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A PROOF OF THE CONTINUATION PROPERTY
OF THE CONLEY INDEX OVER A PHASE SPACE

Jacek Szybowski

Abstract. We prove the continuation property of the Conley index over
a phase space for discrete semidynamical systems.

1. Introduction

In [4] the so-called Conley index over a base was defined for an isolated in-
variant set and a flow. Its analogue for more complicated discrete semidynamical
systems was defined in [5]. Its main advantage over the previously defined in-
dices is that it detects how an isolated invariant set is situated in a phase space
of a given system. Some applications of this index have been presented in [6].
Theorem 5.3 in [5] shows a continuation property of the index which is funda-

mental for applications. The theorem is followed by a proof. However, the proof
is based on Theorem 3.2 from [2] which shows the existence of an index pair
which is stable under small perturbations of the system. The problem is that
the authors of [2] base on a slightly different definition of an index pair than the
one from [7] and [5]. In [2] an index pair is, in fact, a triple including an isolating
neighbourhood. If we assume that the first element of an index pair is equal
to an isolating neighbourhood, then each index pair in the sense of definition
from [2] is also an index pair in the sense of definition from [7]. Unfortunately,
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we cannot be sure that the triple whose existence is proved in [2] satisfies this
assumption.
Therefore, it seems reasonable to present an alternative proof of the contin-

uation property, which is the aim of this paper.
In Sections 2, 3, and 4 we recall some definitions from [7] and [5]. In the last

section we present a proof of the continuation property.

2. Isolated invariant sets

Let X be a locally compact metric space, f :X → X — a continuous map
which generates a semidynamical system.
For an arbitrary set N ⊆ X we define the set

InvN = {x ∈ N : ∃{xk}k∈Z ⊆ N, x0 = x and f(xk) = xk+1 for k ∈ Z},

which will be called an invariant part of N . A set N ⊆ X is called an invariant
set when N = InvN . A compact set N ⊆ X is called an isolating neighborhood
for S := InvN if S ⊆ int(N). The set S is called an isolated invariant set.
Fix an isolated invariant set S.

Definition 2.1. A pair P = (P1, P2) of compact subsets of X, is called an
index pair for S if and only if

(a) S = Inv cl(P1 \ P2) ⊆ int(P1 \ P2),
(b) f(P2) ∩ P1 ⊆ P2,
(c) f(P1 \ P2) ⊆ P1.

An immediate consequence of the above definition is

Lemma 2.2. If P is an index pair for S, then:

(a) if x ∈ P1 and there exists k ∈ N such that fk(x) 6∈ P1 \ P2, then there
exists l ∈ N such that l ≤ k and f l(x) ∈ P2,

(b) if x ∈ P2 and there exists k ∈ N such that f1(x), . . . , fk(x) ∈ P1, then
f1(x), . . . , fk(x) ∈ P2.

Let Λ ⊆ R be a compact segment, h:X × Λ → X × Λ a continuous map
satisfying h(X × λ) ⊆ X × λ, for each λ ∈ Λ. For λ ∈ Λ we define a map
hλ:X → X, satisfying h(x, λ) = (hλ(x), λ), for each x ∈ X and λ ∈ Λ. By πX
we denote a projection πX :X × Λ→ X. For a given set R ⊂ X × Λ and λ ∈ Λ,
by Rλ we denote the set {x ∈ X : (x, λ) ∈ R}.
Now we give a lemma which follows immediately from Lemma 4.2 from [7].

Lemma 2.3. If Q is an isolated invariant set for h, (P1, P2) is an index pair
for Q, then there exists ε > 0 and n ∈ N such that the following implication
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holds: if

α1, . . . , α2n, β1, . . . , βn+1, γ, δ1, . . . , δ2n ∈ Λ,
diam{α1, . . . , α2n, β1, . . . , βn+1, γ, δ1, . . . , δ2n} < ε,

x ∈ πX(P1),
((hαi ◦ . . . ◦ hα1)(x), δi) ∈ P1 \ P2 for all i ∈ {1, . . . , 2n}

then
((hβn ◦ . . . ◦ hβ1)(x), γ), ((hβn+1 ◦ . . . ◦ hβ1)(x), γ) ∈ P1 \ P2.

Assume f, g:X → X are continuous maps, S and T are isolated invariant
sets for f and g, respectively. We say that S and T are related by continuation
((f, S) ' (g, T )), if there exists a continuous map h:X × [0, 1] → X × [0, 1], an
isolated invariant set Q for h, and maps hλ:X → X, λ ∈ [0, 1], such that h0 = f ,
h1 = g, S = Q0, T = Q1, h(x, λ) = (hλ(x), λ) ∈ X × [0, 1], for all x ∈ X and
λ ∈ [0, 1].

3. M-equivalence

For a given topological space X we define the category of spaces over a base
X (objects and morphisms), denoted by SB(X).

Definition 3.1.

Ob(SB(X)) = {(U, r, s) : U is a topological space,
r:U → X, s:X → U are continuous, such that r ◦ s = idX},

MorSB(X)((U, r, s), (U
′, r′, s′)) = {(F, f):F :U → U ′, f :X → X

are continuous, such that F ◦ s = s′ ◦ f and r′ ◦ F = f ◦ r}.

For two morphisms in SB(X) we define the relation '∗ of homotopy:

Definition 3.2. Let (F, f), (F ′, f ′) ∈ MorSB(X)((U, r, s), (U ′, r′, s′)). (F, f)
'∗ (F ′, f ′) if and only if there exists continuous H:U×I→ U ′ and h:X×I→ X

such that

H ◦ (s× idI) = s′ ◦ h, r′ ◦H = h ◦ (r × idI),

H( · , 0) = F, H( · , 1) = F ′, h( · , 0) = f, h( · , 1) = f ′.

A pair (H,h) will be called a homotopy joining (F, f) with (F ′, f ′).

According to [3] we define the category ENDO(K) of endomorphisms over
the category K as follows:

Ob(ENDO(K)) = {(X, e) : X ∈ Ob(K) and e ∈ MorK(X,X)},
MorENDO(K)((X, e), (X

′, e′)) = {ϕ ∈ MorK(X,X ′) : ϕ ◦ e = e′ ◦ ϕ}.
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Fix (U, r, s), (U ′, r′, s′) ∈ Ob(SB(X)) and two morphisms (F, f) ∈ MorSB(X)
((U, r, s), (U, r, s)) and (F ′, f ′) ∈ MorSB(X)((U ′, r′, s′), (U ′, r′, s′)).

Definition 3.3. Two objects ((U, r, s), (F, f)) and ((U ′, r′, s′), (F ′, f ′)) in
ENDO(SB(X)) areM -equivalent over a base X, if f ' f ′ and there exist m,n ∈
N and continuous maps Φ:U → U ′, Ψ:U ′ → U , ϕ,ψ:X → X, such that ϕ ' fm,
ψ ' f ′n and there exists a k ∈ N such that

Φ ◦ s = s′ ◦ ϕ,(3.1)

Ψ ◦ s′ = s ◦ ψ,(3.2)

r′ ◦ Φ = ϕ ◦ r,(3.3)

r ◦Ψ = ψ ◦ r′,(3.4)

(Φ ◦ F,ϕ ◦ f) '∗ (F ′ ◦ Φ, f ′ ◦ ϕ),(3.5)

(Ψ ◦ F ′, ψ ◦ f ′) '∗ (F ◦Ψ, f ◦ ψ),(3.6)

(Ψ ◦ Φ ◦ F k, ψ ◦ ϕ ◦ fk) '∗ (Fm+n+k, fm+n+k),(3.7)

(Φ ◦Ψ ◦ F ′k, ϕ ◦ ψ ◦ f ′k) '∗ (F ′m+n+k, f ′m+n+k).(3.8)

The class of M -equivalence of ((U, r, s), (F, f)) over X will be denoted by
[((U, r, s), (F, f))]X .

4. The Conley index over a phase space

Fix a locally compact metric space X, a continuous map f :X → X, an
isolated invariant set S for f , and an index pair P = (P1, P2) for S.

We define U(P ) as the adjunction P1 ∪id|P2 X, i.e.

U(P ) := X × 0 ∪ P1 × 1/ ∼,

where ∼ denotes the minimal equivalence relation such that (x, 0) ∼ (x, 1) for
each x ∈ P2. Let [x, q]P denotes the equivalence class of (x, q) in U(P ).
We also define two maps sP :X 3 x 7→ [x, 0]P ∈ U(P ) and rP :U(P ) 3

[x, q]P 7→ x ∈ X.
An index space over X is a triple (U(P ), rP , sP ). An index map fP :U(P )→

U(P ) is given by a formula:

fP ([x, q]P ) :=

{
[f(x), 1]P for q = 1, x, f(x) ∈ P1 \ P2,
[f(x), 0]P otherwise.

Theorem 4.1. For any index pairs P, P ′ ∈ IP (S) objects ((U(P ), rP , sP ),
(fP, f)) and ((U(P ′), rP ′, sP ′), (fP ′ , f)) in ENDO(SB(X)) areM -equivalent over
a phase space X.
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Definition 4.2. The Conley index ĥd(S, f) of an isolated invariant set S
over a phase space X is theM -equivalence class over X of the object ((U(P ), rP ,
sP ), (fP , f)) in ENDO(SB, (X)), for any index pair P for S:

ĥd(S, f) = [((U(P ), rP , sP ), (fP , f))]X .

5. The continuation property

Theorem 5.1 (Continuation property, [5, Theorem 5.3]). Assume f, g:X →
X are continuous maps, S and T are isolated invariant sets for f and g, respec-
tively. Then

if (f, S) ' (g, T ) then ĥd(S, f) = ĥd(T, g).

Proof. (f, S) ' (g, T ), so there exists a continuous map h:X × [0, 1] →
X × [0, 1], an isolated invariant set Q for h, and maps hλ:X → X, λ ∈ [0, 1],
such that h0 = f , h1 = g, S = Q0, T = Q1, h(x, λ) = (hλ(x), λ) ∈ X × [0, 1], for
all x ∈ X and λ ∈ [0, 1]. Let P = (P1, P2) be an index pair for Q.
For Λ = [0, 1] take ε > 0 and n ∈ N from Lemma 2.3. There exists a finite

sequence µ0, . . . , µk+1 ∈ Λ such that 0 = µ0 < µ1 < . . . < µk < µk+1 = 1 and
µi+1 − µi < ε for each i ∈ {0, . . . , k}. Thus, it is enough to prove that for an
arbitrary i ∈ {0, . . . , k} indices ĥd(Qµi , hµi) and ĥd(Qµi+1 , hµi+1) are equal.
To simplify notation assume a := µi, b := µi+1, Pa = (P1a, P2a) and Pb =

(P1b, P2b). Pa and Pb are, of course, index pairs for Qa and Qb, respectively.

Fix u, x ∈ X and q ∈ {0, 1} and define maps

Φ:U(Pa)→ U(Pb), Ψ:U(Pb)→ U(Pa), ϕ, ψ:X → X

by formulas:

Φ([u, q]Pa) =


[h2nb (h

n
a(u)), 1]Pb if q = 1, h

0(u, a), . . . , h2n(u, a) ∈ P1 \ P2
and h0(hna(u), b), . . . , h

2n(hna(u), b)∈P1\P2,
[h2nb (h

n
a(u)), 0]Pb otherwise,

Ψ([u, q]Pb) =


[h2na (h

n
b (u)), 1]Pa if q = 1, h

0(u, b), . . . , h2n(u, b) ∈ P1 \ P2,
and h0(hnb (u), a), . . . , h

2n(hnb (u), a)∈P1\P2,
[h2na (h

n
b (u)), 0]Pa otherwise,

ϕ(x) = h2nb (h
n
a(x)), ψ(x) = h2na (h

n
b (x)).

The maps ϕ and ψ are obviously continuous. We will show that Φ is continuous
(the proof of the continuity of Ψ is analogous).
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Take [u0, q0]Pa ∈ U(Pa). When q0 = 0, continuity of Φ is obvious, so we may
assume that q0 = 1 and (u0, a) ∈ P1. Consider two sets

A, := {[u, q]Pa ∈ U(Pa) : h0(u, a), . . . , h2n(u, a) 6∈ P2,
and h0(hna(u), b), . . . , h

2n(hna(u), b) 6∈ P2},
B := {[u, q]Pa ∈ U(Pa) : there exists i ∈ {0, . . . , 2n}

hi(u, a) 6∈ P1 or hi(hna(u), b) 6∈ P1}.

Obviously, A and B are open.
If [u, q]Pa ∈ B then Φ([u, q]Pa) = [h2nb (hna(u)), 0]Pb , so Φ is continuous on B.
If [u, 1]Pa ∈ A, then h0(u, a) ∈ P1 \P2 and h1(u, a), . . . , h2n(u, a) 6∈ P2. Part

(a) of Lemma 2.2 implies that h1(u, a), . . . , h2n(u, a) ∈ P1\P2. From Lemma 2.3
it follows that h0(hna(u), b) ∈ P1 \ P2 and again from part (a) of Lemma 2.2 we
get h1(hna(u), b) ∈ P1 \ P2, . . . , h2n(hna(u), b) ∈ P1 \ P2, which means that

Φ([u, 1]Pa) = [h
2n(hna(u), b), 1]Pb ,

therefore Φ is continuous on A.
Assume that [u0, 1]Pa ∈ U(Pa) \ (A ∪ B). [u0, 1]Pa 6∈ B so h0(u, a), . . . ,

h2n(u, a) ∈ P1 and h0(hna(u), b), . . . , h
2n(hna(u), b) ∈ P1. If h0(hna(u), b), . . . ,

h2n(hna(u), b) 6∈ P2, then from Lemma 2.3 it would follow that h2n(u, a) ∈ P1 \P2
and from part (b) of Lemma 2.2 we would get h2n−1(u, a), . . . , h0(u, a) ∈ P1 \
P2, which would imply that [u0, 1]Pa ∈ A. Thus, there exists i ∈ {0, . . . , 2n}
such that hi(hna(u), b) ∈ P2, and from part (b) of Lemma 2.2 it follows that
h2n(hna(u), b) ∈ P2, which means that

Φ([u0, 1]Pa) = [h
2n
b (h

n
a(u0)), 0]Pb = [h

2n
b (h

n
a(u0)), 1]Pb

and we get continuity of Φ at [u0, 1]Pa .
For a map Φ we have the following relations:

(Φ ◦ sU(Pa))(x) = Φ([x, 0]Pa) = [h
2n
b (h

n
a(x)), 0]Pb = (sPb ◦ ϕa)(x),

(rPb ◦ Φ)([u, q]Pa) = h2nb (hna(u)) = (ϕb ◦ rPa)([u, q]Pa)

It means that (Φ, ϕ) satisfy conditions (3.1) and (3.3). Similarly, one can prove
that (Ψ, ψ) satisfy conditions (3.2) and (3.4).
One may easily see that compositions of maps Φ ◦ hPa , hPb ◦ Φ, ϕ ◦ ha and

hb ◦ ϕ are given by formulas:

(Φ ◦ hPa)([u, q]Pa)

=


[(h2nb ◦ hn+1a )(u), 1]Pb if q = 1, h0(u, a), . . . , h2n+1(u, a) ∈ P1 \ P2

and h0(hn+1a (u), b), . . . , h
2n(hn+1a (u), b) ∈ P1 \ P2,

[(h2nb ◦ hn+1a )(u), 0]Pb otherwise,
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(hPb ◦ Φ)([u, q]Pa)

=


[(h2n+1b ◦ hna)(u), 1]Pb , if q = 1, h0(u, a), . . . , h2n(u, a) ∈ P1 \ P2

and h0(hna(u), b), . . . , h
2n+1(hna(u), b) ∈ P1 \ P2,

[(h2n+1b ◦ hna)(u), 0]Pb otherwise,

(ϕ ◦ ha)(x) = (h2nb ◦ hn+1a )(x),
(hb ◦ ϕ)(x) = (h2n+1b ◦ hna)(x).

Let ω:R 3 t 7→ (1 − t)a + tb ∈ R be a homotopy joining a with b. Consider
the following conditions:

(A) h0(u, a), . . . , h2n(u, a) ∈ P1 \ P2,
(Bt) h(hna(u), ω(t)) ∈ P1 \ P2,
(Ct) h0((hω(t) ◦ hna)(u), b), . . . , h2n((hω(t) ◦ hna)(u), b) ∈ P1 \ P2,
(A′) h0(u, a), . . . , h2n(u, a) 6∈ P2,
(B′t) h(h

n
a(u), ω(t)) 6∈ P2,

(C′t) h
0((hω(t) ◦ hna)(u), b), . . . , h2n((hω(t) ◦ hna)(u), b) 6∈ P2,

(A′′) there exists i ∈ {0, . . . , 2n} such that hi(u, a) 6∈ P1,
(B′′t ) h(h

n
a(u), ω(t)) 6∈ P1,

(C′′t ) there exists j ∈ {0, . . . , 2n} such that Rhj((hω(t) ◦ hna)(u), b) 6∈ P1,
(Aa) h0(u, a), . . . , h2n+1(u, a) ∈ P1 \ P2,
(Ca) h0(hn+1a (u), b), . . . , h

2n(hn+1a )(u), b) ∈ P1 \ P2,
(Cb) h0(hna(u), b), . . . , h

2n(hna(u), b) ∈ P1 \ P2.

Define the maps K:U(Pa)× I→ U(Pb) and k:X × I→ X by formulas:

K([u, q]Pa , t) =

{
[(h2nb ◦ hω(t) ◦ hna)(u), 1]Pb if q = 1and (A), (Bt), (Ct),
[(h2nb ◦ hω(t) ◦ hna)(u), 0]Pb otherwise,

k(x, t) = (h2nb ◦ hω(t) ◦ hna)(x).
Obviously, k is continuous. For the proof of continuity of K fix ([u0, q0]Pa , t0) ∈
Pa × I. If q0 = 0, continuity of K is obvious, so we may assume that q0 = 1 and
(u0, a) ∈ P1. Consider two sets

M := {([u, q]Pa , t) ∈ Pa × I : (A′) and (B′t) and (C′t)},
N := {([u, q]Pa , t) ∈ Pa × I : (A′′) or (B′′t ) or (C′′t )}.

Sets M and N are open. If ([u, q]Pa , t) ∈ N , then

K(([u, q]Pa , t)) = [(h
2n
b ◦ hω(t) ◦ hna)(u), 0]Pb ,

so K is continuous on N . If ([u, 1]Pa , t) ∈ M , then h0(u, a) ∈ P1 \ P2 and from
part (a) of Lemma 2.2 we get condition (A).
Lemma 2.3 implies condition (Bt) and h0((hω(t) ◦ hna)(u), b) ∈ P1 \ P2.
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Now, again from part (a) of Lemma 2.2 we get condition (Ct). It means that

K(([u, 1]Pa , t)) = [(h
2n
b ◦ hω(t) ◦ hna)(u), 1]Pb

so K is continuous on M .
Assume that ([u0, 1]Pa , t0) ∈ (U(Pa) × I) \ (M ∪ N). ([u0, 1]Pa , t0) 6∈ N, so

h0(u, a), . . . , h2n(u, a) ∈ P1, h(hna(u), ω(t)) ∈ P1 and h0((hω(t) ◦ hna)(u), b), . . . ,
h2n((hω(t) ◦ hna)(u), b) ∈ P1.
Suppose condition (C′t) would be satisfied. Then, from Lemma 2.3, condi-

tion (B′t) would follow and we would have h
2n(u, a) 6∈ P2. From part (b) of

Lemma 2.2 we would get h2n−1(u, a), . . . , h0(u, a) ∈ P1 \ P2, which would mean
that ([u0, 1]Pa , t0) ∈M . Thus, there exists i ∈ {0, . . . , 2n} such that hi((hω(t) ◦
hna)(u), b) ∈ P2, so part (b) of Lemma 2.2 implies that h2n((hω(t)◦hna)(u), b) ∈ P2,
which means that

K(([u0, 1]Pa , t0)) = [(h
2n
b ◦ hω(t) ◦ hna)(u), 0]Pb = [(h2nb ◦ hω(t) ◦ hna)(u), 1]Pb

and we get continuity of K at ([u0, 1]Pa , t0).
We have

(K ◦ (sPa × idI))(x, t) = K([x, 0]Pa , t)

= [(h2nb ◦ hω(t) ◦ hna)(x), 0]Pb = (sPb ◦ k)(x, t),
(rPb ◦ k)([u, q]Pa , t) = (h2nb ◦ hω(t) ◦ hna)(u)

= k(u, t) = (k ◦ (rPa × idI))([u, q]Pa , t).

Moreover, notice that condition (Aa) implies (A) and (B0), condition (C0)
is equivalent to (Ca), while by Lemma 2.3 condition (Aa) follows from (A) and
(C0). This means that K( · , 0) = Φ ◦ hPa .
Similarly, we check that condition (Cb) implies (B1) and (C1), while by

Lemma 2.3 condition (C) follows from (A) and (C1). Thus, K( · , 1) = hPb ◦ Φ.
Obviously, k( · , 0) = ϕ ◦ ha and k( · , 1) = hb ◦ ϕ, hence (K, k) is a homotopy
joining (Φ, ϕ) ◦ (hPa , ha) with (hPb , hb) ◦ (Φ, ϕ). This means that (Φ, ϕ) satisfy
condition (3.5). Similarly, one can prove that (Ψ, ψ) satisfy condition (3.6).
Consider the following conditions:

(X) h0(u, a), . . . , h2n(u, a) ∈ P1 \ P2,
(Yt) h0(hna(u), ω(t)), . . . , h

4n(hna(u), ω(t)) ∈ P1 \ P2,
(Zt) h0((h3nω(t) ◦ h

n
a)(u), a), . . . , h

2n((h3nω(t) ◦ h
n
a)(u), a) ∈ P1 \ P2,

(X′) h0(u, a), . . . , h2n(u, a) 6∈ P2,
(Y′t) h

0(hna(u), ω(t)), . . . , h
4n(hna(u), ω(t)) 6∈ P2,

(Z′t) h
0((h3nω(t) ◦ h

n
a)(u), a), . . . , h

2n((h3nω(t) ◦ h
n
a)(u), a) 6∈ P2,

(X′′) there exists i ∈ {0, . . . , 2n} such that hi(u, a) 6∈ P1,
(Y′′t ) there exists j ∈ {0, . . . , 4n} such that hj(hna(u), ω(t)) 6∈ P1,
(Z′′t ) there exists k ∈ {0, . . . , 2n} such that hk((h3nω(t) ◦ h

n
a)(u), a) 6∈ P1,



Continuation Property of the Conley Index 147

(Xa) h0(u, a), . . . , h6n(u, a) ∈ P1 \ P2,
(Yb) h0(hna(u), b), . . . , h

4n(hna(u), b) ∈ P1 \ P2,
(Zb) h0((h3nb ◦ hna)(u), a), . . . , h2n((h3nb ◦ hna)(u), a) ∈ P1 \ P2.

The formulas for compositions of maps Ψ ◦ Φ and ψ ◦ ϕ are as follows:

(Ψ ◦ Φ)([u, q]Pa) =

{
[(h2na ◦ h3nb ◦ hna)(u), 1]Pa if q = 1 and (X), (Yb), (Zb),
[(h2na ◦ h3nb ◦ hna)(u), 0]Pa otherwise,

(ψ ◦ ϕ)(x) = (h2na ◦ h3nb ◦ hna)(x).

Define the maps L:U(Pa)× I→ U(Pa) and l:X × I→ X by formulas:

L([u, q]Pa , t) =

{
[(h2na ◦ h3nω(t) ◦ h

n
a)(u), 1]Pa if q = 1 and (X), (Yt), (Zt),

[(h2na ◦ h3nω(t) ◦ h
n
a)(u), 0]Pa otherwise,

l(x, t) = (h2na ◦ h3nω(t) ◦ h
n
a)(x).

Obviously, l is continuous.
For the proof of continuity of L fix ([u0, q0]Pa , t0) ∈ Pa × I. If q0 = 0,

continuity of L is obvious, so we can assume that q0 = 1 and (u0, a) ∈ P1.
Consider two sets

V := {([u, q]Pa , t) ∈ Pa × I : (X′) and (Y′t) and (Z′t)},
W := {([u, q]Pa , t) ∈ Pa × I : (X′′) or (Y′′t ) or (Z′′t )}.

Sets V and W are open.
If ([u, q]Pa , t) ∈W , then L(([u, q]Pa , t)) = [(h2na ◦h3nω(t) ◦h

n
a)(u), 0]Pa , hence L

is continuous on W .
If ([u, 1]Pa , t) ∈ V , then h0(u, a) ∈ P1 \ P2 and from part (a) of Lemma 2.2

we get (X).
Lemma 2.3 implies that h0(hna(u), ω(t)) ∈ P1 \ P2 and again from part (a)

of Lemma 2.2 we get condition (Yt), while from Lemma 2.3 it follows that
h0((h3nω(t) ◦ h

n
a)(u), a) ∈ P1 \ P2.

Now, once again from part (a) of Lemma 2.2 we get condition (Zt). It means
that L(([u, 1]Pa , t)) = [(h

2n
a ◦ h3nω(t) ◦ h

n
a)(u), 1]Pa , so L is continuous on U .

Assume that ([u0, 1]Pa , t0) ∈ (U(Pa)× I) \ (U ∪V ). ([u0, 1]Pa , t0) 6∈ U , which
means that h0(u, a), . . . , h2n(u, a) ∈ P1, h0(hna(u), ω(t)), . . . , h4n(hna(u), ω(t)) ∈
P1 and h0((h3nω(t) ◦ h

n
a)(u), a), . . . , h

2n((h3nω(t) ◦ h
n
a)(u), a) ∈ P1.

Assume condition (Z′t). Then, from Lemma 2.3 we would get h
4n(hna(u), ω(t))

∈ P1 \ P2. Part (b) of Lemma 2.2 would imply that h4n−1(hna(u), ω(t)), . . . ,
h0(hna(u), ω(t)) and (Y

′
t ).

Now, again from Lemma 2.3 we would get h2n(u, a) 6∈ P2. From part (b)
of Lemma 2.2 it would follow that h2n−1(u, a), . . . , h0(u, a) ∈ P1 \ P2, which
would mean that ([u0, 1]Pa , t0) ∈ U . Thus, there exists i ∈ {0, . . . , 2n} such that
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hi((h3nω(t) ◦ h
n
a)(u), a) ∈ P2, so part (b) of Lemma 2.2 implies that h2n((h3nω(t) ◦

hna)(u), b) ∈ P2, which means that

L(([u0, 1]Pa , t0)) = [(h
2n
a ◦ h3nω(t) ◦ h

n
a)(u), 0]Pa = [(h

2n
a ◦ h3nω(t) ◦ h

n
a)(u), 1]Pa

and we have proved the continuity of L at ([u0, 1]Pa , t0).
Now, we have

(L ◦ (sPa × idI))(x, t) = L([x, 0]Pa , t)

= [(h2na ◦ h3nω(t) ◦ h
n
a)(x), 0]Pa = (sPa ◦ l)(x, t),

(rPa ◦ L)([u, q]Pa , t) = (h2na ◦ h3nω(t) ◦ h
n
a)(u)

= l(u, t) = (l ◦ (rPa × idI))([u, q]Pa , t).

We know that

h6nPa([u, q]Pa) =

{
[h6na (u), 1]Pa if q = 1 and (Xa),

[h6na (u), 0]Pa otherwise.

As
(X) and (Y0) and (Z0) if and only if (Xa)

and
(X) and (Y1) and (Z1) if and only if (X) and (Yb) and (Zb),

it follows that

L( · , 0) = h6nPa , L( · , 1) = Ψ ◦ Φ, l( · , 0) = h6na , l( · , 1) = ψ ◦ ϕ.

This means that condition (3.7) is satisfied. Similarly, one can prove condition
(3.8). Naturally, ha ' hb, as well as ϕ ' h3na , and ψ ' h3nb . This way we have
proved that

[(U(Pa), rPa , sPa), (hPa , ha)]X = [(U(Pb), rPb , sPb), (hPb , hb)]X . �
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