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LARGE TIME REGULAR SOLUTIONS
TO THE NAVIER-STOKES EQUATIONS
IN CYLINDRICAL DOMAINS

JOANNA RENCEAWOWICZ — WOJICIECH M. ZAJACZKOWSKI

ABSTRACT. We prove the large time existence of solutions to the Navier—
Stokes equations with slip boundary conditions in a cylindrical domain. As-
suming smallness of Lg-norms of derivatives of initial velocity with respect
to variable along the axis of the cylinder, we are able to obtain estimate
for velocity in I/V22 'L without restriction on its magnitude. Then existence
follows from the Leray—Schauder fixed point theorem.

1. Introduction

We consider the following initial-boundary value problem

vi4v-Vo—divT(v,p)=f in QT =Qx(0,7),

dive =0 in Q7

(1.1) v-m=0 on ST =8 x (0,7),
-T(v,p) Ta =0, a=1,2, onS7,
Vlt=0 = v(0) in €2,

where Q C R? is a cylindrical domain, S = 95, v is the velocity of the fluid
motion with v(z,t) = (vi(z,t),ve(z,t),v3(x,t)) € R3, p = p(z,t) € R! denotes
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the pressure, f = f(x,t) = (fi(z,t), f2(z,t), fs3(x,t)) € R? — the external force
field, 7 is the unit outward vector normal to the boundary S and 7., a« = 1,2
are tangent vectors to S and - denotes the scalar product in R?.

We define the stress tensor T(v,p) as

T(v,p) = vD(v) — pl,
where v is the constant viscosity coefficient, I — the unit matrix and D(v) is the
dilatation tensor of the form
D(v) = {viz; + V), bij=123-

By x = (21,22, 23) we denote the Cartesian coordinates. Q C R? is a cylin-
drical type domain parallel to the axis x3 with arbitrary cross section. We assume
that S = S; U .Sy where S; is the part of the boundary which is parallel to the
axis x3 and Ss is perpendicular to 3. Hence

Sy ={x € R®: py(x1,29) = co, —a < x3 < a},
and

So = {x € R®: pg(x1,22) < co, x3 is equal to either —a or a},

where a, ¢y are positive given numbers and ¢g (1, z2) = ¢o describes a sufficiently
smooth closed curve in the plane x3 = const.
Let us denote g = f,z4, h = 0,34, x = (rotv)s and define

K1 =|fsllLot) + 19l Loty + 13| Lo 0,726 5(22)
+ 170 [l o) + X0l 2o (02) s
Ky =Ky +di +da + || fllyry + [0(0) |1
K3 =llgllL,@r) + 1hO) I y2-2/0 )
d(T) =9llL.r) + 13l Locsz) + 17O0)|| Lo
where dy, ds are introduced in lemma 2.3.
We prove the following result:
THEOREM 1.1.
(a) Let f € Loo(0,T; Le5(2)) N La(QF), f3 € La(S3), F3 = (ot f)z €
Ly(0,T; Lg /5 (2 )) = fus € Lo(QT)N L, (QT), 0 > 5/3.
(b) Assume that v(0), h(0) = v4,(0), x(0) = (rotv)3(0) belong to La(f2),
and v(0) € H'(Q), h(0) € W2~7(Q), 20/7 < o < 10/3.
Then there exists a solution to problem (1.1) such that v € W22’1(QT), Vp €
Ly(QT). Moreover, if ¢ =p,z, and 5/3 < o <3,

IRl w2 @ry + IVl L, @r) <4,

(1.2)
[ollwzr@ry + VPl a@r) < @(A, K2),
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where A is a constant chosen for a given T so that, for an increasing function
v, sufficiently small constant d(T) and some constants K; involving the above
norms,

(A, K2)d(T)+cKs <A and A > cKs,
where an absolute constant ¢ depends on imbedding only.

The main goal of the paper is to simplify the proof of [5]. Namely, the
result of [5] is generalized by weakening its assumptions. In [5], the existence of
solutions to problem (1.1) has been proved in Besov spaces. Therefore, we needed
much more complicated techniques and estimates, i.e. the solvability of the Stokes
problem in Besov spaces and also different imbeddings and interpolation in Besov

spaces.

2. Preliminaries

This part of the paper is devoted to the results that have been previously
shown in [5]. For the convenience of the reader, we quote them, splitting the
considerations into propositions on basic estimates on the weak solutions and
then examining some useful quantities.

2.1. Notation. The following function spaces will be used in the sequel:

e isotropic and anisotropic Lebesgue spaces:

Ly(Q), Qe{Q",5",Q,5}, pello
Ly(0,T5Ly(Q)), Q€ {Q S}, p,q € [1,00];
e Sobolev spaces:
We2(QF), Qe{R,8), seZyU{0}, g€ 1,00,
with the norm
1/q
lolgorign = ([ \psapuprasar)
|a|+2a<s

where

= 0p109203%, ol =a1+az+a3, a0 €Zy U{0}.

T3
In the special case ¢ = 2,
H*(Q) =W3(Q), Qe{Q5}, se€ZiuU{0}, qell,od]
with the norm

1/2
lll oo = ( >/ |D3u|2dx) .

| <s
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We define a space natural for the study of the weak solutions to the Navier—
Stokes equations:

vy Q)

T 1/2
= {u lullypry = ess sup ||ul[gr) + (/ ||Vu||§{k(ﬂ) dt) < oo}
t€(0.T) 0

with k& € N and Ly replacing H® in definition of V.

2.2. Weak solutions.

DEFINITION 2.1. By a weak solution to problem (1.1) we mean v € V3 (Q7T)
such that dive = 0, v - fi|g = 0, satisfying the integral identity

/ (—v-pi+vDw) D) +v-Vo-)dedt
Qr

+ [ veplirde = [ 00 phoodo= [ f-pdodt
Q Q [

which holds for any ¢ € W, (QT) such that divyp =0, ¢ - ﬁ‘s =0.
For the weak solutions we have the Korn inequality.

LEMMA 2.2. Assume that
Eq(v) = |]D)(v)|2L2(Q) <oo, v-mg=0, dive=0.
Assume that Q is not axially symmetric. Then there exists a constant c¢; such
that

[v]13 () < c1Ba(v).

If Q is azially symmetric, n = (—x2,21,0), a = fQ v -1, then there exists a con-
stant co such that

[0} @) < c2(Ba(v) +[af?).
Now we formulate energy type estimates for weak solutions of (1.1).

LEMMA 2.3 (see [4]). Let f € Loo(0,00; Lg/5(R)), [o frndxdt’ € Loo(0,00),
v(0) € Lo(Q). Let T > 0 be given. Assume that there exist constants a1, as such

that
/f -ndx dt’
Qt

< 00.

61 = sUp |f(D)|Lgs0) < 005 a2 = sup
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Then there exist constants

2 _ C o 2
dy = o + [v(0)[7, ()

d% = (mln(l, 1/2))716le <VCCL% + d%),
1

C
di = ;l(af + a3 + [2?(0)]) + [0(0)[7, o)

. LTl
& = (in102)) e T | £ (a2 4+ 20)) + a8,

which do not depend on kg = kT, k € N, and v = v1 + vy such that in the

non-azially symmetric case we have
(2.1) () |ro0) <di for any t >0,
. [vllve@xwre) <de  forte (KT, (k+1)T), k €N,

and in the azially symmetric case
[v(t)|L,0) < ds  foranyt >0,
[vllvox @y <da forte (KT, (k+1)T), k€ N.

From the above lemma by an application of the Galerkin method and the
considerations from [2, Chapter 6] we have

LEMMA 2.4. Let the assumptions of Lemma 2.3 hold. Then there exists
a weak solution to problem (1.1) in any interval (KT, (k+1)T), k € N, satisfying

[vllve @x (v, (ks 1)1y < dis
where © = 2 for non-azially symmetric and i = 4 for azially symmetric domain.

2.3. Auxiliary problems. We note that in the paper the non-axially sym-
metric case is examined. We distinguish the direction x3. In order to derive
estimates for derivatives in direction x3 we introduce the quantities

h:v,wsv q:p,wgv g:f.L3
These functions are solutions to the problems that we list in the section.

LEMMA 2.5 (see [5]). The pair of functions (h, q) is a solution to the problem
hy—divT(h,q) = —v-Vh—h-Vo+g in or,

divh =0 in QT
(2.2) h-m=0, @-DMh) Ta=0 a=1,2 onSi,

hi=0, i=12, h3u =0 on ST,

hli=o = h(0) in Q.

We will use the following estimates for h obtained in [5] and [6]:
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LEMMA 2.6. Assume that v is a weak solution to problem (1.1) satisfying
(2.1). Assume that h € Lo(0,T;L3(Q)), g € Lo(QT), f3 € La(ST), h(0) €
Ly(QY). Then

(2.3) ||h(t)||%/20(gt) < Cd%HhHQLOQ(o,t;LS(Q))+C(|f3|%2(sg)+\9|2L2(Qf«)+\h(0)|%2(9))a
where t <T.

LEMMA 2.7. With g, f3, h(0) as in the previous lemma and Vv € Ly(0,t;
L3(Q)), for the weak solution to (1.1)

1) o) < cexp(elVollT, 0,015 ) 191 acary + 3]l acsy) + [17(0)]| o))

fort < T, and

(24)  1PllLary < elllVOllLa0.1:Ls0) exP(EVOIIZ 0,405 00)) + 1]
Mgllra@n + 1 fsllnacsy) + (1RO 2, @)
fort <T, hold.

LEMMA 2.8. Let q and f3 be given. Then w = vs is a solution to the problem

wy+v-Vw—vAw=q+ f3 in QT

w, =0 on S’lT,
w =0 on ST,
wli—o = w(0) in Q,

where 0,, = n -V and T is the normal vector to Si.

LEMMA 2.9. Let F3 = (rot f)s, h, v and w be given. Then x = (rotv)s is
a solution to the problem

Xit+v-Vx—hgx+howgy, —hw,, —vAx =F; in Q7
(2.5) X = 0Nz, T1j + Tiiw, M) + 0 T1(Ti2,0, — Ti1,2s) = X« 00 57,

Xzg =0 on ST,

X|t=0 = x(0) in €,

where tangent and normal vectors to S, are defined as follows

Vo 1

n = = 1o x 70 ’
’I’L|51 |V<p| |V<p|(<p’ 1 P )

V4o 1
T = — == (- 0), T =(0,0,1
7-1|S1 |VQO‘ |V<p|( Pxgyr Pxys )7 72‘51 ( y Uy )a

ﬁ|52 = (anvl)v ?1|Sz = (17030), ?2‘5'2 = (0»170)'
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3. Estimates

Let us introduce the function x as a solution to the problem

Xt—vAX=0 1in or,

%:X* on S?a
X.zs =0 on SQT,
it:o:O in Q.

Then the new function x’ = y — ¥, is a solution to the following problem

/

X's v VX = hax' 4+ how o, — hiw o, — vAY
=Fy—v-Vx+hsx inQF,

(3.1) X' =0 on S{,
Xy =0 on Sj ,
X' |t=0 = x(0) in Q.

LEMMA 3.1. Assume that h € Lo (0,t; L3(2)), x(0) € La(2), v/ = (v1,v2) €
Loo (0,1, W5 () N HY24(Q)) Wy 2(Qf), Fy € Ly(0,8; Leys()).  Let the
assumptions of Lemma 2.3 be satisfied. Then solutions of problem (2.5) satisfy

(3.2) ||X||%/2O(Qi) < Cd§(||h\|%oc(o,t;L3(Q)) + ”’U/”QLOO(O,t;ng/S(Q)))
+ C(HF3H%2(0¢:L6/5(Q)) + HX(O)||2L2(Q)
+ HUIHZLOO(O,t;Hl/He(Q)) + ||U/||?,V21,1/2(Qt))7
fort <T', where e > 0.

PrROOF. Multiplying (3.1); by X/, integrating over (2, using the boundary
conditions (3.1)2 3 and (1.1)s we obtain

1d
(3.3) 5@”%“?:2(9) + VX2, 0 :/h:%X/2 dx_/(h2w7z1 —hiw,g, )x dzx
Q O

+/ng'dx—/v~vgx’dm+/hgix’dx.
Q Q Q

Now we estimate the terms on the r.h.s. of the above inequality. The first
term can be bounded by

C
/Q hax'® de < a1l oy + I B0 1A, o

C ~
<ellX 2@ + g(HXH%Q(Q) + X7, @) 12174 ) -

The second term on the r.h.s. of (3.3) can be estimated by

135} 1
5||X/||2L5(Q) + 2—€2||h\|%3(9)||w,w/ 1%,
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the third by:
£3 1
S IX o) + 5 1BsllZ 0

and the fourth we express in the form
/ v-VY'Xdx,
Q
and estimate as follows
€4 1 - €4 1 ~
§||VX/||2L2(Q) + E/QUQ\XF dx < §||VX/||2L2(Q) + E||UH%6(Q)”XH%3(Q)'
Finally, the last term on the r.h.s. of (3.3) can be bounded by
&5 1 ~
5||X'||2L6(Q) + 2765”}"”%12/7(52)HXH%@(Q)'

Using the above estimates in (3.3), assuming that €1, . .. , €5 are sufficiently small
and integrating the result with respect to time we obtain

t t
IO e+ [ IV 08 < [ a1 0 500 I, o
t t
+esup e [ o o+ esup R0 | 10010 2

t
+ CSI;P ||h(t)||%12/7(9) /||>7||%4(Q) dt' + C||F3||2L2(0,t;L6/5(Q)) + ||X(0)||%2(Q)~
0

Now, applying the energy estimate (2.1) we have

t
64 X Ry <csww bl | 17,0

+ed3(sup [R(0)]F, @) + 599 KO )

t
+esup MO, [ 171 ot
+ C||F3H2L2(O,t;L6/5(Q)) + ||X(O)||%2(Q)~
Next, we will use the following relations
t t t
~12 2 2 2
[ IR et < [ 101 @ < [ 10 e < o,
XN L0tz < eV llLacotizas < eV lnomwy, @)
t t
| IR et < e [ ol it < i

and the transformation y’ = x — X to obtain from (3.4) the inequality

(3.5) HXH%/QO(QT) < eds(I1P117 o 0,6:05(2)) T \Iv’\lim@,t;w;/s(m))

+ ¢

FSH%Q(O,t;LG/5(Q)) + HX(O)||2L2(Q) + ||%||%/20(Qt),
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where
t
~112 ~12 =2
%000y < X0 civitacon + | 1Ry
< ellv' 7 qoesrrivzvey + el Iy g

Therefore, we obtain from (3.5) the inequality (3.2). This concludes the proof.[J

Let us consider the problem

. /
Vi,xg — V2,21 = X in 5

. !

(3.6) Vi + V2,2, =—hg in
v =0 on S,

where ' = Q N {plane : 35 = const € (—a,a)}, S; = S1 N {plane x3 = const €
(—a,a)}, and x3, t are treated as parameters.

LEMMA 3.2. Let the assumptions of Lemmas 3.1 and 2.6 be satisfied. Let

Ki(t) = | fsllpacat) + 119l Loty + 1F5]l La0,6:26,5(22)
+ 170) || o) + 1IX(0) | Lo () -
Then

(B.7) 1012 a0y < el I crir 2009y + BRI 0oy + KT+ el +3).

PROOF. In view of (3.2) and (2.3) we obtain for solutions to problem (3.6)
the estimate

2 201,712 2
(3.8) HU/HV21(W) < C(dzHU/HLOO(O,t;ng/S(Q)) + ”vl”Loe(O,t;Hl/”E(Q))

+ V072 )+ Cd3lIRIE (0010 00)) + KT

(Qt))
By interpolation inequalities we have

||UI||%(,O(0¢;H1/2+E(Q)) < €||”/||%m(o,t;Hl(Q)) + C(l/g)di

(39 112, 0y < el Poosrraiy + (1/)3
and
(3.10) 10l 0.t525(s1)) < €NV | e o,tsm1 (@) + (1/E)da.
Assuming that e is sufficiently small we obtain from (3.8)—(3.10) the inequality
(3.7). This concludes the proof. O
Let us consider problem (1.1) in the form
vy —divT(v,p) = —v" - Vv —wh+ f in QT
dive =0 in Q7

(3.11)
v-m=0, 7-T(v,p) Ta=0, a=1,2 onS7T,

v]t=o = v(0) in Q.
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LEMMA 3.3. Let the assumptions of Lemmas 3.1, 3.2 and 2.6 be satisfied.
Let h € Lig/3(Q7), f € Lay(QF), v(0) € HY(Q). Then for solutions of (3.11) we
obtain the inequality

(3.12) [[vllyz1 ey + VPl Lacr) < elde i+ K2)* + (| fll Loty + [0(0) | 1),
fort < T, where Ko and Hy are defined by (3.15)—(3.16) below.
PROOF. In view of [6, Lemma 3.7] we have that
1 ey < el vy amy-
Hence
[0Vl h07) < NV Lg@n) VOl ) < d2llv'|Ly@ry < edallv’[lvpory,
|whllL,,50ry < wllzy,s@n)lIhllzy,,.@r) < cdallbl| L, @r).-
Summarizing the above estimates we have
(313) Wl ary < a0 upcar) + [Blca )
+ (I fll Ly, 507) + ||U(O)||W://§(Q))'

Applying (3.7) in (3.13) and using the interpolation

1Vl Ly m1720,)) < €NV (21 ory + c(1/€)da,
2@

we obtain

(3.14) HU”W;/»;(QT) < cda(|[hl| Lo 0.7525(2)) + 1BllLyg 5 07)) + K2,
where

(3.15) Ky = Ky +di + dy + ||l paer) + [[0(0) [ 210

Let

(3.16) Hi = Mz 0,t:L52)) + 1Rl 210 a000)-

Then (3.14) and (3.7) take the form
Hv||W:/*2;(QT) + 1V llvz @) < eldaHy + K>)?
since

[0Vl L, @ry < 1V L@y VOl L, 01
< Wl @n ol or) < eld2Hy + Ko)?,
[wh| L,@ry < wllLy@r)llbllL,,,,@r)
< dllvllwza@r) 1By, 5 0r) < e(d2Hy + Ka) H.
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In view of the above estimates we obtain for solutions to problem (3.11) the
inequality (3.12). This concludes the proof. a

Let us consider now the problem (2.2).

LEMMA 3.4. Assume that v € W2'(QT)), h € Ly(QT), g € L,(QT) and
h(0) € W3_2/U(Q). Then for solutions of problem (2.2) the following inequality
holds

(3.17) hllyz1gry + IVallz,@r) < e(lvllyzr @r) kil @r)
+ gl @y + 1Ol ya-2/e )
with ¢(a) = ca®.
ProoF. For solutions of problem (2.2) we have the inequality
(3.18) |hllyz1 (qry + IVallz, o) < c(loVh]L,@r) + Ih- VvllL, @r)
+lgllz, @ry + Hh(O)HW3_2/”(Q))'
Let us use the interpolation results
[vVh| L, @r) < vlL,,, @)V L,., @

< [0l zagcamy (€ 2 gy + 1™ Al zagary) = I,

1 1
K1 = (5—5+1>= <5+1):3 because cA; = 10.
o

1/4 —3/4
I < &5 Y lhlly2o gy + 25 0lld oy IRl Lo

Similarly

AV L, @@ry < IRllL,,, @)Vl L, ., @)

<NVl Ly s0my (&5~ [Bllwr r) + c25 ™ D] Lo(r)) = T2,

where
5 5 1 5 3 b \ 10
Ko = - = — |z = = - ecause o = —.
2 o oM /)2 20X 4 2 3
Hence
1/4 —3/4
I < &y |Bllyz1 qor) + ess VI s om 1Bl La@r)

holds. In view of the above estimates we obtain from (3.18) the inequality (3.17).
This concludes the proof. O
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LEMMA 3.5. With the assumptions of the Lemma 3.4, for 5/3 < o < 3, there
exists a sufficiently large constant A such that

(3.19) 1”21 ory + 1VdllL, @r) < A

PROOF. Since
VoL 0,m505 ) < cllvllyzaor)

and by imbedding

(3.20) Hy < c|[hllyz1(qry for o> g,

we obtain from the inequalities (2.4), (3.12), (3.17) and (3.20)
Wllyzsar + IVl @y < ol qry, K2)d(T) + cKs,

where

d(T) = ll9llLoory + 13l Locsry + 1A0) || Lo
K3 = lgllz,@r) + [1P(O0)[lyy2-2/7 -
For sufficiently small d(T") there exists a constant A such that
V(A K2)d(T) 4+ cK3 <A and A > cKs.
Hence the estimate (3.19) holds. O
4. Existence

To prove the existence of solutions we consider the problem

hy — divT(h,q) = —A[v(h, D) - VR +h-Vou(h,0)] +g in Q7

divh =0 in Q7
(4.1) h-m=0, 7-Dh) To=0, a=1,2, on ST,

hi=0, i=1,2, h3., =0 on ST,

h|i=o = h(0) in Q,

where X € [0,1]. Let M(QT) = {h: 17l Lo (0,75w7 (2)) < 00}

The problem (4.1) implies the mapping ®: M(QT) — W21(QT) — m(QT)
where the last imbedding and so the mapping ® is compact for 20/7 < o < 10/3,
1 > 4. We show the continuity of the mapping ®.

LEMMA 4.1. The mapping ® is uniformly continuous in the product M(QT) x
[0,1] where M(QT) is defined as above and 20/7 < o < 10/3, n > 4.

PROOF. Uniform continuity with respect to A € [0,1] is evident. Therefore
we examine the uniform continuity with respect to elements of MM(QT) for any
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A € [0,1]. Since dependence on A is very simple we omit A in the considerations
below because it does not change the proof.

To have compact ® we need compactness of imbedding

5 3
it WP Q) & Leo(0,T; W, () then = —=——=<1, o<n.

Let hy € M(QT), s =1,2,i= 1,2, be two elements. Therefore, we consider
the following problems

gt — divT(hs, qs) = —vs - Vhg — hs - Vus+g  in Q7

divhs =0 in Q7
(4.2) he-m=0, n-D(hs) To=0, a=1,>2 on S{,

hei =0, i=1,2, hgza, =0 on ST,

hsli=o0 = h(0) in Q,

where s = 1, 2;

Xs,t + Vs - VXS - ES:SXS + }VLSZws,zl - hslws,xz - Z/AXS = F3 in QTa

Xs = Xs= on S?a
xs =0 on ST,
Xslt=0 = x(0) on Q,

where s = 1,2, and x.x is defined as in (2.5);

. /
Us2,21 — Usl,zo = Xs in €0,
. /
Usl,x; + Vs2,20 = _hSS in )
o= ’
vg-m =0 on 57,

where s = 1,2, ' nad S} are cross-sections of 2 and S; with a plane perpendi-
cular to axis x3.

First we examine the problem on x. Let us introduce the function X, as
a solution to the problem

Xst —VAXs =0 in Q7
%s = Xsx* on SlTa
Xs,z5 =0 on SQT,

%s‘t:O = 0 in Q,
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where s = 1, 2. Introducing the new function X’ = xs — Xs, s = 1, 2, we see that
it is a solution to the problem

X;,t + vs - VX; - hs3X; + thws,xl - hslws,wg
—VAY, = F3 — vy - VXs + hasXs in Q7T

X. =0 on ST,
Xoas =0 on Sy,
Xsli=0 = xs(0) in Q.

The problem for vg reads:

vs,p — div T (vs, ps) = —v; Vg — wstLS +f in QT7

divuy, =0 in Q7T
(4.3)

ve-m=0, T-T(vs,ps) Ta=0, a=1,2 onST,

Vs|t=o = v(0) in Q.

For vy we have the estimate of the form (3.12), i.e.
lvsllwz1 ey < eldeHy + K2)* + e f | ager) + 10(0) 1))

with Hy, K, defined as in (3.15)~(3.16) as dependent on h, instead of h,. There-
fore, since M(QT) — Loo(0,T; L3(2)) and M(QT) < Lyg,3(27), we can replace
this relation with

@4) osllwzr oo < eldallbsllaney + K2)* + el fll e + 1000) 1)

For problem (4.2) and the functions hs we have

(4.5) HhSHWgJ(QT) + ||Vq(e||L(,(QT)
< |vsVhllL, @) + 1hs Vs, o) + 9] £, @) + [B(0) L, @)
=L+ Lo+ |lgllz, ) + 1R (0|, (@)
Note, that we can not apply directly the results analogous to Lemma 3.4 and

instead, we need to estimate the r.h.s. of (4.5) in different way.
The first term on the r.h.s. of (4.5) we split into:

I = [[vs VL, ) < Mvsllz,s, @) Vsl Ly, @)

We estimate I; under assumptions that v € W;'(Q) — Lgy, () and
Vhs € L,(2). Therefore, we have the following relations:

5 5
- ——<2 Ao <.
2 0)\1_ ’ 0'2_77
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Let oAy =n. Then

1 5 5
< _Z
270 n
We combine this relations with the compactness condition to get
1 2 5 3
st-<-—--<1
2 n-o

and we deduce n > 4 and o > 20/7.
The second term on the r.h.s. of (4.5) is estimated by

I = |Voshallz, @) < IV0sllz,,., @0l ., @)

with 1/py + 1/pp = 1. Since hy € Loo(0, T W, (Q)) with 1 > 4 we have hs €
L (0,T; L,(92)) with arbitrary p < oo. Then we set po = oo and then pq = 1.
Consequently, for v, € W2 (QT) — L, (0, T; W(€)) we have the relation

—~

N | Ot
Al

<1

Hence o < 10/3.

Summarizing estimates for I; and Iy and applying to (4.5) we infer
(4.6) Hhs”ngl(QT) + ||VQS||L(,(QT)
< closllwzr ey + cllbsllam@ey + cllglz, @) + 1-O)y2-2/7 )
Next, we use also the estimate on vy, i.e. (4.4) to infer the inequality
(4.7) [hslloncor) < @(llhsllonry, Ka) + cKs

where ¢ is an increasing positive function and Ky = Ko + da + || f|lL,t) +
[v(0) || 1 ()
This proves that bounded sets in M(Q?) are transformed into bounded sets
in 9M(QF).
To show the continuity, we formulate the problems for the differences:
H=h1—hy, Q=q—q, V=vi—v i=12
Thus, H satisfies

H;—divT(H,Q) = -V -Vhy —vy-VH — H-Vuvy — hy - VV  in Q7

divH =0 in QT
(48) H-m=0, 7-DH) 7o =0, a=1,2, on ST,
H;=0, i=1,2, H3,,=0 on ST,

H‘t:() =0 in Q.
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For solutions of (4.8) we have
[H w2z e + IVQIlL, @ < eIV - Vi, ) + llva - VHI L, a)
+ | H - Voullz, @) + 2 - VV |1, @).
This we can estimate with

(4.9)  [Hllyz1 g + IVQllL, @4
< WV Lpa, @) IVl L gy @ty + 102l 2,6, @) IVH L, 5, )
+1H | z,,, @) IVillz,., @) + [[h2llL,s @) IVVIL,s, @)

Note that first two terms on the r.h.s. of (4.9) can be estimated similarly as Iy
in (4.5) while third and fourth — with use of imbeddings applied to I. Then,
with 20/7 < ¢ < 10/3, n > 4 we obtain

[ w21 + IVQIlL, @) < IV Ilwz o 1hllancaey + [1vllwz 1 e 1 o)
(21 > (929) 2 (929)

Assume that 713, s = 1,2, belong to a bounded set in M(QT). Hence, there exists
a constant A such that

(4.10) Iosllonior) < A, oallyzaar) < ©(A).
Therefore
(411 [Hlyz o + 1Vl L@ < oAV 2 g + (A H lamer)-

Thus, to show the continuity of the transformation ® we should find an estimate
for ||VHW22,1(Q,,). For this purpose we consider the problem

Vi—divT(V,Q) = =V’ -V — v} - VV — Why —w,H in Q7

divV =0 in Q7
(4.12) .

V-n=0, 7-T(V,Q) To=0, «a=1,2, on ST,

V|t:0 = 0 in Q7

where V' = (V1, Vo), W = V3, v), = (vs1, Us2), Ws = Vs3.
For solutions of (4.12) we have

(4.13)  [Vllwz1 g +1IVQLyar < eV Vi,
+ vy - VV Lyt + [Whillny + w2l Ly ar))-
We bound the first term on the r.h.s. of (4.13) by
Vs llorllwz ey = I

By interpolation we get

I < e1|[Vilyaa oy + eU/en)olon 2 o) VI zagan-
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Similarly, we estimate the second term on the r.h.s. of (4.13) by

CHVV||L5/2(Qt) ||U2HW22’1(Qt) = IQ
and
Iy < allV 2 ) + /22l o) IV [ o
By the Holder inequality the third term on the r.h.s. of (4.13) is bounded by
AW, @ llhallL,, @ = Is,

where 5/2 — 5/01 < 2, 09 < 00, 1/01 + 1/02 = 1/2, which are satisfied for
o1 < 10. Since 5/2 —5/01 < 2, we apply the interpolation inequality to the first
factor in I3. Hence we get

I3 < e3l|Vilwz1(qn + c(l/e3) el llam@) VIl Lo -

Finally, by the Holder inequality, the fourth term on the r.h.s. of (4.13) is esti-
mated by

cllwallz,, @)1 HllL,, @) = 14,
where 1/01 +1/02 =1/2,5/2 —5/01 < 2, so we can take g2 = 5/2. Hence,

I, < c¢||lvg HW22‘1(Qt) ||H||L5/2(Qt)'

Utilizing the above estimates in (4.13) and assuming that €q,... ,e3 are suffi-
ciently small we obtain

(414) [Vilyza @ + 1VQllLacae
< ollors vallwz 1 oy 1hallwz @) - (VLo @) + I1H s 2 00))-
Utilizing (4.4), (4.7) and (4.10) in (4.14) implies
(4.15) Vliwz 1@ +1IVQIlLyny < @A IVlL.n) + I1H | Ls)a00))-

Finally we estimate the r.h.s. of (4.15). We multiply (4.8); by H and integrate
over €). In particular,

/ vy -VH - Hdzx = —/ vaVH - Hdz < ||v2l| 2o @)l H | s | VH Lo -
Q Q
Then (4.8); yields

d -

@HHH%g(Q) + || H|[F o) < eIV - vhl||2L6/5(Q)

+ ||U2||2L@(Q)\|H||2Lg(9) + | H - VUIHZLM(Q) + (|2 - VV||2L6/5(Q))~

By the Holder inequality, this implies

d -

@llHH%Q(Q) + | H 30y < VI, @) IVPE, 0

+ vl o 1 H 1) + Sup 121l ) IV V110 (0) + I o) V01112, () -
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Using that, in view of (4.10), the third expression on the r.h.s. of the above
inequality is estimated by cgo(A)HVH%{l(Q) we obtain
d ~
(4.16) £||HHQL2(Q) + V”HH%I](Q) < C(SO(A)HV”?LP(Q) + HU2||2LG(Q)HH||2L3(Q)
H VI, @ I VR, ) + THIZ, @) IV o1l 0)-

Multiplying (4.12); by V and integrating over Q, it follows that

d
(4.17) @HVH%Q(Q) + VHVH%H(Q)
< VI, IVl @) + 1711l ) + clwallZy @ 1 H T, q)-

Multiplying (4.17) by a constant ¢, such that vc, — cp(4) > v and adding to
(4.16), we get

d

%(C*HVH%Q(Q) + ||H||2L2(Q)) + V(HV”?P(Q) + HH”%P(Q))

< ce VI, (IVoill ) + 17T, 0)) + cellwallf @ 1 HIIZ, 0
+ C(”UQH%G(Q)”HH%Q,(Q) + ||VU1||2L3(Q)||H||2LQ(Q) + ||V||%2(Q)||Vh1||%3(ﬂ))'

Integrating this inequality with respect to time yields

t

(418) V@)L, + @)L, @) + V/(IIV(t’)IIip(Q) +IHE) I () 4
0

t
Scexp C/(||Wl(t')||%3<m+\\h1 (L, w2 ()17, o) HIVAL ()L, ) 4t
0

0217, 0.6 2o 1IN o (0.6:25 ) + IV VLT 5 0.7 20 | £ (0,73 22 (02))) = -
By the imbedding results we get

J < cexp C(”UlH?/Vf’l(Qt) + ||h\|3vg,1(gt))(||02||2L2(o,t;LG(Q))||HH%OO(0¢;L3(Q))

+IVorllZ, 0.7 pa @) 1 H | Loc 0,71 L2 (02)) = 1

By (4.4), (4.7) and (4.10) we obtain
T <@ NHNG o250 T HHIE L 0.7 1002))-
Therefore, (4.18) takes the form
(4.19) [[Vllveny + 1Hlvory < e(A)H Lo 0.1:059) + HI Lo (0,7:22(22)))-
Utilizing (4.19) in (4.15) and the result in (4.11) we obtain
[ H lanary < @(A)[|H [lonary,

which implies the uniform continuity of mapping ® and ends the proof. (]
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PRrOOF OF THEOREM 1.1. Since ® is uniformly continuous and compact for

20/7 < o < 10/3, the Leray—Schauder fixed point theorem yields the existence
result. Moreover, for 5/3 < o < 3, by (3.20), Lemmas 3.5 and 3.3, we have

estimates of the form (1.2). This concludes the proof. O
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