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VARIATIONAL INEQUALITIES AND SURJECTIVITY
FOR SET-VALUED MONOTONE MAPPINGS

C. J. Zhang — Y. J. Cho — S. M. Wei

Throughout this paper, Φ and 2X denote the real field (or the complex field)
and the family of all nonempty subsets of a vector space over Φ, respectively.
Let E and F be vector spaces over Φ and 〈 · , · 〉 : F × E → Φ be a bilinear
functional. For each x0 ∈ E and ε > 0, let

ω(x0, ε) = {y ∈ F : |〈y, x0〉| < ε}.

We denote by σ(F,E) the topology on F generated by the family {ω(x, ε) : x ∈
E, ε > 0} as a subbase for the neighbourhood system at 0.

It is easy to show that, if F possesses the σ(F,E)-topology, F becomes
a locally convex topological vector space. The σ(E,F )-topology on E is defined
analogously. A subset X of E is said to be σ(E,F )-compact if X is compact
related to the σ(E,F )-topology.

Let X be a nonempty subset of E. A set-valued mapping T : X → 2F is said
to be monotone relative to the bilinear functional 〈 · , · 〉 : F ×E → Φ (monotone
for short) if, for all x, y ∈ X, u ∈ T (x) and w ∈ T (y),

Re 〈u− w, x− y〉 ≥ 0.
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The mapping T is said to be maximal monotone relative to the bilinear functional
〈 · , · 〉 : F × E → Φ (maximal monotone) if, for any y ∈ X and g ∈ T (y),
Re 〈f − g, x − y〉 ≥ 0 implies that x ∈ X and f ∈ T (x). A bilinear functional
〈 · , · 〉 : F ×E → Φ is said to be variable related if, for any f ∈ F , 〈f, x〉 = 0 for
all x ∈ E implies f = 0.

In this paper, we study a class of variational inequalities and surjectivity
for set-valued monotone mappings in topological vector spaces. Our results
generalize the results of Shih and Tan ([9]) and others ([1], [6], [7]).

Throughout this paper, let E be a locally convex Hausdorff topological vector
space, F be a locally convex Hausdorff topological vector space equipped with
the σ(F,E)-topology and the bilinear functional 〈 · , · 〉 : F × E → Φ variable
related.

For our main theorem, we need the following lemmas:

Lemma 1. For any f ∈ F , the mapping x 7→ 〈f, x〉 is continuous with respect
to the σ(E,F )-topology in E, and for any x ∈ E, the mapping f 7→ 〈f, x〉 is also
continuous on the σ(F,E)-topology in F .

Lemma 2. Let X be a nonempty convex subset of E and T : X → 2F be
upper semi-continuous on each line segment of X. If, for each y ∈ X,

(1) sup
u∈T (x)

Re 〈u, y − x〉 ≤ 0 for all x ∈ X,

then

(2) inf
w∈T (y)

Re 〈w, y − x〉 ≤ 0 for all x ∈ X.

Proof. For any x ∈ X and t ∈ [0, 1], let

xt = tx + (1− t)y = y − t(y − x).

Since X is convex, we have xt ∈ X and so, by (1),

sup
u∈T (xt)

Re 〈u, y − xt〉 ≤ 0,

from which follows that

(3) sup
u∈T (xt)

Re 〈u, y − x〉 ≤ 0.

For any f ∈ T (y) and ε > 0, let

u(f) = {w ∈ F : |〈w − f, y − x〉| < ε}.

Then u(f) is an open neighbourhood at f and so G =
⋃

f∈T (y) u(f) is an open
neighbourhood at T (y). Since T is upper semi-continuous on each line segment
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L = {xt : t ∈ [0, 1]} ⊂ X, for any open neighbourhood G at T (y), there exists
an open neighbourhood N of y in L such that T (y) ⊂ G for all y ∈ N .

Letting t → 0+, then xt → y, and so there exists δ ∈ (0, 1) such that xt ∈ N

for all t ∈ (0, δ). Thus we have T (xt) ⊂ G. Let t0 ∈ (0, δ) and u0 ∈ T (xt0) ⊂ G,
then there exists f0 ∈ T (y) such that u0 ∈ u(f0). Thus we have

|〈u0 − f0, y − x〉| < ε,

and so

(4) |Re 〈f0 − u0, y − x〉| ≤ |〈u0 − f0, y − x〉| < ε.

Combining (3) and (4), we have

Re 〈f0, y − x〉 < Re 〈u0, y − x〉+ ε ≤ ε,

which implies that
inf

w∈T (y)
Re 〈w, y − x〉 ≤ ε.

Since ε is arbitrary, we have

inf
w∈T (y)

Re 〈w, y − x〉 ≤ 0

for all x ∈ X. This completes the proof. �

Remark 1. If E is a Banach space, F = E∗ and 〈 · , · 〉 is the pairing between
E and E∗, then the topology in F coincides with the weak-star topology in E∗.
From Lemma 2, we can obtain Lemma 2 in [9] and the condition “for all x ∈ X,
T (x) is a weak-star compact subset in E∗” may be dropped. Further, Lemma 2
generalizes the corresponding results in [6].

Lemma 3. Let T : E → 2F be a set-valued monotone mapping. Then T is a
maximal monotone mapping if and only if any monotone mapping T ∗ : E → 2F

which satisfies T (y) ⊂ T ∗(y) for all y ∈ E must be equal to T .

Proof. We suppose that T is maximal monotone and T ∗ is a monotone
mapping such that T (y) ⊂ T ∗(y) for all y ∈ E and assume that T 6= T ∗. Then
there exists y0 ∈ E such that T (y0) 6= T ∗(y0) and so there exists f0 ∈ T ∗(y0)
such that f0 /∈ T (y0). Since T is maximal monotone, for any y ∈ E and g ∈ T (y),

Re 〈f0 − g, y0 − y〉 ≥ 0,

and so y0 ∈ E and f0 ∈ T (y0), which is a contradiction. Therefore, we have
T = T ∗. Conversely, we suppose that T is monotone and, for all x, y ∈ E, f ∈ F

and g ∈ T (y),
Re 〈f − g, x− y〉 ≥ 0.
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We define T ∗ : E → 2F by

T ∗ =

{
T (z) for z 6= x,

T (x) ∪ {f} for z = x,

for all z ∈ E. Then T ∗ is monotone and T (z) ⊂ T ∗(z) for all z ∈ E. Thus,
by assumption, T = T ∗ and so T ∗(x) = T (x) and f ∈ T (x). Therefore, T is
maximal monotone. This completes the proof. �

Lemma 4. Let T : E → 2F be a set-valued monotone mapping with compact
convex values and T be upper semi-continuous on each line segment of E. Then
T is maximal monotone.

Proof. Let T ∗ : E → 2F be monotone and T (y) ⊂ T ∗(y) for all y ∈ E.
Since T ∗ is monotone, for all x, y0 ∈ E, w0 ∈ T ∗(y0) and u ∈ T ∗(x),

Re 〈u− w0, y0 − x〉 ≤ 0,

and so, for all x ∈ E,

sup
u∈T (x)

Re 〈u− w0, y0 − x〉 ≤ 0.

By Lemma 2, we have

sup
x∈E

inf
w∈T (y0)

Re 〈w − w0, y0 − x〉 ≤ 0.

From Lemma 1, it follows that, for all x ∈ E, w 7→ Re〈w − w0, y0 − x〉 is a
continuous affine functional on T (y0) and, for all w ∈ T (y0), x 7→ Re 〈w −
w0, y0 − x〉 is clearly a concave functional. Noting that T (y0) is a compact
convex set and so, by the max–min theorem of Kneser ([5]), we have

inf
w∈T (y0)

sup
x∈E

Re 〈w − w0, y0 − x〉 ≤ 0.

Since T (y0) is compact, there exists w ∈ T (y0) such that

sup
x∈E

Re 〈w − w0, y0 − x〉 ≤ 0.

For all y ∈ E, letting x = y0 + y, we have Re 〈w − w0, y〉 ≥ 0. On the other
hand, letting x = y0 − y, we have Re 〈w − w0, y〉 ≤ 0. Thus, for all y ∈ E,
Re 〈w − w0, y〉 = 0. Since the bilinear functional 〈 · , · 〉 is variable related, we
have w = w0 and so w0 ∈ T (y0), which means that T = T ∗. Therefore, by
Lemma 3, T is maximal monotone. This completes the proof. �
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Lemma 5 (Fan–Knuster–Kuratowski–Mazurkiewicz Theorem, [10]). Let Y

be a nonempty convex subset of a topological vector space E and ∅ 6= X ⊂ Y . For
each x ∈ X, let F (x) be a relatively closed subset of Y such that the convex hull
of each finite subset {x1, . . . , xn} of X is contained in the corresponding union⋃n

i=1 F (x0). Then, for each nonempty subset X0 of X such that X0 is contained
in a compact convex subset of Y , ∩x∈X0F (x) 6= ∅. Furthermore, if, for such a
X0 (i.e., X0 is contained in a compact convex subset of Y ), the nonempty set⋂

x∈X0
F (x) is compact, then

⋂
x∈X F (x) 6= ∅.

Now, using Lemmas 1–5, we have our main theorems.

Theorem 1. Let X be a nonempty convex subset of E, T : X → 2F be
a set-valued monotone mapping and T be upper semi-continuous on each line
segment of X. If there exists a σ(E,F )-compact set K in E and x0 ∈ X such
that, for all y ∈ X −K,

inf
w∈T (y)

Re 〈w, y − x0〉 > 0,

then there exists y ∈ X such that

inf
w∈T (y)

Re 〈w, y − x〉 ≤ 0

for all x ∈ X. Further, if T (y) is a compact convex set, then there exists w ∈ T (y)
such that

Re 〈w, y − x〉 ≤ 0 for all x ∈ X.

Proof. For all x ∈ X, let

F (x) =
{

y ∈ X : inf
w∈T (y)

Re 〈w, y − x〉 ≤ 0
}

,

G(x) =
{

y ∈ X : sup
u∈T (x)

Re 〈u, y − x〉 ≤ 0
}

.

(i) First, we show that
⋂

x∈X F (x) =
⋂

x∈X G(x). Since T is monotone, for
all x, y ∈ X, u ∈ T (x) and w ∈ T (y),

Re 〈w, y − x〉 ≥ Re 〈u, y − x〉,

and so

(5) inf
w∈T (y)

Re 〈w, y − x〉 ≥ sup
u∈T (x)

Re 〈u, y − x〉.

Thus F (x) ⊂ G(x) for all x ∈ X, which implies that
⋂

x∈X F (x) ⊂
⋂

x∈X G(x).
By Lemma 2, if supu∈T (x) Re 〈u, y − x〉 ≤ 0 for all x, y ∈ X, then

inf
w∈T (y)

Re 〈w, y − x〉 ≤ 0
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for all x, y ∈ X. Thus G(x) ⊂ F (x) for all x ∈ X, which implies that
⋂

x∈X G(x)
⊂

⋂
x∈X F (x). Combining the above results, we have⋂

x∈X

F (x) =
⋂

x∈X

G(x).

(ii) Next, we show that, for each finite set {x1, . . . , xn} ⊂ X,

co{x1, . . . , xn} ⊂
n⋃

i=1

G(xi),

where co{x1, . . . , xn} denotes the convex hull of {x1, . . . , xn}. Let’s assume
that our conclusion is not true. Then there exists y ∈ co{x1, . . . , xn} and y =∑n

i=1 λixi, λi ≥ 0, i = 1, . . . , n,
∑n

i=1 λi = 1, such that

y /∈
n⋃

i=1

G(xi).

By (5), we have y /∈
⋃n

i=1 F (xi) and so

inf
w∈T (y)

Re 〈w, y − xi〉 > 0

for i = 1, . . . , n. Therefore, we have

0 = inf
w∈T (y)

Re 〈w, y − y〉 = inf
w∈T (y)

Re
〈

w, y −
n∑

i=1

λixi

〉

≥
n∑

i=1

λi inf
w∈T (y)

Re 〈w, y − xi〉 > 0,

which is a contradiction and we have the conclusion.
(iii) Finally, we show that⋂

x∈X

F (x) =
⋂

x∈X

G(x) 6= ∅,

and the conclusion of the theorem is true. We suppose that there exists a
σ(E,F )-compact set K in E and x0 ∈ X such that, for all y ∈ X −K,

inf
w∈T (y)

Re 〈w, y − x0〉 > 0.

Then y /∈ F (x0) and so F (x0) ⊂ K. From the proof of (i), it follows that
G(x0) ⊂ K. By Lemma 1, for all u ∈ F and x ∈ X, y 7→ Re 〈u, y − x〉
is continuous on σ(E,F )-topology in X and, by Proposition 1.4.6 in [2], y 7→
supu∈T (x) Re 〈u, y−x〉 is lower semi-continuous on σ(E,F )-topology in X. Thus
G(x0) is a σ(E,F )-compact set. By Lemma 5, we have

⋂
x∈X G(x) 6= ∅ and so⋂

x∈X F (x) 6= ∅. Taking y ∈
⋂

x∈X F (x), then we have

(6) inf
w∈T (y)

Re 〈w, y − x〉 ≤ 0
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for all x ∈ X. To show the conclusion of the theorem, suppose that T (y) is
a compact convex set. By Lemma 1, for all x ∈ X, w 7→ Re 〈w, y − x〉 is a
continuous affine functional on T (y) and, for all w ∈ T (y), x 7→ Re 〈w, y − x〉 is
a concave functional on X. By the Kneser max–min theorem ([5]), we have

inf
w∈T (y)

sup
x∈X

Re 〈w, y − x〉 = sup
x∈X

inf
w∈T (y)

Re 〈w, y − x〉.

By (6), it follows that

inf
w∈T (t)

sup
x∈X

Re 〈w, y − x〉 ≤ 0.

Since T (y) is compact, there exists w ∈ T (y) such that

Re 〈w, y − x〉 ≤ 0

for all x ∈ X. This completes the proof. �

As an immediate consequence of Theorem 1, we have the following:

Corollary 2. Let (E, ‖ · ‖) be a reflexive Banach space, X be a nonempty
convex subset of E and T : X 7→ 2E∗

be a set-valued monotone mapping which
is upper semi-continuous in the topology of E and the weak topology of E∗ on
each line segment of X. If there exists x0 ∈ X such that

(7) lim
‖y‖→∞

y∈X

inf
w∈T (y)

Re 〈w, y − x0〉 > 0,

then there exists y ∈ X such that

(8) sup
x∈X

inf
w∈T (y)

Re 〈w, y − x〉 ≤ 0.

Further, if T (y) is a weakly compact convex set in E∗, then there exists w ∈ T (y)
such that Re 〈w, y − x〉 ≤ 0 for all x ∈ X.

Proof. Let F = E∗ in Theorem 1 and 〈 · , · 〉 be the pairing between E

and E∗. Then the σ(E,F )-topology on F coincides with the weak-star topology
on E∗. Since E is reflexive, the weak-star topology on E∗ is consistent with the
weak topology on E∗. By (7), there exists R > 0 such that, for all y ∈ X with
‖y‖ > R,

(9) inf
w∈T (y)

Re 〈w, y − x0〉 > 0.

Putting K = {y ∈ X : ‖y‖ ≤ R}, we find that K is a weakly compact subset of X

and for all y ∈ X − K, (9) holds. Therefore, all the conditions of Theorem 1
are satisfied and so the conclusions of Corollary 2 follow. This completes the
proof. �

Remark 2. Corollary 2 improves Theorem 1 in [9], i.e., Corollary 2 says
that Theorem 1 in [9] is true even though the conditions “X is a closed subset
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of E” and “for all x ∈ X, T (x) is a weakly compact subset of E∗” are dropped
in Theorem 1.

Using Theorem 1, we obtain results on the surjectivity for multi-valued mono-
tone mappings as follows

Theorem 3. Let T : E → 2F be a set-valued monotone mapping with com-
pact convex values and T be upper semi-continuous on each line segment of E.
If, for any w0 ∈ F , there exists a σ(E,F )-compact set K in E and x0 ∈ E such
that, for all y ∈ E −K,

(10) inf
w+w0∈T (y)

Re 〈w, y − x0〉 > 0,

then T is surjective, and the solution set S(w0) = {y ∈ E : w0 ∈ T (y)} is a
nonempty σ(E,F )-closed convex set.

Proof. For any w0 ∈ F , we define the mapping T ∗ : E → 2F by

T ∗(y) = T (y)− w0

for all y ∈ E. Then T ∗ is a monotone mapping with compact convex values
and T ∗ is upper semi-continuous on each line segment of E. Since there exists a
σ(E,F )-compact set K and x0 ∈ E such that, for all y ∈ E −K,

inf
w∈T∗(y)

Re 〈w, y − x0〉 > 0,

it follows from Theorem 1 that there exist y ∈ E and v ∈ T ∗(y) such that, for
all x ∈ X,

Re 〈v, y − x〉 ≤ 0,

and so, for w = v + w0 ∈ T (y),

Re 〈w − w0, y − x〉 ≤ 0

for all x ∈ X. Therefore, by the proof of Lemma 4, we have w0 = w ∈ T (y),
which means that T is surjective.

Next, we show that the solution set S(w0) = {y ∈ E : w0 ∈ T (y)} is a
nonempty σ(E,F )-closed convex set. Since T is surjective, the set S(w0) = {y ∈
E : w0 ∈ T (y)} is nonempty. To show that S(w0) is a σ(E,F )-closed convex set,
let

H =
⋂

y∈E

⋂
v∈T (y)

{z ∈ E : Re 〈w0 − v, z − y〉 ≥ 0}.

By Lemma 1, the mapping z 7→ Re 〈w0 − v, z − y〉 is continuous with respect to
the σ(E,F )-topology in E and so, for all y ∈ E and v ∈ T (y),

{z ∈ E : Re 〈w0 − v, z − y〉 ≥ 0},
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is a σ(E,F )-closed set and it is also clearly convex. Thus H is a σ(E,F )-closed
convex set.

Now, we show that S(w0) = H. Let z ∈ S(w0). Then z ∈ E and w0 ∈ T (z).
Since T is monotone, for all y ∈ E and v ∈ T (y),

Re 〈w0 − v, z − y〉 ≥ 0,

and so z ∈ H, i.e., S(w0) ⊂ H.
Conversely, let z ∈ H. Then z ∈ E and Re 〈w0 − v, z − y〉 ≥ 0 for all y ∈ E

and v ∈ T (y). We define a mapping T ∗ : E → 2F by

T ∗(y) =

{
T (y) for y 6= z,

T (z) ∪ {w0} for y = z.

Then T ∗ is monotone and, for all y ∈ E, T (y) ⊂ T ∗(y). Thus, by Lemma 4,
T is maximal monotone and, from Lemma 3, it follows that T = T ∗. Hence
w0 ∈ T (z) and so z ∈ S(w0), i.e., H ⊂ S(w0). Therefore we have H = S(w0).
This completes the proof. �

Remark 3. (1) From the proof of Theorem 3, we can show easily that, in the
case that the bilinear functional 〈 · , · 〉 : F ×E → Φ is continuous with respect to
the locally convex topology in the second variable, S(w0) is a nonempty closed
convex set in E.

(2) Theorem 3 generalizes the corresponding results in [1], [7] and [9]. If
E is a reflexive Banach space, F = E∗ and 〈 · , · 〉 is the pairing between E

and E∗, then, from Theorem 3, we obtain the result in [9]. If T is injective, from
Theorem 3, we also obtain the corresponding results in [1] and [7].
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