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LARGE TIME REGULAR SOLUTIONS
TO THE NAVIER–STOKES EQUATIONS

IN CYLINDRICAL DOMAINS

Joanna Rencławowicz — Wojciech M. Zajączkowski

Abstract. We prove the large time existence of solutions to the Navier–

Stokes equations with slip boundary conditions in a cylindrical domain. As-

suming smallness of L2-norms of derivatives of initial velocity with respect
to variable along the axis of the cylinder, we are able to obtain estimate

for velocity in W 2,1
2 without restriction on its magnitude. Then existence

follows from the Leray–Schauder fixed point theorem.

1. Introduction

We consider the following initial-boundary value problem

(1.1)

vt + v · ∇v − divT(v, p) = f in ΩT = Ω× (0, T ),
div v = 0 in ΩT ,

v · n = 0 on ST = S × (0, T ),
n · T(v, p) · τα = 0, α = 1, 2, on ST ,
v|t=0 = v(0) in Ω,

where Ω ⊂ R3 is a cylindrical domain, S = ∂Ω, v is the velocity of the fluid
motion with v(x, t) = (v1(x, t), v2(x, t), v3(x, t)) ∈ R3, p = p(x, t) ∈ R1 denotes
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the pressure, f = f(x, t) = (f1(x, t), f2(x, t), f3(x, t)) ∈ R3 — the external force
field, n is the unit outward vector normal to the boundary S and τα, α = 1, 2
are tangent vectors to S and · denotes the scalar product in R3.
We define the stress tensor T(v, p) as

T(v, p) = νD(v)− pI,

where ν is the constant viscosity coefficient, I— the unit matrix and D(v) is the
dilatation tensor of the form

D(v) = {vi,xj + vj,xi}i,j=1,2,3.

By x = (x1, x2, x3) we denote the Cartesian coordinates. Ω ⊂ R3 is a cylin-
drical type domain parallel to the axis x3 with arbitrary cross section. We assume
that S = S1 ∪ S2 where S1 is the part of the boundary which is parallel to the
axis x3 and S2 is perpendicular to x3. Hence

S1 = {x ∈ R3 : ϕ0(x1, x2) = c0, −a < x3 < a},

and

S2 = {x ∈ R3 : ϕ0(x1, x2) < c0, x3 is equal to either − a or a},

where a, c0 are positive given numbers and ϕ0(x1, x2) = c0 describes a sufficiently
smooth closed curve in the plane x3 = const.
Let us denote g = f,x3 , h = v,x3 , χ = (rot v)3 and define

K1 = ‖f3‖L2(Ωt) + ‖g‖L2(Ωt) + ‖F3‖L2(0,T ;L6/5(Ω))
+ ‖h(0)‖L2(Ω) + ‖χ(0)‖L2(Ω),

K2 =K1 + d1 + d2 + ‖f‖L2(ΩT ) + ‖v(0)‖H1(Ω),
K3 = ‖g‖Lσ(ΩT ) + ‖h(0)‖W 2−2/σσ (Ω),

d(T ) = ‖g‖L2(ΩT ) + ‖f3‖L2(ST2 ) + ‖h(0)‖L2(Ω),

where d1, d2 are introduced in lemma 2.3.
We prove the following result:

Theorem 1.1.

(a) Let f ∈ L∞(0, T ;L6/5(Ω)) ∩ L2(ΩT ), f3 ∈ L2(ST2 ), F3 = (rot f)3 ∈
L2(0, T ;L6/5(Ω)), g = f,x3 ∈ L2(ΩT ) ∩ Lσ(ΩT ), σ > 5/3.

(b) Assume that v(0), h(0) = v,x3(0), χ(0) = (rot v)3(0) belong to L2(Ω),
and v(0) ∈ H1(Ω), h(0) ∈W 2−2/σσ (Ω), 20/7 < σ ≤ 10/3.

Then there exists a solution to problem (1.1) such that v ∈ W 2,12 (ΩT ), ∇p ∈
L2(ΩT ). Moreover, if q = p,x3 and 5/3 < σ < 3,

(1.2)
‖h‖W 2,1σ (ΩT ) + ‖∇q‖Lσ(ΩT ) < A,
‖v‖W 2,12 (ΩT ) + ‖∇p‖L2(ΩT ) ≤ ϕ(A,K2),
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where A is a constant chosen for a given T so that, for an increasing function
ϕ, sufficiently small constant d(T ) and some constants Ki involving the above
norms,

ϕ(A,K2)d(T ) + cK3 ≤ A and A > cK3,

where an absolute constant c depends on imbedding only.

The main goal of the paper is to simplify the proof of [5]. Namely, the
result of [5] is generalized by weakening its assumptions. In [5], the existence of
solutions to problem (1.1) has been proved in Besov spaces. Therefore, we needed
much more complicated techniques and estimates, i.e. the solvability of the Stokes
problem in Besov spaces and also different imbeddings and interpolation in Besov
spaces.

2. Preliminaries

This part of the paper is devoted to the results that have been previously
shown in [5]. For the convenience of the reader, we quote them, splitting the
considerations into propositions on basic estimates on the weak solutions and
then examining some useful quantities.

2.1. Notation. The following function spaces will be used in the sequel:

• isotropic and anisotropic Lebesgue spaces:

Lp(Q), Q ∈ {ΩT , ST ,Ω, S}, p ∈ [1,∞],
Lq(0, T ;Lp(Q)), Q ∈ {Ω, S}, p, q ∈ [1,∞];

• Sobolev spaces:

W s,s/2q (QT ), Q ∈ {Ω, S}, s ∈ Z+ ∪ {0}, q ∈ [1,∞],

with the norm

‖u‖
W
s,s/2
q (QT ) =

( ∑
|α|+2a≤s

∫
QT
|Dαx∂at u|q dx dt

)1/q
,

where

Dαx = ∂
α1
x1 ∂

α2
x2 ∂

α3
x3 , |α| = α1 + α2 + α3, a, αi ∈ Z+ ∪ {0}.

In the special case q = 2,

Hs(Q) =W s2 (Q), Q ∈ {Ω, S}, s ∈ Z+ ∪ {0}, q ∈ [1,∞]

with the norm

‖u‖Hs(Q) =
( ∑
|α|≤s

∫
Q

|Dαxu|2 dx
)1/2
.
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We define a space natural for the study of the weak solutions to the Navier–
Stokes equations:

V k2 (Ω
T )

=
{
u : ||u||V k2 (ΩT ) = ess sup

t∈(0,T )
||u||Hk(Ω) +

(∫ T
0
||∇u||2Hk(Ω) dt

)1/2
<∞
}

with k ∈ N and L2 replacing H0 in definition of V 02 .

2.2. Weak solutions.

Definition 2.1. By a weak solution to problem (1.1) we mean v ∈ V 02 (ΩT )
such that div v = 0, v · n|S = 0, satisfying the integral identity∫

ΩT
(−v · ϕ,t + νD(v) · D(ϕ) + v · ∇v · ϕ) dx dt

+
∫
Ω
v · ϕ|t=T dx−

∫
Ω
v(0) · ϕ|t=0 dx =

∫
ΩT
f · ϕdx dt,

which holds for any ϕ ∈W 1,12 (ΩT ) such that divϕ = 0, ϕ · n
∣∣
S
= 0.

For the weak solutions we have the Korn inequality.

Lemma 2.2. Assume that

EΩ(v) = |D(v)|2L2(Ω) <∞, v · n|S = 0, div v = 0.

Assume that Ω is not axially symmetric. Then there exists a constant c1 such
that

‖v‖2H1(Ω) ≤ c1EΩ(v).

If Ω is axially symmetric, η = (−x2, x1, 0), α =
∫
Ω v · η, then there exists a con-

stant c2 such that

‖v‖2H1(Ω) ≤ c2(EΩ(v) + |α|
2).

Now we formulate energy type estimates for weak solutions of (1.1).

Lemma 2.3 (see [4]). Let f ∈ L∞(0,∞;L6/5(Ω)),
∫
Ωt f ·η dx dt

′ ∈ L∞(0,∞),
v(0) ∈ L2(Ω). Let T > 0 be given. Assume that there exist constants a1, a2 such
that

a1 ≡ sup
t
|f(t)|L6/5(Ω) <∞, a2 ≡ sup

t

∣∣∣∣ ∫
Ωt

f · η dx dt′
∣∣∣∣ <∞.
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Then there exist constants

d21 =
c

ν1
a21 + |v(0)|2L2(Ω),

d22 = (min(1, ν2))
−1eν1T

(
c

ν1
a21 + d

2
1

)
,

d23 =
c

ν1
(a21 + a

2
2 + |α2(0)|) + |v(0)|2L2(Ω),

d24 = (min(1, ν2))
−1eν1T

[
c

ν1
(a21 + a

2
2 + |α2(0)|) + d23

]
,

which do not depend on k0 = kT , k ∈ N, and ν = ν1 + ν2 such that in the
non-axially symmetric case we have

(2.1)
|v(t)|L2(Ω) ≤ d1 for any t ≥ 0,

‖v‖V 02 (Ω×(kT,t)) ≤ d2 for t ∈ (kT, (k + 1)T ), k ∈ N,

and in the axially symmetric case

|v(t)|L2(Ω) ≤ d3 for any t ≥ 0,
‖v‖V 02 (Ω×(kT,t)) ≤ d4 for t ∈ (kT, (k + 1)T ), k ∈ N.

From the above lemma by an application of the Galerkin method and the
considerations from [2, Chapter 6] we have

Lemma 2.4. Let the assumptions of Lemma 2.3 hold. Then there exists
a weak solution to problem (1.1) in any interval (kT, (k+1)T ), k ∈ N, satisfying

‖v‖V 02 (Ω×(kT,(k+1)T ) ≤ di,

where i = 2 for non-axially symmetric and i = 4 for axially symmetric domain.

2.3. Auxiliary problems. We note that in the paper the non-axially sym-
metric case is examined. We distinguish the direction x3. In order to derive
estimates for derivatives in direction x3 we introduce the quantities

h = v,x3 , q = p,x3 , g = f,x3 .

These functions are solutions to the problems that we list in the section.

Lemma 2.5 (see [5]). The pair of functions (h, q) is a solution to the problem

(2.2)

h,t − divT(h, q) = −v · ∇h− h · ∇v + g in ΩT ,
divh = 0 in ΩT ,

h · n = 0, n · D(h) · τα = 0, α = 1, 2 on ST1 ,
hi = 0, i = 1, 2, h3,x3 = 0 on ST2 ,

h|t=0 = h(0) in Ω.

We will use the following estimates for h obtained in [5] and [6]:



74 J. Rencławowicz — W. M. Zajączkowski

Lemma 2.6. Assume that v is a weak solution to problem (1.1) satisfying
(2.1). Assume that h ∈ L∞(0, T ;L3(Ω)), g ∈ L2(ΩT ), f3 ∈ L2(ST2 ), h(0) ∈
L2(Ω). Then

(2.3) ‖h(t)‖2V 02 (Ωt) ≤ cd
2
2‖h‖2L∞(0,t;L3(Ω))+ c(|f3|

2
L2(St2)

+ |g|2L2(Ωt)+ |h(0)|
2
L2(Ω)),

where t ≤ T .

Lemma 2.7. With g, f3, h(0) as in the previous lemma and ∇v ∈ L2(0, t;
L3(Ω)), for the weak solution to (1.1)

‖h(t)‖L2(Ω) ≤ c exp(c‖∇v‖
2
L2(0,t;L3(Ω)))[‖g‖L2(Ωt) + ‖f3‖L2(St2) + ‖h(0)‖L2(Ω)],

for t ≤ T , and

(2.4) ‖h‖L2(Ωt) ≤ c[‖∇v‖L2(0,t;L3(Ω)) exp(c‖∇v‖
2
L2(0,t;L3(Ω))) + 1]

· [‖g‖L2(Ωt) + ‖f3‖L2(St2) + ‖h(0)‖L2(Ω)],

for t ≤ T , hold.

Lemma 2.8. Let q and f3 be given. Then w = v3 is a solution to the problem

w,t + v · ∇w − ν∆w = q + f3 in ΩT ,
w,n = 0 on ST1 ,

w = 0 on ST2 ,

w|t=0 = w(0) in Ω,

where ∂n = n · ∇ and n is the normal vector to S1.

Lemma 2.9. Let F3 = (rot f)3, h, v and w be given. Then χ = (rot v)3 is
a solution to the problem

(2.5)

χ,t + v · ∇χ− h3χ+ h2w,x1 − h1w,x2 − ν∆χ = F3 in ΩT ,

χ = vi(ni,xjτ1j + τ1i,xjnj) + v · τ1(τ12,x1 − τ11,x2) ≡ χ∗ on ST1 ,
χ,x3 = 0 on ST2 ,

χ|t=0 = χ(0) in Ω,

where tangent and normal vectors to S1 are defined as follows

n|S1 =
∇ϕ
|∇ϕ|

=
1
|∇ϕ|
(ϕ,x1 , ϕ,x2 , 0),

τ1|S1 =
∇⊥ϕ
|∇ϕ|

=
1
|∇ϕ|
(−ϕ,x2 , ϕ,x1 , 0), τ2|S1 = (0, 0, 1),

n|S2 = (0, 0, 1), τ1|S2 = (1, 0, 0), τ2|S2 = (0, 1, 0).
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3. Estimates

Let us introduce the function χ̃ as a solution to the problem

χ̃,t − ν∆χ̃ = 0 in ΩT ,
χ̃ = χ∗ on ST1 ,

χ̃,x3 = 0 on ST2 ,

χ̃|t=0 = 0 in Ω.

Then the new function χ′ = χ− χ̃, is a solution to the following problem

(3.1)

χ′,t + v · ∇χ′ − h3χ′ + h2w,x1 − h1w,x2 − ν∆χ′

= F3 − v · ∇χ̃+ h3χ̃ in ΩT ,
χ′ = 0 on ST1 ,

χ′,x3 = 0 on ST2 ,

χ′|t=0 = χ(0) in Ω.

Lemma 3.1. Assume that h ∈ L∞(0, t;L3(Ω)), χ(0) ∈ L2(Ω), v′ = (v1, v2) ∈
L∞(0, t;W 19/5(Ω) ∩H

1/2+ε(Ω)) ∩ W 1,1/22 (Ωt), F3 ∈ L2(0, t;L6/5(Ω)). Let the
assumptions of Lemma 2.3 be satisfied. Then solutions of problem (2.5) satisfy

‖χ‖2V 02 (Ωt) ≤ cd
2
2(‖h‖2L∞(0,t;L3(Ω)) + ‖v

′‖2L∞(0,t;W 19/5(Ω)))(3.2)

+ c(‖F3‖2L2(0,t:L6/5(Ω)) + ‖χ(0)‖
2
L2(Ω)

+ ‖v′‖2L∞(0,t;H1/2+ε(Ω)) + ‖v
′‖2
W
1,1/2
2 (Ωt)

),

for t ≤ T , where ε > 0.

Proof. Multiplying (3.1)1 by χ′, integrating over Ω, using the boundary
conditions (3.1)2,3 and (1.1)3 we obtain

(3.3)
1
2
d

dt
‖χ′‖2L2(Ω) + ν‖∇χ

′‖2L2(Ω) =
∫
Ω
h3χ

′2 dx−
∫
Ω
(h2w,x1 −h1w,x2 )χ′ dx

+
∫
Ω
F3χ

′ dx−
∫
Ω
v · ∇χ̃χ′ dx+

∫
Ω
h3χ̃χ

′ dx.

Now we estimate the terms on the r.h.s. of the above inequality. The first
term can be bounded by∫

Ω
h3χ

′2 dx ≤ ε1‖χ′‖2L6(Ω) +
c

ε1
‖χ′‖2L2(Ω)‖h‖

2
L3(Ω)

≤ ε1‖χ′‖2L6(Ω) +
c

ε1
(‖χ‖2L2(Ω) + ‖χ̃‖

2
L2(Ω))‖h‖

2
L3(Ω).

The second term on the r.h.s. of (3.3) can be estimated by

ε2
2
‖χ′‖2L6(Ω) +

1
2ε2
‖h‖2L3(Ω)‖w,x′ ‖

2
L2(Ω),
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the third by:
ε3
2
‖χ′‖2L6(Ω) +

1
2ε3
‖F3‖2L6/5(Ω),

and the fourth we express in the form∫
Ω
v · ∇χ′χ̃ dx,

and estimate as follows

ε4
2
‖∇χ′‖2L2(Ω) +

1
2ε4

∫
Ω
v2|χ̃|2 dx ≤ ε4

2
‖∇χ′‖2L2(Ω) +

1
2ε4
‖v‖2L6(Ω)‖χ̃‖

2
L3(Ω).

Finally, the last term on the r.h.s. of (3.3) can be bounded by

ε5
2
‖χ′‖2L6(Ω) +

1
2ε5
‖h‖2L12/7(Ω)‖χ̃‖

2
L4(Ω).

Using the above estimates in (3.3), assuming that ε1, . . . , ε5 are sufficiently small
and integrating the result with respect to time we obtain

‖χ′(t)‖2L2(Ω) + ν
∫ t
0
‖∇χ′(t′)‖2L2(Ω) dt

′ ≤ c
∫ t
0
dt′‖χ′‖2L2(Ω) sup

t
‖h‖2L3(Ω)

+ c sup
t
‖h‖2L3(Ω)

∫ t
0
‖w,x′ ‖2L2(Ω) dt

′ + c sup
t
‖χ̃‖2L3(Ω)

∫ t
0
‖v(t′)‖2L6(Ω) dt

′

+ c sup
t
‖h(t)‖2L12/7(Ω)

∫ t
0
‖χ̃‖2L4(Ω) dt

′ + c‖F3‖2L2(0,t;L6/5(Ω)) + ‖χ(0)‖
2
L2(Ω).

Now, applying the energy estimate (2.1) we have

‖χ′‖2V 02 (ΩT ) ≤ c supt
‖h‖2L3(Ω)

∫ t
0
‖χ̃‖2L2(Ω)(3.4)

+ cd22
(
sup
t
‖h(t)‖2L3(Ω) + sup

t
‖χ̃(t)‖2L3(Ω)

)
+ c sup

t
‖h(t)‖2L12/7(Ω)

∫ t
0
‖χ̃‖2L4(Ω) dt

′

+ c‖F3‖2L2(0,t;L6/5(Ω)) + ‖χ(0)‖
2
L2(Ω).

Next, we will use the following relations∫ t
0
‖χ̃‖2L4(Ω) dt

′ ≤ c
∫ t
0
‖v′‖2L4(S1) dt

′ ≤ c
∫ t
0
‖v′‖2H1(Ω) dt

′ ≤ cd22,

‖χ̃‖L∞(0,t;L3(Ω)) ≤ c‖v
′‖L∞(0,t;L3(S1)) ≤ c‖v

′‖L∞(0,t;W 19/5(Ω)),∫ t
0
‖χ̃‖2L2(Ω) dt

′ ≤ c
∫ t
0
‖v‖2W 12 (Ω) dt

′ ≤ cd22,

and the transformation χ′ = χ− χ̃ to obtain from (3.4) the inequality

(3.5) ‖χ‖2V 02 (ΩT ) ≤ cd
2
2(‖h‖2L∞(0,t;L3(Ω)) + ‖v

′‖2L∞(0,t;W 19/5(Ω)))

+ c‖F3‖2L2(0,t;L6/5(Ω)) + ‖χ(0)‖
2
L2(Ω) + ‖χ̃‖

2
V 02 (Ω

t),
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where

‖χ̃‖2V 02 (Ωt) ≤ ‖χ̃‖
2
L∞(0,t;L2(Ω)) +

∫ t
0
‖χ̃‖2H1(Ω) dt

′

≤ c‖v′‖2L∞(0,t;H1/2+ε) + c‖v
′‖2
W
1,1/2
2 (Ωt)

.

Therefore, we obtain from (3.5) the inequality (3.2). This concludes the proof.�

Let us consider the problem

(3.6)

v1,x2 − v2,x1 = χ in Ω′,

v1,x1 + v2,x2 = −h3 in Ω′,
v′ · n′ = 0 on S′1,

where Ω′ = Ω ∩ {plane : x3 = const ∈ (−a, a)}, S′1 = S1 ∩ {plane x3 = const ∈
(−a, a)}, and x3, t are treated as parameters.

Lemma 3.2. Let the assumptions of Lemmas 3.1 and 2.6 be satisfied. Let

K1(t) = ‖f3‖L2(Ωt) + ‖g‖L2(Ωt) + ‖F3‖L2(0,t;L6/5(Ω))
+ ‖h(0)‖L2(Ω) + ‖χ(0)‖L2(Ω).

Then

(3.7) ‖v′‖2V 12 (Ωt) ≤ c‖v
′‖2L2(Ω;H1/2(0,T ))+ cd

2
2‖h‖2L∞(0,t;L3(Ω))+ cK

2
1 + c(d

2
1+d

2
2).

Proof. In view of (3.2) and (2.3) we obtain for solutions to problem (3.6)
the estimate

(3.8) ‖v′‖2V 12 (Ωt) ≤ c(d
2
2‖v′‖2L∞(0,t;W 19/5(Ω)) + ‖v

′‖2L∞(0,t;H1/2+ε(Ω))
+ ‖v′‖2

W
1,1/2
2 (Ωt)

) + cd22‖h‖2L∞(0,t;L3(Ω)) + cK
2
1 .

By interpolation inequalities we have

(3.9)
‖v′‖2L∞(0,t;H1/2+ε(Ω)) ≤ ε‖v

′‖2L∞(0,t;H1(Ω)) + c(1/ε)d
2
1,

‖v′‖2L2(0,t;H1(Ω)) ≤ ε‖v
′‖2L2(0,t;H2(Ω)) + c(1/ε)d

2
2

and

(3.10) ‖v′‖L∞(0,t;L3(s1)) ≤ ε‖v
′‖L∞(0,t;H1(Ω)) + c(1/ε)d2.

Assuming that ε is sufficiently small we obtain from (3.8)–(3.10) the inequality
(3.7). This concludes the proof. �

Let us consider problem (1.1) in the form

(3.11)

v,t − divT(v, p) = −v′ · ∇v − wh+ f in ΩT ,

div v = 0 in ΩT ,

v · n = 0, n · T(v, p) · τα = 0, α = 1, 2 on ST ,
v|t=0 = v(0) in Ω.
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Lemma 3.3. Let the assumptions of Lemmas 3.1, 3.2 and 2.6 be satisfied.
Let h ∈ L10/3(ΩT ), f ∈ L2(ΩT ), v(0) ∈ H1(Ω). Then for solutions of (3.11) we
obtain the inequality

(3.12) ‖v‖W 2,12 (Ωt)+‖∇p‖L2(Ωt) ≤ c(d2H1+K2)
2+ c(‖f‖L2(Ωt)+‖v(0)‖H1(Ω)),

for t ≤ T , where K2 and H1 are defined by (3.15)–(3.16) below.

Proof. In view of [6, Lemma 3.7] we have that

‖v′‖L10(ΩT ) ≤ c‖v
′‖V 12 (ΩT ).

Hence

‖v′∇v‖L5/3(ΩT ) ≤ ‖v
′‖L10(ΩT )‖∇v‖L2(ΩT ) ≤ d2‖v

′‖L10(ΩT ) ≤ cd2‖v
′‖V 12 (ΩT ),

‖wh‖L5/3(ΩT ) ≤ ‖w‖L10/3(ΩT )‖h‖L10/3(ΩT ) ≤ cd2‖h‖L10/3(ΩT ).

Summarizing the above estimates we have

(3.13) ‖v‖W 2,15/3(ΩT ) ≤ cd2(‖v
′‖V 12 (ΩT ) + ‖h‖L10/3(ΩT ))

+ c(‖f‖L5/3(ΩT ) + ‖v(0)‖W 4/55/3 (Ω)).

Applying (3.7) in (3.13) and using the interpolation

‖v′‖L2(Ω;H1/2(0,T )) ≤ ε‖v
′‖W 2,15/3(ΩT ) + c(1/ε)d2,

we obtain

(3.14) ‖v‖W 2,15/3(ΩT ) ≤ cd2(‖h‖L∞(0,T ;L3(Ω)) + ‖h‖L10/3(ΩT )) + cK2,

where

(3.15) K2 = K1 + d1 + d2 + ‖f‖L2(ΩT ) + ‖v(0)‖H1(Ω).

Let

(3.16) H1 = ‖h‖L∞(0,t;L3(Ω)) + ‖h‖L10/3(Ωt).

Then (3.14) and (3.7) take the form

‖v‖W 2,15/3(ΩT ) + ‖v
′‖V 12 (Ωt) ≤ c(d2H1 +K2)

2

since

‖v′∇v‖L2(ΩT ) ≤ ‖v
′‖L10(ΩT )‖∇v‖L5/2(ΩT )

≤ ‖v′‖V 12 (ΩT )‖v‖W 2,15/3(ΩT ) ≤ c(d2H1 +K2)
2,

‖wh‖L2(ΩT ) ≤ ‖w‖L5(ΩT )‖h‖L10/3(ΩT )
≤ c‖v‖W 2,15/3(ΩT )‖h‖L10/3(ΩT ) ≤ c(d2H1 +K2)H1.
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In view of the above estimates we obtain for solutions to problem (3.11) the
inequality (3.12). This concludes the proof. �

Let us consider now the problem (2.2).

Lemma 3.4. Assume that v ∈ W 2,12 (ΩT )), h ∈ L2(ΩT ), g ∈ Lσ(ΩT ) and
h(0) ∈ W 2−2/σσ (Ω). Then for solutions of problem (2.2) the following inequality
holds

(3.17) ‖h‖W 2,1σ (ΩT ) + ‖∇q‖Lσ(ΩT ) ≤ ϕ(‖v‖W 2,12 (ΩT ))‖h‖L2(ΩT )
+ c(‖g‖Lσ(ΩT ) + ‖h(0)‖W 2−2/σσ (Ω)),

with ϕ(a) = ca4.

Proof. For solutions of problem (2.2) we have the inequality

(3.18) ‖h‖W 2,1σ (ΩT ) + ‖∇q‖Lσ(ΩT ) ≤ c(‖v∇h‖Lσ(ΩT ) + ‖h · ∇v‖Lσ(ΩT )
+ ‖g‖Lσ(ΩT ) + ‖h(0)‖W 2−2/σσ (Ω)).

Let us use the interpolation results

‖v∇h‖Lσ(ΩT ) ≤ ‖v‖Lσλ1 (ΩT )‖∇h‖Lσλ2 (ΩT )
≤ ‖v‖L10(ΩT )(ε

1−κ1
1 ‖h‖W 2,1σ (ΩT ) + cε

−κ1
1 ‖h‖L2(ΩT )) ≡ I1,

where

κ1 =
(
5
σ
− 5
σλ2
+ 1
)
1
2
=
(
5
σλ1
+ 1
)
1
2
=
3
4
because σλ1 = 10.

Hence

I1 ≤ ε1/42 ‖h‖W 2,1σ (ΩT ) + cε
−3/4
2 ‖v‖4L10(ΩT )‖h‖L2(ΩT ).

Similarly

‖h∇v‖Lσ(ΩT ) ≤ ‖h‖Lσλ1 (ΩT )‖∇v‖Lσλ2 (ΩT )
≤ ‖∇v‖L10/3(ΩT )(ε

1−κ2
3 ‖h‖W 2,1σ (ΩT ) + cε

−κ2
3 ‖h‖L2(ΩT )) ≡ I2,

where

κ2 =
(
5
σ
− 5
σλ1

)
1
2
=
5
2σλ2

=
3
4
because σλ2 =

10
3
.

Hence

I2 ≤ ε1/44 ‖h‖W 2,1σ (ΩT ) + cε
−3/4
4 ‖∇v‖4L10/3(ΩT )‖h‖L2(ΩT )

holds. In view of the above estimates we obtain from (3.18) the inequality (3.17).
This concludes the proof. �
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Lemma 3.5. With the assumptions of the Lemma 3.4, for 5/3 < σ < 3, there
exists a sufficiently large constant A such that

(3.19) ‖h‖W 2,1σ (ΩT ) + ‖∇q‖Lσ(ΩT ) ≤ A.

Proof. Since

‖∇v‖L2(0,T ;L3(Ω)) ≤ c‖v‖W 2,12 (ΩT )
and by imbedding

(3.20) H1 ≤ c‖h‖W 2,1σ (ΩT ) for σ >
5
3
,

we obtain from the inequalities (2.4), (3.12), (3.17) and (3.20)

‖h‖W 2,1σ (ΩT ) + ‖∇q‖Lσ(ΩT ) ≤ ϕ(‖h‖W 2,1σ (ΩT ),K2)d(T ) + cK3,

where

d(T ) = ‖g‖L2(ΩT ) + ‖f3‖L2(ST2 ) + ‖h(0)‖L2(Ω),
K3 = ‖g‖Lσ(ΩT ) + ‖h(0)‖W 2−2/σσ (Ω).

For sufficiently small d(T ) there exists a constant A such that

ϕ(A,K2)d(T ) + cK3 ≤ A and A > cK3.

Hence the estimate (3.19) holds. �

4. Existence

To prove the existence of solutions we consider the problem

(4.1)

ht − divT(h, q) = −λ[v(h̃, v) · ∇h̃+ h̃ · ∇v(h̃, v)] + g in ΩT ,
divh = 0 in ΩT ,

h · n = 0, n · D(h) · τα = 0, α = 1, 2, on ST1 ,

hi = 0, i = 1, 2, h3,x3 = 0 on ST2 ,

h|t=0 = h(0) in Ω,

where λ ∈ [0, 1]. Let M(ΩT ) = {h : ‖h‖L∞(0,T ;W 1η (Ω)) <∞}.
The problem (4.1) implies the mapping Φ:M(ΩT ) → W 2,1σ (ΩT ) ↪→ M(ΩT )

where the last imbedding and so the mapping Φ is compact for 20/7 < σ < 10/3,
η > 4. We show the continuity of the mapping Φ.

Lemma 4.1. The mapping Φ is uniformly continuous in the productM(ΩT )×
[0, 1] where M(ΩT ) is defined as above and 20/7 < σ ≤ 10/3, η > 4.

Proof. Uniform continuity with respect to λ ∈ [0, 1] is evident. Therefore
we examine the uniform continuity with respect to elements of M(ΩT ) for any
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λ ∈ [0, 1]. Since dependence on λ is very simple we omit λ in the considerations
below because it does not change the proof.

To have compact Φ we need compactness of imbedding

if W 2,1σ (Ω
T ) ↪→ L∞(0, T ;W 1η (Ω)) then

5
σ
− 3
η
− 2
∞
< 1, σ < η.

Let h̃s ∈M(ΩT ), s = 1, 2, i = 1, 2, be two elements. Therefore, we consider
the following problems

(4.2)

hs,t − divT(hs, qs) = −vs · ∇h̃s − h̃s · ∇vs + g in ΩT ,
divhs = 0 in ΩT ,

hs · n = 0, n · D(hs) · τα = 0, α = 1, 2 on ST1 ,

hsi = 0, i = 1, 2, hs3,x3 = 0 on ST2 ,

hs|t=0 = h(0) in Ω,

where s = 1, 2;

χs,t + vs · ∇χs − h̃s3χs + h̃s2ws,x1 − h̃s1ws,x2 − ν∆χs = F3 in ΩT ,
χs = χs∗ on ST1 ,

χs = 0 on ST2 ,

χs|t=0 = χ(0) on Ω,

where s = 1, 2, and χs∗ is defined as in (2.5);

vs2,x1 − vs1,x2 = χs in Ω′,

vs1,x1 + vs2,x2 = −hs3 in Ω′,
v′s · n′ = 0 on S′1,

where s = 1, 2, Ω′ nad S′1 are cross-sections of Ω and S1 with a plane perpendi-
cular to axis x3.

First we examine the problem on χ. Let us introduce the function χ̃s as
a solution to the problem

χ̃s,t − ν∆χ̃s = 0 in ΩT ,
χ̃s = χs∗ on ST1 ,

χ̃s,x3 = 0 on ST2 ,

χ̃s|t=0 = 0 in Ω,
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where s = 1, 2. Introducing the new function χ′s = χs− χ̃s, s = 1, 2, we see that
it is a solution to the problem

χ′s,t + vs · ∇χ′s − h̃s3χ′s + h̃s2ws,x1 − h̃s1ws,x2
− ν∆χ′s = F3 − vs · ∇χ̃s + h̃s3χ̃s in ΩT ,

χ′s = 0 on ST1 ,

χ′s,x3 = 0 on ST2 ,

χ′s|t=0 = χs(0) in Ω.

The problem for vs reads:

(4.3)

vs,t − divT(vs, ps) = −v′s · ∇′vs − wsh̃s + f in ΩT ,

div vs = 0 in ΩT ,

vs · n = 0, n · T(vs, ps) · τα = 0, α = 1, 2 on ST ,
vs|t=0 = v(0) in Ω.

For vs we have the estimate of the form (3.12), i.e.

‖vs‖W 2,12 (Ωt) ≤ c(d2H1 +K2)
2 + c(‖f‖L2(Ωt) + ‖v(0)‖H1(Ω))

with H1, K2 defined as in (3.15)–(3.16) as dependent on h̃s instead of hs. There-
fore, sinceM(ΩT ) ↪→ L∞(0, T ;L3(Ω)) andM(ΩT ) ↪→ L10/3(ΩT ), we can replace
this relation with

(4.4) ‖vs‖W 2,12 (Ωt) ≤ c(d2‖h̃s‖M(Ωt) +K2)
2 + c(‖f‖L2(Ωt) + ‖v(0)‖H1(Ω)).

For problem (4.2) and the functions hs we have

(4.5) ‖hs‖W 2,1σ (ΩT ) + ‖∇qs‖Lσ(ΩT )
≤ c‖vs∇h̃s‖Lσ(Ωt) + ‖h̃s∇vs‖Lσ(Ωt) + ‖g‖Lσ(Ωt) + ‖hs(0)‖Lσ(Ωt)

≡ I1 + I2 + ‖g‖Lσ(Ωt) + ‖hs(0)‖Lσ(Ωt).

Note, that we can not apply directly the results analogous to Lemma 3.4 and
instead, we need to estimate the r.h.s. of (4.5) in different way.
The first term on the r.h.s. of (4.5) we split into:

I1 ≡ ‖vs∇h̃s‖Lσ(Ωt) ≤ ‖vs‖Lσλ1 (Ωt)‖∇h̃s‖Lσλ2 (Ωt)

with 1/λ1 + 1/λ2 = 1.
We estimate I1 under assumptions that v ∈ W 2,12 (Ωt) ↪→ Lσλ1(Ωt) and

∇h̃s ∈ Lη(Ω). Therefore, we have the following relations:

5
2
− 5
σλ1
≤ 2, σλ2 ≤ η.
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Let σλ2 = η. Then
1
2
≤ 5
σ
− 5
η
.

We combine this relations with the compactness condition to get

1
2
+
2
η
≤ 5
σ
− 3
η
< 1

and we deduce η > 4 and σ > 20/7.

The second term on the r.h.s. of (4.5) is estimated by

I2 ≡ ‖∇vsh̃s‖Lσ(Ωt) ≤ ‖∇vs‖Lσµ1 (Ωt)‖h̃s‖Lσµ2 (Ωt)

with 1/µ1 + 1/µ2 = 1. Since h̃s ∈ L∞(0, T ;W 1η (Ω)) with η > 4 we have h̃s ∈
L∞(0, T ;Lρ(Ω)) with arbitrary ρ ≤ ∞. Then we set µ2 = ∞ and then µ1 = 1.
Consequently, for vs ∈W 2,12 (ΩT ) ↪→ Lσ(0, T ;W 1σ (Ω)) we have the relation

5
2
− 5
σ
≤ 1.

Hence σ ≤ 10/3.
Summarizing estimates for I1 and I2 and applying to (4.5) we infer

(4.6) ‖hs‖W 2,1σ (ΩT ) + ‖∇qs‖Lσ(ΩT )
≤ c‖vs‖W 2,12 (Ωt) + c‖h̃s‖M(Ωt) + c(‖g‖Lσ(Ωt) + ‖h(0)‖W 2−2/σσ (Ω)),

Next, we use also the estimate on vs, i.e. (4.4) to infer the inequality

(4.7) ‖hs‖M(ΩT ) ≤ ϕ(‖h̃s‖M(Ωt),K4) + cK3

where ϕ is an increasing positive function and K4 = K2 + d2 + ‖f‖L2(Ωt) +
‖v(0)‖H1(Ω).
This proves that bounded sets in M(Ωt) are transformed into bounded sets

in M(Ωt).

To show the continuity, we formulate the problems for the differences:

H = h1 − h2, Q = q1 − q2, V = v1 − v2, i = 1, 2.

Thus, H satisfies

(4.8)

H,t − divT(H,Q) = −V · ∇h̃1 − v2 · ∇H̃ − H̃ · ∇v1 − h̃2 · ∇V in ΩT ,

divH = 0 in ΩT ,

H · n = 0, n · D(H) · τα = 0, α = 1, 2, on ST1 ,

Hi = 0, i = 1, 2, H3,x3 = 0 on ST2 ,

H|t=0 = 0 in Ω.
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For solutions of (4.8) we have

‖H‖W 2,1σ (Ωt) + ‖∇Q‖Lσ(Ωt) ≤ c(‖V · ∇h̃1‖Lσ(Ωt) + ‖v2 · ∇H̃‖Lσ(Ωt)
+ ‖H̃ · ∇v1‖Lσ(Ωt) + ‖h̃2 · ∇V ‖Lσ(Ωt)).

This we can estimate with

(4.9) ‖H‖W 2,1σ (Ωt) + ‖∇Q‖Lσ(Ωt)
≤ c(‖V ‖Lσα1 (Ωt)‖∇h̃1‖Lσα2 (Ωt) + ‖v2‖Lσβ1 (Ωt)‖∇H̃‖Lσβ2 (Ωt)

+ ‖H̃‖Lσγ1 (Ωt)‖∇v1‖Lσγ2 (Ωt) + ‖h̃2‖Lσδ1 (Ωt)‖∇V ‖Lσδ2 (Ωt))

Note that first two terms on the r.h.s. of (4.9) can be estimated similarly as I1
in (4.5) while third and fourth — with use of imbeddings applied to I2. Then,
with 20/7 < σ < 10/3, η > 4 we obtain

‖H‖W 2,1σ (Ωt) + ‖∇Q‖Lσ(Ωt) ≤ ‖V ‖W 2,12 (Ωt)‖h̃‖M(Ωt) + ‖v‖W 2,12 (Ωt)‖H̃‖M(Ωt).

Assume that h̃s, s = 1, 2, belong to a bounded set inM(ΩT ). Hence, there exists
a constant A such that

(4.10) ‖h̃s‖M(ΩT ) ≤ A, ‖vs‖W 2,12 (ΩT ) ≤ ϕ(A).

Therefore

(4.11) ‖H‖W 2,1σ (Ωt) + ‖∇Q‖Lσ(Ωt) ≤ c(A)‖V ‖W 2,12 (Ωt) + ϕ(A)‖H̃‖M(Ωt).

Thus, to show the continuity of the transformation Φ we should find an estimate
for ‖V ‖W 2,12 (Ωt). For this purpose we consider the problem

(4.12)

V,t − divT(V,Q) = −V ′ · ∇v1 − v′2 · ∇V −Wh1 − w2H in ΩT ,

divV = 0 in ΩT ,

V · n = 0, n · T(V,Q) · τα = 0, α = 1, 2, on ST ,

V |t=0 = 0 in Ω,

where V ′ = (V1, V2), W = V3, v′s = (vs1, vs2), ws = vs3.
For solutions of (4.12) we have

(4.13) ‖V ‖W 2,12 (Ωt) + ‖∇Q‖L2(Ωt) ≤ c(‖V
′ · ∇v1‖L2(Ωt)

+ ‖v′2 · ∇V ‖L2(Ωt) + ‖Wh1‖L2(Ωt) + ‖w2H‖L2(Ωt)).

We bound the first term on the r.h.s. of (4.13) by

c‖V ‖L5(Ωt)‖v1‖W 2,12 (Ωt) ≡ I1.

By interpolation we get

I1 ≤ ε1‖V ‖W 2,12 (Ωt) + c(1/ε1)ϕ(‖v1‖W 2,12 (Ωt))‖V ‖L2(Ωt).
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Similarly, we estimate the second term on the r.h.s. of (4.13) by

c‖∇V ‖L5/2(Ωt)‖v2‖W 2,12 (Ωt) ≡ I2

and
I2 ≤ ε2‖V ‖W 2,12 (Ωt) + c(1/ε2)ϕ(‖v2‖W 2,12 (Ωt))‖V ‖L2(Ωt).

By the Hölder inequality the third term on the r.h.s. of (4.13) is bounded by

c‖W‖Lσ1 (Ωt)‖h1‖Lσ2 (Ωt) ≡ I3,

where 5/2 − 5/σ1 ≤ 2, σ2 ≤ ∞, 1/σ1 + 1/σ2 = 1/2, which are satisfied for
σ1 < 10. Since 5/2− 5/σ1 < 2, we apply the interpolation inequality to the first
factor in I3. Hence we get

I3 ≤ ε3‖V ‖W 2,12 (Ωt) + c(1/ε3)ϕ(‖h1‖M(Ωt))‖V ‖L2(Ωt).

Finally, by the Hölder inequality, the fourth term on the r.h.s. of (4.13) is esti-
mated by

c‖w2‖L%1 (Ωt)‖H‖L%2 (Ωt) ≡ I4,
where 1/%1 + 1/%2 = 1/2, 5/2− 5/%1 ≤ 2, so we can take %2 = 5/2. Hence,

I4 ≤ c‖v2‖W 2,12 (Ωt)‖H‖L5/2(Ωt).

Utilizing the above estimates in (4.13) and assuming that ε1, . . . , ε3 are suffi-
ciently small we obtain

(4.14) ‖V ‖W 2,12 (Ωt) + ‖∇Q‖L2(Ωt)
≤ ϕ(‖v1, v2‖W 2,12 (Ωt), ‖h1‖W 2,1σ (Ωt)) · (‖V ‖L2(Ωt) + ‖H‖L5/2(Ωt)).

Utilizing (4.4), (4.7) and (4.10) in (4.14) implies

(4.15) ‖V ‖W 2,12 (Ωt) + ‖∇Q‖L2(Ωt) ≤ ϕ(A)(‖V ‖L2(Ωt) + ‖H‖L5/2(Ωt)).

Finally we estimate the r.h.s. of (4.15). We multiply (4.8)1 byH and integrate
over Ω. In particular,∫

Ω
v2 · ∇H̃ ·H dx = −

∫
Ω
v2∇H · H̃ dx ≤ ‖v2‖L6(Ω)‖H̃‖L3(Ω)‖∇H‖L2(Ω).

Then (4.8)1 yields

d

dt
‖H‖2L2(Ω) + ν‖H‖

2
H1(Ω) ≤ c(‖V · ∇h̃1‖

2
L6/5(Ω)

+ ‖v2‖2L6(Ω)‖H̃‖
2
L3(Ω) + ‖H̃ · ∇v1‖

2
L6/5(Ω) + ‖h̃2 · ∇V ‖

2
L6/5(Ω)).

By the Hölder inequality, this implies

d

dt
‖H‖2L2(Ω) + ν‖H‖

2
H1(Ω) ≤ c(‖V ‖

2
L2(Ω)‖∇h̃1‖

2
L3(Ω)

+ ‖v2‖2L6(Ω)‖H̃‖
2
L3(Ω) + sup

t
‖h̃2‖2L3(Ω)‖∇V ‖

2
L2(Ω)) + ‖H̃‖

2
L2(Ω)‖∇v1‖

2
L3(Ω).
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Using that, in view of (4.10), the third expression on the r.h.s. of the above
inequality is estimated by cϕ(A)‖V ‖2H1(Ω) we obtain

(4.16)
d

dt
‖H‖2L2(Ω) + ν‖H‖

2
H1(Ω) ≤ c(ϕ(A)‖V ‖

2
H1(Ω) + ‖v2‖

2
L6(Ω)‖H̃‖

2
L3(Ω)

+ ‖V ‖2L2(Ω)‖∇h̃1‖
2
L3(Ω) + ‖H̃‖

2
L2(Ω)‖∇v1‖

2
L3(Ω)).

Multiplying (4.12)1 by V and integrating over Ω, it follows that

(4.17)
d

dt
‖V ‖2L2(Ω) + ν‖V ‖

2
H1(Ω)

≤ c‖V ‖2L2(Ω)(‖∇v1‖
2
L3(Ω) + ‖h1‖

2
L3(Ω)) + c‖w2‖

2
L3(Ω)‖H‖

2
L2(Ω).

Multiplying (4.17) by a constant c∗ such that νc∗ − cϕ(A) ≥ ν and adding to
(4.16), we get

d

dt
(c∗‖V ‖2L2(Ω) + ‖H‖

2
L2(Ω)) + ν(‖V ‖

2
H1(Ω) + ‖H‖

2
H1(Ω))

≤ cc∗‖V ‖2L2(Ω)(‖∇v1‖
2
L3(Ω) + ‖h1‖

2
L3(Ω)) + cc∗‖w2‖

2
L3(Ω)‖H‖

2
L2(Ω)

+ c(‖v2‖2L6(Ω)‖H̃‖
2
L3(Ω) + ‖∇v1‖

2
L3(Ω)‖H̃‖

2
L2(Ω) + ‖V ‖

2
L2(Ω)‖∇h̃1‖

2
L3(Ω)).

Integrating this inequality with respect to time yields

(4.18) ‖V (t)‖2L2(Ω) + ‖H(t)‖
2
L2(Ω) + ν

t∫
0

(‖V (t′)‖2H1(Ω) + ‖H(t
′)‖2H1(Ω)) dt

′

≤c exp c
t∫
0

(‖∇v1(t′)‖2L3(Ω)+‖h1(t
′)‖2L3(Ω)+‖w2(t

′)‖2L3(Ω)+‖∇h̃1(t
′)‖2L3(Ω)) dt

′,

(‖v2‖2L2(0,t;L6(Ω))‖H̃‖
2
L∞(0,t;L3(Ω)) + ‖∇v1‖

2
L2(0,T ;L3(Ω))‖H̃‖L∞(0,T ;L2(Ω))) ≡ J.

By the imbedding results we get

J ≤ c exp c(‖v1‖2W 2,1r (Ωt) + ‖h‖
2
W 2,1δ (Ω

t))(‖v2‖
2
L2(0,t;L6(Ω))‖H̃‖

2
L∞(0,t;L3(Ω))

+ ‖∇v1‖2L2(0,T ;L3(Ω))‖H̃‖L∞(0,T ;L2(Ω))) ≡ J1.

By (4.4), (4.7) and (4.10) we obtain

J1 ≤ ϕ(A)(‖H̃‖2L∞(0,T ;L3(Ω)) + ‖H̃‖
2
L∞(0,T ;L2(Ω))).

Therefore, (4.18) takes the form

(4.19) ‖V ‖V 02 (Ωt) + ‖H‖V 02 (Ωt) ≤ ϕ(A)(‖H̃‖L∞(0,T ;L3(Ω)) + ‖H̃‖L∞(0,T ;L2(Ω))).

Utilizing (4.19) in (4.15) and the result in (4.11) we obtain

‖H‖M(ΩT ) ≤ ϕ(A)‖H̃‖M(ΩT ),

which implies the uniform continuity of mapping Φ and ends the proof. �
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Proof of Theorem 1.1. Since Φ is uniformly continuous and compact for
20/7 < σ ≤ 10/3, the Leray–Schauder fixed point theorem yields the existence
result. Moreover, for 5/3 < σ < 3, by (3.20), Lemmas 3.5 and 3.3, we have
estimates of the form (1.2). This concludes the proof. �
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