is a PS
sequence for J ; then there exists u ∈ H1 such that (up to a subsequence)

(i) um ⇀ u in H1,
(ii) um → u in H1(ω) for every ω b Rn,
(iii) u ≥ 0 solves (1) in distributional sense.

Proof. Note first that {um} is bounded by Lemma 2 and (i) follows. To
obtain (ii) it suffices to apply Lemma 3 with βm = αm+g(x, um)−b(x)um ∈ H−1
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where αm → 0 in H−1 (see also Proposition 4 in the appendix): indeed, if
um ⇀ u in H1, then βm → β in H−1(ω) for all ω b Rn with β = g(x, u)− b(x)u
(see Theorem 2.2.7 of [12]). Finally, (iii) follows from (14) and Lemma 1. �

To conclude this section we prove a technical result that will be used in the
proof of Theorem 2:

Lemma 4. Assume (2)–(4), (6), (7) and let {um} ⊂ H1 be a PS sequence
for J. Then for all ε > 0 there exists R > 0 such that

∫
{|um|≤R}

|∇um|2 ≤ ε

for m large enough.

Proof. We use the same device as for Theorem 2.2.9 of [12]. Fix ε > 0,
take δ ∈ (0, 1) and for all R > 0 define the function

ϕδ(s) =


s if |s| ≤ R,

R+ δR− δs if s ∈ (R,R+R/δ),

δs−R− δR if s ∈ (−R−R/δ,−R),

0 if |s| > R+R/δ.

Let

wm = −
n∑

i,j=1

Dj(aij(x, um)Dium)

+
1
2

n∑
i,j=1

∂aij

∂s
(x, um)DiumDjum + b(x)um − g(x, um).

Then computing J ′(um) on ϕδ(um) ∈ H1 ∩ L∞, by (4), (6) we have

∫
Rn

n∑
i,j=1

aij(x, um)DiumDj(ϕδ(um))

≤
∫

Rn

g(x, um)ϕδ(um) +
1
4δ
‖wm‖2

H−1 + δ‖um‖2.

Choose δ > 0 such that δ‖um‖2 ≤ εν/6 and δ
∫

Rn

∑n
i,j=1 aij(x, um)DiumDjum

≤ εν/2, with m large enough so that 1
4δ‖wm‖2

H−1 ≤ εν/6 and R so that∫
Rn g(x, um)ϕδ(um) ≤ εν/6: this is possible because as R → 0, by (7) and
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by interpolation we have (r′ = r/(r − 1))∫
Rn

g(x, um)ϕδ(um) ≤
∫
{|um|≤R+R/δ}

g(x, um)um

≤ ‖α‖r

( ∫
{|um|≤R+R/δ}

|um|r
′
)1/r′

+ β

∫
{|um|≤R+R/δ}

|um|q → 0.

Therefore, we obtain∫
{|um|≤R+R/δ}

n∑
i,j=1

aij(x, um)DiumDj(ϕδ(um)) ≤ εν/2,

that is, ∫
{|um|≤R}

n∑
i,j=1

aij(x, um)DiumDjum ≤ εν;

the result follows by (3). �

4.2. The variational characterization. In this section we build a PS
sequence for the functional

J(u) =
1
2

∫
Rn

n∑
i,j=1

aij(x, u)DiuDju+
1
2

∫
Rn

b(x)u2 −
∫

Rn

G(x, u)

under the assumptions (2)–(4), (6), (7) and (13).
As the function G is superquadratic at +∞, for every positive function v ∈

H1 we have limt→∞ J(tv) = −∞; we choose in particular a nontrivial function
e such that

(16) e ∈ C∞c , e ≥ 0 and J(te) < 0 ∀t > 1,

to define the class

(17) Γ := {γ ∈ C([0, 1];H1) : γ(0) = 0, γ(1) = e}

and the minimax value

(18) α := inf
γ∈Γ

max
t∈[0,1]

J(γ(t)).

We obtain a PS sequence for J at level α by applying the mountain pass lemma
[1] in the nonsmooth version [16]. Let us briefly verify that the functional J has
such geometrical structure:

• J(0) = 0.
• Choosing e as in (16) we have J(e) ≤ 0.
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• There are %, δ > 0 such that % < ‖e‖ and J(u) ≥ δ if ‖u‖ = %; indeed, by
(7) and (13) we infer

∀ε > 0 ∃Cε > 0 0 ≤ G(x, s) ≤ εs2 + Cεs
2∗ ∀s ∈ R and for a.e. x ∈ Rn;

hence, by (3) and (6) we have J(u) ≥ C1‖u‖2 − C2‖u‖2∗ .
We have thus proved

Proposition 2. Let Γ and α be as in (17), (18); then J admits a PS se-
quence {um} at level α.

As the imbedding H1(Rn) ⊂ Lp(Rn) is not compact, we cannot infer that
the above PS sequence converges strongly; however, using Proposition 1, we will
prove the existence of a nontrivial solution of (1) by means of its weak limit.

4.3. Proof of Theorem 1. We apply the concentration-compactness prin-
ciple [21] to PS sequences as in [4].

Let J : H1 → R be the “positive” functional associated with problem (5),
that is,

J(u) =
1
2

∫
Rn

n∑
i,j=1

aij(u)DiuDju+
λ

2

∫
Rn

u2 − 1
p

∫
Rn

|u+|p;

let {um} be the PS sequence found in Proposition 2; then {um} is bounded in H1

by Proposition 1. Since J ′(um)[um] = o(1) and J(um) = α+o(1), by assumption
(4) we have

2α = 2J(um)− J ′(um)[um] + o(1)

=
∫

Rn

|u+
m|p −

2
p

∫
Rn

|u+
m|p −

1
2

∫
Rn

n∑
i,j=1

a′ij(um)DiumDjumum + o(1)

≤ p− 2
p

‖u+
m‖p

p + o(1),

hence ‖u+
m‖p ≥ c > 0 and {um} does not converge strongly to 0 in Lp. Taking

into account that ‖u+
m‖2 and ‖∇u+

m‖2 are bounded, by Lemma I.1, p. 231 of
[21], we infer that the sequence {u+

m} “does not vanish” in L2, i.e. there exists
a sequence {ym} ⊂ Rn and C > 0 such that∫

ym+BR

|u+
m|2 ≥ C

for some R. Defining the sequence of functions vm(x) = um(x− ym), we have

(19)
∫

BR

|v+
m|2 ≥ C;

moreover, by the translation invariance of J and |dJ | (see the appendix), {vm}
is a PS sequence for J at the same level α. Hence {vm} converges strongly in
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H1(BR) to its weak limit v by Proposition 1 and v 6≡ 0 by (19): v is a nontrivial
solution of equation (5) and it is positive by Lemma 1. �

4.4. The weak splitting. In this section we assume that the hypotheses
of Theorem 2 hold and we prove a weak form of the representation result for
PS sequences given in [5, 6, 7]. Consider the problem at infinity (9) and the
corresponding functional

J∞(u) =
1
2

∫
Rn

|∇u|2 +
λ

2

∫
Rn

u2 − 1
p

∫
Rn

|u+|p ∀u ∈ H1,

which is of class C1. We can prove

Lemma 5. Let {um} be a PS sequence for J and let u be its weak limit; then

J(um) = J(u) + J∞(um − u) + o(1) as m→∞.

Proof. The splittings∫
Rn

G(x, um)−
∫

Rn

G(x, u)− 1
p

∫
Rn

|(um − u)+|p = o(1),∫
Rn

b(x)u2
m −

∫
Rn

b(x)u2 − λ

∫
Rn

(um − u)2 = o(1)

are standard (see e.g. Lemma 2.2 of [13]); therefore we must only treat the
principal part.

For all ε > 0 there exists Rε such that∣∣∣∣ ∫
|x|>Rε

n∑
i,j=1

aij(x, um)DiumDjum −
∫
|x|>Rε

n∑
i,j=1

aij(x, u)DiuDju

−
∫
|x|>Rε

|∇(um − u)|2
∣∣∣∣ < cε

for some c > 0: indeed, since u is given (i.e. ‖Diu‖L2({|x|>Rε}) ≤ cε for all i), by
applying Hölder’s inequality it suffices to prove that |

∫
|x|>Rε

∑n
i,j=1[aij(x, um)−

δij ]DiumDjum| < cε and this follows by (8). On the other hand, by Proposition
1 we infer ∇um → ∇u in [L2(BRε

)]n and hence∫
|x|≤Rε

n∑
i,j=1

[aij(x, um)DiumDjum − aij(x, u)DiuDju]

=
∫
|x|≤Rε

n∑
i,j=1

[aij(x, um)Di(um − u)Djum − aij(x, u)DiuDju

+ aij(x, um)DiuDjum] = o(1).
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We have thus proved∫
|x|≤Rε

n∑
i,j=1

aij(x, um)DiumDjum −
∫
|x|≤Rε

n∑
i,j=1

aij(x, u)DiuDju

−
∫
|x|≤Rε

|∇(um − u)|2 = o(1)

and the result follows by the arbitrariness of ε. �

Next, one should prove that J ′∞(um − u) = J ′(um − u) + o(1) as in [5], but
we cannot obtain such a result because J 6∈ C1(H1,R); however, we can prove

Lemma 6. Let {um} be a PS sequence for J and let u be its weak limit; then
(up to a subsequence)

J ′(um)[um] = J ′(u)[u] + J ′∞(um − u)[um − u] + o(1).

Proof. By the proof of Lemma 5 and (8) it suffices to prove that, up to a
subsequence, we have∫

Rn

n∑
i,j=1

∂aij

∂s
(x, um)DiumDjumum −

∫
Rn

n∑
i,j=1

∂aij

∂s
(x, u)DiuDjuu = o(1).

By (8), for all ε > 0 there exists Rε such that
∣∣∂aij

∂s (x, s) · s
∣∣ ≤ ε if |x| > Rε and

s ∈ R; therefore, by Hölder’s inequality,∫
|x|>Rε

n∑
i,j=1

∂aij

∂s
(x, um)DiumDjumum ≤ cε,

∫
|x|>Rε

n∑
i,j=1

∂aij

∂s
(x, u)DiuDjuu ≤ c′ε.

On the other hand, Proposition 1 and (4) yield

∂aij

∂s
(x, um)DiumDjumum → ∂aij

∂s
(x, u)DiuDjuu for a.e. x ∈ Rn

and there exists ψ ∈ L1(BRε
) such that

∂aij

∂s
(x, um)DiumDjumum ≤ ψ(x) for a.e. x ∈ BRε

(up to a subsequence); hence, by the Lebesgue Theorem,∫
BRε

n∑
i,j=1

∂aij

∂s
(x, um)DiumDjumum −

∫
BRε

n∑
i,j=1

∂aij

∂s
(x, u)DiuDjuu = o(1).

The result follows by the arbitrariness of ε. �
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Let {um} denote a PS sequence for J ; we now prove two results in the case
where um ⇀ 0. If r ∈ (2n/(n+ 2), 2) in (7), then reasoning as for Theorem 1
and by (7) we have

2α = 2J(um)− J ′(um)[um] + o(1) ≤
∫

Rn

g(x, um)um + o(1)

≤ ‖α‖r‖um‖r′ + β‖um‖p
p + o(1),

where r′ = r/(r − 1) ∈ (2, 2∗); hence, either ‖um‖r′ or ‖um‖p does not converge
to 0 and the sequence {um} does not vanish. If r = 2n/(n+ 2), then the same
result can be obtained by (12). Therefore, there exist u 6≡ 0 and a sequence
{ym} ⊂ Rn such that |ym| → ∞ and

(20) τmum ⇀ u in H1

where τmum(x) := um(x− ym). We prove that u is a solution of (9):

Lemma 7. Let {um} be a PS sequence for J and assume that um ⇀ 0, and
let u be as in (20); then J ′∞(u) = 0 and u > 0.

Proof. For all ϕ ∈ C∞c define τmϕ(x) := ϕ(x + ym); since {um} is a PS
sequence we have

∀ϕ ∈ C∞c J ′(um)[τmϕ] = o(1) as m→∞,

that is,∫
Rn

n∑
i,j=1

aij(x, um)DiumDj(τmϕ) +
1
2

∫
Rn

∂aij

∂s
(x, um)DiumDjum(τmϕ)

+
∫

Rn

b(x)um(τmϕ)−
∫

Rn

g(x, um)(τmϕ) = o(1).

Obviously, as m→∞,∫
Rn

b(x)um(τmϕ) =
∫

supp ϕ

b(x− ym)(τmum)ϕ = λ

∫
Rn

uϕ+ o(1),∫
Rn

g(x, um)(τmϕ) =
∫

supp ϕ

g(x− ym, τmum)ϕ =
∫

Rn

|u+|p−1ϕ+ o(1);

here we have used (13). Next, note that by (8),∫
Rn

n∑
i,j=1

aij(x, um)DiumDj(τmϕ)

=
∫

supp ϕ

n∑
i,j=1

aij(x− ym, τmum)Di(τmum)Djϕ =
∫

Rn

∇u∇ϕ+ o(1).
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Finally, take ε > 0; then by Lemma 4 we have∫
Rn

n∑
i,j=1

∂aij

∂s
(x, um)DiumDjum(τmϕ)

≤ cε+
∫
{|um|>R}

n∑
i,j=1

∂aij

∂s
(x, um)DiumDjum(τmϕ)

and again by (8),∫
{|um|>R}

n∑
i,j=1

∂aij

∂s
(x, um)DiumDjum(τmϕ)

=
∫

supp ϕ∩{|τmum|>R}

n∑
i,j=1

∂aij

∂s
(x− ym, τmum)Di(τmum)Dj(τmum)ϕ = o(1);

by arbitrariness of ε, this, together with Lemma 1 and a density argument, gives
J ′∞(u) = 0 and u ≥ 0; u > 0 follows by the maximum principle. �

We can now prove a lower semicontinuity property of J∞ on the “translated”
PS sequence {τmum}:

Lemma 8. Let {um} be a PS sequence for J and assume that um ⇀ 0, and
let u be as in (20); then J∞(u) ≤ lim infm→∞ J∞(τmum).

Proof. Since um ⇀ 0, by Lemma 6 we have J ′∞(um)[um] = o(1) as m→∞
and by the translation invariance of J ′∞ we get J ′∞(τmum)[τmum] = o(1), which
yields ∫

Rn

|∇(τmum)|2 + λ

∫
Rn

|τmum|2 =
∫

Rn

|(τmum)+|p + o(1);

therefore,

J∞(τmum) =
(

1
2
− 1
p

) ∫
Rn

|(τmum)+|p + o(1).

Similarly, by Lemma 7 we infer

J∞(u) =
(

1
2
− 1
p

) ∫
Rn

|u|p

and the result follows by Fatou’s Lemma. �

If um ⇀ 0, by Lemma 5 and by the translation invariance of J∞ we obtain
J(um) = J∞(um) + o(1) = J∞(τmum) + o(1); therefore, we can summarize the
above results in the following

Proposition 3. Assume that the hypotheses of Theorem 2 hold; let {um}
be the PS sequence for J found in Proposition 2 and assume that um ⇀ 0; then
α ≥ J∞(u) where u is given by (20).
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4.5. Proof of Theorem 2. Let {um} be the PS sequence at level α given
by Proposition 2; by Proposition 1, it converges weakly (up to a subsequence) to
a positive limit u ∈ H1 that solves (1). Therefore, if u 6≡ 0 Theorem 2 is proved.

If u ≡ 0, consider u > 0 as in (20); we claim that u is in fact a critical point
for J at level α. To see this, we build a path γ ∈ Γ (Γ as in (17)) for which
max[0,1] J(γ(t)) = α. Let e be as in (16), and define the set V := {au+be : a ≥ 0,
b ≥ 0}. For all v ∈ V we have limt→∞ J∞(tv) = −∞ and since V is a two-
dimensional manifold, by a compactness argument we can choose R large enough
to ensure that

J∞(au+ be) ≤ 0 ∀a, b ≥ 0, a+ b = R.

Define the path γ : [0, 1] → H1 by

γ(t) :=


3Rtu if t ∈ [0, 1/3],

(3t− 1)Re+ (2− 3t)Ru if t ∈ (1/3, 2/3),

(3R+ 3t− 3Rt− 2)e if t ∈ [2/3, 1];

we obviously have γ ∈ Γ. Moreover, J∞(γ(t)) < 0 if t ∈ (1/3, 1] and
max[0,1/3] J∞(γ(t)) = J∞(u) by the results of [17]. Hence, (18), (10) and Propo-
sition 3 imply

α ≤ max
[0,1]

J(γ(t)) ≤ max
[0,1]

J∞(γ(t)) = J∞(u) ≤ α;

therefore, the path γ is “optimal” in Γ and the deformation lemma in its non-
smooth version [15] implies that there exists t ∈ (0, 1) such that γ(t) is a critical
point of J at level α. Moreover, γ(t) = u; if not, by (10) and the results of [17]
we obtain

J(γ(t)) ≤ J∞(γ(t)) < J∞(u) = α,

contradicting J(γ(t)) = α. Therefore, u is a (strictly) positive solution of (1)
and Theorem 2 is proved. �

Remark. If u solves (1), then either (1) reduces to the semilinear auton-
omous problem (9) or there exists ω ⊂ Rn of positive measure such that the
inequalities in (10) become strict for all x ∈ ω and for some ξ ∈ Rn and s > 0
outside the range of values attained by ∇u and u respectively. Moreover, we
obviously have b(x) ≡ λ.

5. Appendix: basic tools in nonsmooth critical point theory

In this section we quote some tools of the nonsmooth critical point theory
introduced in [15, 16] (see also [19]).

Definition 1. Let (X, d) be a metric space, I ∈ C(X,R) and let x ∈ X.
We denote by |dI|(x) the supremum of the σ ∈ [0,∞) such that there exist δ > 0
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and a continuous map

H : B(x, δ)× [0, δ] → B(x, 2δ)

such that for all y ∈ B(x, δ) and t ∈ [0, δ] we have

d(H(y, t), y) ≤ t and I(H(y, t)) ≤ I(y)− σt

where B(x, r) := {y ∈ X : d(x, y) < r}; |dI|(x) is called the weak slope of I at x.

We observe that if Ψ : X → X is any surjective isometry in X, then
|dI|(Ψ(x)) = |dI|(x) for all x ∈ X; in particular, if X = H1 and I is invari-
ant under translations, so is |dI|.

Definition 2. Let I ∈ C(X,R); a point x ∈ X is said to be critical for I
if |dI|(x) = 0. A real number c is said to be a critical value for I if there exists
x ∈ X such that I(x) = c and |dI|(x) = 0.

Let us now turn to PS sequences:

Definition 3. Let I ∈ C(X,R); we say that a sequence {xm} ⊂ X is a
Palais–Smale sequence (PS sequence) for I if {I(xm)} is bounded and |dI|(xm)
→ 0. We say that the functional I satisfies the PS condition if every PS sequence
is relatively compact.

Following [3] we have

Definition 4. Let X be a Banach space, let I ∈ C(X,R) and let Y be a
dense subspace of X. If the directional derivative of I exists for all x ∈ X in all
the directions y ∈ Y (i.e. I ′(x)[y] exists for all x ∈ X and y ∈ Y ) we say that I
is weakly Y-differentiable and we call the extended real number

‖I ′Y (x)‖ := sup{I ′(x)[y] : y ∈ Y, ‖y‖X = 1}

the weak Y-slope at x.

We can obtain a crucial lower estimate of the weak slope by means of the
weak C∞c -slope; indeed, Theorem 1.5 of [10] states the following:

Proposition 4. Assume (2)–(4), (6), (7); then J ∈ C(H1,R) and J is
weakly C∞c -differentiable. Furthermore, for all u ∈ H1 we have

|dJ |(u) ≥ sup{J ′(u)[ϕ] : ϕ ∈ C∞c , ‖ϕ‖H1 = 1} =: ‖J ′C∞c (u)‖;

in particular, if u ∈ H1 is a critical point of J (in the sense of Definition 2) then
J ′(u)[ϕ] = 0 for all ϕ ∈ C∞c and u is a weak solution of (1).
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