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ON EXACT TOPOLOGICAL FLOWS

Artur Siemaszko — Jerzy Szymański

Abstract. It is shown that group endomorphisms are exact flows if and

only if they are exact in the measure-theoretic sense and that all flows
which are exact with respect to an invariant measure with full support are

exact. It is also proved that all locally eventually dense (led) flows have

uniformly positive entropy (u.p.e.).

1. Introduction

The concept of an exact topological flow, an analogue of the well known
measure-theoretic concept defined by Rokhlin ([5]), was introduced in [3]. It
has been also observed that all locally eventually onto (leo) flows are exact. An
important class of such flows is formed by rational mappings R with degR ≥ 2
of the Riemann sphere restricted to Julia set (cf. [2]).
In this paper we show that some important classes of topological flows are

exact. Namely, we prove that the group endomorphisms are exact if and only
if they are exact with respect to the Haar measure. Next we show that any
flow exact with respect to an invariant measure with full support is exact. The
existence of exact flows with zero topological entropy has already been observed
in [3]. In Theorem 3 we show that led, and so leo flows have u.p.e.
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2. Results

Let (X, d) be a compact metric space. We denote by C(X) the algebra of all
real continuous functions on X. Its subalgebra of all constant functions will be
denoted by C.
By CER(X) we denote the set of all closed equivalence relations in X ×X.

Let (Rn)∞0 be a sequence of relations from CER(X). We denote by An the sub-
algebra of C(X) consisiting of functions constant on equivalence classes of Rn,
n ≥ 0. Let R∞ denote the smallest closed equivalence relation containing all
Rn, n ≥ 0. By BRn we denote the σ-algebra of Borel sets which are unions of
equivalence classes of Rn.
Let T :X → X be continuous and onto. For the notation and basic properties

concerning topological entropy we refer the reader to [6].
Let us recall (cf. [1]) that an open cover α = (U, V ) ofX is said to be standard

if U and V are non-dense.
A flow (X,T ) has uniformly positive entropy (u.p.e.) if for any standard

cover α of X the entropy h(α, T ) is positive.
Now we recall the concept of an exact measure-theoretic flow (cf. [5]).
A measure preserving transformation T of a Lebesgue probability space

(X,B, µ) is said to be exact with respect to µ if the σ-algebra
⋂∞
n=0 T

−nB is
trivial mod µ.
Recall (cf. [3]) that a flow (X,T ) is said to be exact if

∞⋃
n=0

(T × T )−n(∆) = X ×X.

It follows from Example 4 (cf. [3]) that the exactness does not imply the exactness
in the measure-theoretic sense.
We say that a flow (X,T ) is led (leo) if for any open set U 6= ∅ there exists

a positive integer n with TnU = X (TnU = X). Clearly any led flow is exact.

Lemma. If Rn ∈ CER(X) and
⋃∞
n=0Rn is dense in X ×X then

∞⋂
n=0

An = C.

Proof. Let f ∈
⋂∞
n=0An, x, y ∈ X and ε > 0 be arbitrary. Let δ > 0 be

such that |f(u)− f(v)| < ε/2 for all u, v ∈ X with d(u, v) < δ.
By the assumption there exist n ≥ 0 and (xδ, yδ) ∈ Rn such that d(x, xδ) < δ

and d(y, yδ) < δ. Since f ∈ An we have f(xδ) = f(yδ) and so

|f(x)− f(y)| ≤ |f(x)− f(xδ)|+ |f(y)− f(yδ)| < ε,

i.e. f ∈ C. �
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We are not able to decide whether the converse implication is true. Theorem 1
will show that this is the case for group endomorphisms and Rn = (T×T )−n(∆),
n ≥ 0.
Notice that the following is true.

Remark. If
⋂∞
n=0An = C then R∞ = X ×X.

Proof. Suppose there exists (x0, y0) ∈ X ×X with (x0, y0) /∈ R∞, i.e. the
equivalence classes [x0], [y0] of R∞ are different. By the Urysohn lemma there
exists a function f ∈ C(X) constant on the equivalence classes of R∞ such that
f(x0) 6= f(y0).
Let n ≥ 0 be arbitrary. It is clear that f is constant on the equivalence

classes of Rn, i.e. f ∈ An. Hence f ∈
⋂∞
n=0An which gives the result. �

Let G be a compact topological abelian group with dual group Ĝ. Let T be
a continuous algebraic endomorphism of G. We denote by T̂ the dual transfor-
mation of Ĝ: T̂ f = f ◦ T for f ∈ Ĝ.

Theorem 1. The following conditions are equivalent:

(a) (G,T ) is exact,
(b) (G,T ) is exact with respect to the Haar measure,
(c)
⋂∞
n=0An = C, where An is associated with Rn = (T × T )−n(∆), n ≥ 0.

Proof. (a)⇔(b) Assume that (G,T ) is exact with respect to the Haar mea-
sure. Using Lemma 2 of [4] we know that it is equivalent to the fact that the set⋃∞
n=1 T

−n{g} is dense in G for all g ∈ G. In particular for the identity element
e ∈ G it implies that the set

⋃∞
n=0(T × T )−n{(e, e)} is dense in G × G which

completes the first part of the proof.
Let us now suppose (G,T ) is exact. We put Rn = (T × T )−n(∆), n ≥ 0.
It follows from the assumption that the set

⋃∞
n=0Rn is dense in G×G. Hence

Lemma gives
⋂∞
n=0An = C where An ⊂ C(G) consists of all functions constant

on equivalence classes of Rn, n ≥ 0.
Now we want to show that

⋂∞
n=0 T̂

nĜ = {1}.
We have

An = T̂nA0 = T̂nC(G), n ≥ 0.

Since
∞⋂
n=0

T̂nĜ ⊂
∞⋂
n=0

T̂nC(G) =
∞⋂
n=0

An = C,

we have
⋂∞
n=0 T̂

nĜ = {1}. Therefore (G,T ) is exact with respect to the Haar
measure by Lemma 2 of [4].
(a)⇔(c) The implication (a)⇒(c) follows at once from Lemma. The con-

verse implication is an easy consequence of Remark and the observation that
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n=0(T × T )−n(∆) is an equivalence relation since it is reflexive, symmetric
and a subgroup of G×G. �

In the next theorem we investigate the exactness of flows which are exact
with respect to invariant measures with full support.

Theorem 2. If (X,T ) is exact with respect to an invariant measure with
full support then (X,T ) is exact.

Proof. Suppose (X,T ) is not exact, i.e. there exist (x0, y0) ∈ X ×X, open
sets Ui, Vi, i = 0, 1 with (x0, y0) ∈ U1 × V1, U1 ⊂ U0, V1 ⊂ V0, U1 ∩ V1 = ∅ and

U0 × V0 ∩
∞⋃
n=0

Rn = ∅

where Rn = (T × T )−n(∆), n ≥ 0.
For a given x ∈ X we denote by [x]n its equivalence class of Rn.
Let πn:X → X/Rn be the quotient map. We put

gn(x) = inf{d(u, v) : u ∈ π−1n [x]n, v ∈ U1},
hn(x) = inf{d(u, v) : u ∈ π−1n [x]n, v ∈ V1},

fn(x) =
gn(x)

gn(x) + hn(x)
n ≥ 0, x ∈ X.

It is clear that for any n ≥ 0 we have 0 ≤ fn ≤ 1 and the function fn is constant
on equivalence classes of Rn. Let

f(x) = lim
n→∞
fn(x), x ∈ X

and let µ be an invariant probability measure with full support.
Since the measurability of f with respect to

⋂∞
n=0 BRn is obvious, in order

to get our result it is enough to check that f is not constant µ-a.e. We put

D = {(x, y) ∈ X ×X : f(x) 6= f(y)}.

Because f|U1 = 0, f|V1 = 1, we have U1 × V1 ⊂ D. Therefore

(µ× µ)(D) ≥ (µ× µ)(U1 × V1) = µ(U1) · µ(V1) > 0

and so f is not constant µ-a.e. �

As we mentioned above exact flows may have zero entropy. Our next goal is
to show that if they are led flows then they have u.p.e.
The proof of the following theorem in the case of leo flows is a result of

a discussion with B. Weiss. E. Glasner observed that its slight modification
allows to extend it to the case of led flows.



On Exact Topological Flows 391

Theorem 3. If (X,T ) is led then it has uniformly positive entropy.

Proof. Let α = (U0, U1) be a standard cover of X, i.e. U0 6= X 6= U1, and
let V0 = X \ U1 and V1 = X \ U0.
By assumption there exists a positive integer N with TNV0 and TNV1 dense

in X. It is enough to show that h(TN , α) > 0.
Let n ≥ 1 be arbitrary. First we show that for any η = (η0, . . . , ηn−1) ∈

{0, 1}n it holds

(∗) Vη0 ∩ T−NVη1 ∩ . . . ∩ T−(n−1)NVηn−1 6= ∅.

Set W0 = Vη0 and notice that, as T
NW0 is dense in X, W1 = TNW0 ∩ Vη1 is

dense in Vη1 . Inductively define

W1 = TNW0 ∩ Vη1 , W2 = TNW1 ∩ Vη2 , . . . ,
Wk+1 = TNWk ∩ Vηk+1 , . . . ,
Wn−1 = TNWn−2 ∩ Vηn−1 .

Choose xn−1 ∈ Wn−1 and then inductively a sequence {xk} so that xk ∈ Wk
and xk = TNxk−1, k = n− 1, . . . , 0. Then

x0 ∈ Vη0 ∩ T−NVη1 ∩ . . . ∩ T−(n−1)NVηn−1 6= ∅.

Since V0 ∩ V1 = ∅ we have
n−1⋂
k=0

T−kNVηk ∩
n−1⋂
k=0

T−kNVη′k = ∅

for η = (η0, . . . , ηn−1) 6= η′ = (η′0, . . . , η′n−1). Now we consider the cover β =
(P0, P1) defined by P0 = X \ V0, P1 = X \ V1. Since β < α it is enough to show
that h(TN , β) > 0.
To show this we consider the cover

∨n−1
j=0 T

−jNβ. This cover is minimal in
the following sense. If we remove any set from it, it stops being a cover.
Indeed, let η = (η0, . . . , ηn−1) ∈ {0, 1}n. We show that the family

γ =
n−1∨
j=0

T−jNβ \ {Pη0 ∩ T−NPη1 ∩ . . . ∩ T−(n−1)NPηn−1}

is not a cover of X.
Let η̃ = (η̃0, . . . , η̃n−1) where η̃i = 1− ηi, 0 ≤ i ≤ n− 1. It follows from (∗)

that V
eη0 ∩ T−NVeη1 ∩ . . . ∩ T−(n−1)NVeηn−1 6= ∅.

Let x ∈ V
eη0 ∩ T−NVeη1 ∩ . . . ∩ T−(n−1)NVeηn−1 . Since V0 ⊂ P1, V1 ⊂ P0 we

have

V
eη0 ∩ T−NVeη1 ∩ . . . ∩ T−(n−1)NVeηn−1 ⊂ Pη0 ∩ T−NPη1 ∩ . . . ∩ T−(n−1)NPηn−1 .



392 A. Siemaszko — J. Szymański

We claim that

x /∈
⋃

(η′0,... ,η
′
n−1) 6=(η0,... ,ηn−1)

Pη′0 ∩ T
−NPη′1 ∩ . . . ∩ T

−(n−1)NPη′n−1 .

Suppose that x ∈ Pη′0∩T
−NPη′1∩. . .∩T

−(n−1)NPη′n−1 for some (η
′
0, . . . , η

′
n−1)

6= (η0, . . . , ηn−1). Hence η′i 6= ηi for some 0 ≤ i ≤ n− 1 and so T iNx ∈ Pη′i and
T iNx ∈ Vη′i . This is impossible because Pη′i ∩ Vη′i = ∅ for any 0 ≤ i ≤ n − 1.
Therefore γ is not a cover.
By the use of minimality of

∨n−1
j=0 T

−jNβ we get

N

( n−1∨
j=0

T−jNβ

)
= #

n−1∨
j=0

T−jNβ = 2n.

Hence

h(TN , β) = lim
n→∞

1
n
H

( n−1∨
j=0

T−jNβ

)
= log 2 > 0

which gives us the desired result. �
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