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LOCALLY EXPANDING MAPPINGS AND HYPERBOLICITY

Jacek Tabor

Abstract. The aim of the following paper is to propose and investigate

the partial generalization of hyperbolicity to metric spaces. The locally

expanding mappings, as we call them, possess many similar behaviour to
that characteristic to hyperbolic mappings, in particular, they have lipschitz

shadowing property. As a direct corollary we obtain for example shadowing

on the Julia set.

1. Introduction

Hyperbolicity is one of the crucial dynamical notions, as it guarantees many
basic properties, like stability, expansivity, shadowing etc. [4], [5]. Due to its
importance it has also found many generalizations [2], [1].

The direction of the paper is an approach to deal with noninvertible mappings
in metric spaces using the ideas based on hyperbolicity.

Motivation comes in particular from Julia sets. One can show that the map-
ping fc : z → z2 + c generating Julia set has shadowing (for some parameter
values c), but clearly is not invertible. We show that the proof of shadowing on
Julia set can be modified to fit a fairly general setting in metric spaces.

It occurs that the right assumption is that the given mapping is locally
invertible and that its local inverse is a strong contraction (we call such mappings
locally expanding).
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At the end of the introduction let us mention that we use local versions of
some ideas from [3].

2. Locally expanding mappings

In the whole paper we assume that X, Y are complete metric spaces and
M,N are complete manifolds.

Definition 2.1. Let x0 ∈ X be fixed and let r, R > 0 be given. We say
that f :X → Y is locally (r, R)-invertible at x0 if for every y ∈ B(f(x0), R) there
exists a unique x ∈ B(x0, r) such that y = f(x).

The following example shows that the class of locally invertible mappings is
quite large.

Example 2.2. Let M , N be C1-manifolds and let f :M → N be C1. By the
Banach inverse mapping theorem we obtain that f is locally invertible at every
point x0 such that dx0f is an isomorphism.

If f is locally (r, R)-invertible at x0 then by

f−1
x0

:B(f(x0), R) → B(x0, r)

we denote the function which maps an arbitrary y ∈ B(f(x0), R) into the unique
x which satisfies y = f(x).

By lipR(f−1
x0

) we denote the lipschitz constant of f−1
x0

.

Definition 2.3. Let A ⊂ X. We say that f is locally (r, R)-invertible on A

if f is locally (r, R)-invertible for every x0 ∈ A.

If f is locally (r, R)-invertible on A we put

lipR(f−1, A) := sup
a∈A

lipR(f−1
a ),

and lipR(f−1) := lipR(f−1, X). We say that f is locally expanding on the set A

if lipR(f−1, A) < 1 for a certain R > 0.
The following example gives a fairly large class of expanding mappings.

Example 2.4. Let M,N be Riemann manifolds and let f :M → N be C1.
Let A ⊂ M be compact. If dxf is invertible for every x ∈ A and

‖(dxf)−1‖ < 1 for x ∈ A

then f is locally expanding on A.

Remark 2.5. Suppose that f is locally (r, R)-invertible on A and

lipR(f−1, A) < 1.
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Let S := min{r/l, R}. Then f is locally (lS, S)-invertible and

lipS(f−1, A) < 1.

Before proceeding further for the convenience of the reader let us establish
notation and formulate some basic definitions concerning shadowing.

By N we denote the set of all nonnegative integers. Let X be a metric
space and let f :U → X, where U ⊂ X. Given δ ≥ 0, we say that a sequence
x = (xn)n∈N ⊂ U is a positive δ-pseudoorbit (for f) if

d(xn+1, f(xn)) ≤ δ for n ∈ N.

A positive orbit for f is a sequence x = (xn)n∈N ⊂ U such that xn+1 = f(xn).
Thus a positive 0-pseudoorbit is simply a positive orbit.

We need the (extended) metric on the space of sequences:

dsup(x, y) := sup
n∈N

d(xn, yn)

for sequences x = (xn), y = (yn) ⊂ X.
Substituting in the above N by Z in an obvious way we obtain the notion of

a δ-pseudoorbit and orbit.

Definition 2.6. We say that a (positive) δ-pseudoorbit x is ε-shadowed by
a (positive) orbit y if

dsup(x, y) ≤ ε.

Definition 2.7. We say that f has the shadowing (shadowing+) property
on A ⊂ U if for every ε > 0 there exists δ > 0 such that every (positive) δ-
pseudoorbit in A is ε-shadowed. Shadowing is sometimes called pseudo-orbit
tracing property (POTP shortly).

As shows the following simple proposition, usually shadowing+ implies shad-
owing. Since the assumptions of the proposition will be satisfied in the examples
we discuss, from now on we restrict our attention to shadowing+.

Proposition 2.8. Let X be a metric space and let ε > 0, δ > 0 be given.
Assume that every positive δ-pseudorobit is ε-shadowed by some positive orbit.
If additionally one of the following conditions holds

(a) for every positive orbits x, y, if dsup(x, y) ≤ 2ε then x = y;
(b) every closed ball in X with radius ε is compact;

then every δ-pseudoorbit is ε-shadowed by an orbit.

Since the proof of the above proposition is classical, we skip it.
One of the interesting problems in the theory of stability of dynamical sys-

tems is to check which mappings have shadowing or shadowing+. We prove that
this is the case for locally expanding ones.
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Theorem 2.9. Let X be complete metric space, let A,U ⊂ X be such that
A ⊂ U . Let l ∈ (0, 1), R > 0. We assume that f :U → X is locally (lR,R)-
invertible on A and that lipR(f−1, A) ≤ l. Let x be an arbitrary positive δ-
pseudorbit in A with δ ≤ (1− l)R. Then there exists a unique positive orbit y in
U such that

(2.1) dsup(x, y) ≤ lR.

Moreover, dsup(x, y) ≤ lδ/(1− l).

Proof. We are going to construct a complete metric space on which our
orbit is a fixed point. We define

X := {y ⊂ X : dsup(x, y) ≤ lR}.

In X we use the metric dsup. One can easily check that X is a complete metric
space.

Since x is a δ-pseudoorbit d(xn+1, f(xn)) ≤ δ for every n ∈ N. We define the
mapping P:X → X by the formula

(Py)n := f−1
xn

(yn+1) for n ∈ N.

We are first going to show that P is a well-defined contraction. By the defini-
tion, the domain of f−1

xn
is B(f(xn), R) and its image is contained in B(xn, lR).

Thus to show that P is well-defined we need to prove that

B(xn+1, lR) ⊂ B(f(xn), R) and f−1
xn

(B(xn+1, lR)) ⊂ B(xn, lR).

We prove the first inclusion. Let y ∈ B(xn+1, lR). Since δ ≤ (1− l)R we get

d(y, f(xn)) ≤ d(y, xn+1) + d(xn+1, f(xn))

≤ lR + δ ≤ lR + (1− l)R = R.

Now we deal with the second one. Let us first observe that by the definition of
f−1

xn
we have f−1

xn
(f(xn)) = xn. For an arbitrary y ∈ B(xn+1, lR) by applying

the above we get

d(f−1
xn

(y), xn) = d(f−1
xn

(y), f−1
xn

(f(xn))) ≤ ld(y, f(xn)) ≤ lR.

Thus we see that P is well-defined. Since P is lipschitz with constant l < 1 by
the Banach contraction principle we obtain that it has a unique fixed point y
and

dsup(x, y) ≤ d(x,Px)
1− l

=
1

1− l
sup
n∈N

d(xn, f−1
xn

(xn+1))

=
1

1− l
sup
n∈N

d(f−1
xn

(f(xn)), f−1
xn

(xn+1)) ≤
lδ

1− l
.
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Since y is a fixed point for P, it satisfies f−1
xn

(yn+1) = yn for n ∈ N, i.e. yn+1 =
f(yn) which clearly means that y is a positive orbit.

Now we prove the uniqueness part. By the construction we obtain that
y ∈ Bsup(x, lR). Let an arbitrary positive orbit z ∈ B(x, lR) be given. We are
going to show that z = y. Since we know that y is a unique fixed point for P it
is enough to show that z is also a fixed point for P. This is equivalent to proving
that

(2.2) f−1
xn

(zn+1) = zn for n ∈ N.

Since d(xn+1, zn+1) ≤ lR we get

d(zn+1, f(xn)) ≤ d(zn+1, xn+1) + d(xn+1, f(xn)) ≤ lR + δ ≤ R.

Thus zn+1 ∈ B(f(xn), R). As z is a positive orbit we have zn+1 = f(zn). By the
definition of f−1

xn
we get (2.2). �

Remark 2.10. We would not like to discuss it here in more details, but
the above theorem shows in fact that f has lipschitz shadowing+, that is the
approximation constant to depends linearly on δ.

As a consequence we obtain that locally expanding mappings are expansive.

Corollary 2.11. Let U ⊂ X, f :U → X, A ⊂ X. Let l ∈ (0, 1), R > 0 be
given. We assume that f is locally (lR,R)-invertible on A and that lipR(f−1, A)
≤ l. Let x, y be arbitrary positive orbits in X such that x lies in A and
dsup(x, y) ≤ lR. Then x = y.

Proof. We apply Theorem 2.9 with δ = 0. �

Let us now present a global version of Theorem 2.9:

Corollary 2.12. Let f :X → X. We assume that f is locally (lR,R)-
invertible on X and that lipR(f−1) ≤ l < 1. Let x be an arbitrary positive
δ-pseudoorbit with δ ≤ (1 − l)R. Then there exists a unique positive orbit y in
X such that dsup(x, y) ≤ lR. Moreover, dsup(x, y) ≤ lδ/(1− l).

Example 2.13. Let M be a compact Riemann manifold, let U ⊂ M be open
and let f :U → M be a C1-mapping such that ‖(dxf)−1‖ < 1 for every x ∈ U .
Then f is locally expanding, and in particular has the lipschitz shadowing+

property.
A simplest example is given by a function f :S1 → S1 defined by

f(z) := zn, where n ≥ 2.

At the end of this section we would like to discuss the case how the shadowing
is correlated between semiconjugate systems. Given a positive δ-pseudoorbit x
for f we denote by orb+

f (x) the orbit which shadows x constructed in Theo-
rem 2.9.
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Proposition 2.14. Let f :X → X, g:Y → Y be locally invertible. We
assume that lipR(f−1) ≤ l, lipS(f−1) ≤ l for certain R, S. Let δ ≤ (1− l)R and
let a:X → Y be such that

(2.3) a ◦ f = g ◦ a.

We assume additionaly that

(2.4) lip(a)R ≤ S.

Let x be an arbitrary δ-pseudorobit for f . Then a(x) is a lip(a)δ-pseudoorbit for
g and

a(orb+
f (x)) = orb+

g (a(x)).

Proof. In the proof we use the following convention: given a sequence
z = (zn) ⊂ X and h:X → Y by h(x) we understand the sequence (h(zn))n ⊂ Y .

Since x is a positive δ-pseudorobit for f , by (2.3) and (2.4) we trivially obtain
that a(x) is a positive lip(a)δ-pseudoorbit of g.

By Theorem 2.9 we obtain unique positive orbits orb+
f (x) ⊂ X, orb+

g (a(x)) ⊂
Y such that

dsup(orb+
f (x), x) ≤ lR, dsup(orb+

g (a(x)), a(x)) ≤ lS.

On the other hand, since x is a positive orbit such that d(orb+
f (x), x) ≤ lR, by

(2.3) and (2.4) we get that a(x) is a positive orbit for g and

dsup(a(orb+
f (x)), a(x)) ≤ lip(a)lR.

Since lip(a)lR ≤ lS, by the uniqueness we obtain that

a(orb+
f (x)) = orb+

g (a(x)). �

3. Shadowing on subsets

As we have seen in Theorem 2.9, even if the pseudoorbit belongs to the set A,
the orbit which shadows may not belong to A, but to its small neighbourhood.
In many cases we would like to obtain that orbit from the set A. This happens
if the set A is invariant.

Definition 3.1. Let U ⊂ X and let f :U → X. We say that A ⊂ U is
invariant if f(A) = f−1(A) = A.

Now we are ready to state the shadowing result on invariant sets.
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Proposition 3.2. Let f :U → X, let A ⊂ U be closed and invariant subset
of X. Let l ∈ (0, 1), R > 0 be given. We assume that f is locally (lR,R)-
invertible on A and that lipR(f−1, A) ≤ l. Let δ be such that δ ≤ (1 − l)R. Let
x be an arbitrary positive δ-pseudorbit in A. Then there exists a unique positive
orbit y in X such that

(3.1) dsup(x, y) ≤ lR.

Moreover, y lies in A and dsup(x, y) ≤ lδ/(1− l).

Proof. By Theorem 2.9 we know that there exists a unique orbit y satisfying
(3.1). Moreover, dsup(x, y) ≤ lδ/(1− l).

To check that the positive orbit x lies in A let us define fA as a restriction
of f to A. We study the semisystem in A with generator fA.

Since A is invariant, fA is locally (lR,R)-invertible (on A) and lipR(f−1
A ) ≤

l < 1. Let x ∈ A be arbitrary and let y ∈ B(f(x), R) ∩ A. Clearly f−1
x (y) ∈

B(x, lR) and lip((f−1
x )|A) ≤ l. The question remains if f−1

x (y) ∈ A? But this is
the case due to the invariance of A.

By applying once more Theorem 2.9 for fA and the positive pseudoorbit x we
obtain the existence of a unique positive orbit yA in A such that dsup(x, yA) ≤
min{r, lR}.

By the uniqueness y = yA. Consequently y is a positive orbit in A. �

However, even the above proposition assumes slightly two much, as we can-
not usually be certain that the pseudoorbit is taken from A, but only from a
neighbourhood of A. To obtain that the tracing orbit lies in A, we need to
additionally assume that f is lipschitz on a neighbourhood of A.

By B(A,w) we denote the set {x ∈ X : d(x, A) < w}

Theorem 3.3. Let U ⊂ X, f :U → X and let A ⊂ U be closed and invariant
subset of X. Let l ∈ (0, 1) and R > 0 be given. We assume that f is locally
(lR,R)-invertible on A and that

lipR(f−1, A) ≤ l, L := lip(f) < ∞.

Let δ > 0 and w > 0 be such that

(3.2)
l

1− l
δ +

Ll + 1
1− l

w ≤ lR

2
.

Let x be an arbitrary positive δ-pseudorbit in B(A,w). Then there exists a unique
positive orbit y in X such that

(3.3) dsup(x, y) ≤ lR/2.

Moreover, y is an orbit in A and dsup(x, y) ≤ (lδ + w + Llw)/(1− l).

Proof. Let δw := δ+w+Lw. By (3.2) we trivially obtain that δw ≤ (1−l)R.
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Since xk ∈ {x ∈ X: d(x,A) < w} for every k ∈ Z+, there exists vk ∈ A

such that d(vk, wk) ≤ w for k ∈ Z+. We check that v = (vk) is a positive
δw-pseudoorbit in A:

d(vk+1, f(vk)) ≤ d(vk+1, xk+1) + d(xk+1, f(xk)) + d(f(xk), f(vk)) ≤ w + δ + Lw.

By applying Proposition 3.2 we obtain a positive orbit y in A such that d(vk, yk)
≤ lδw/(1− l) for k ∈ Z+, and consequently

d(xk, yk) ≤ d(xk, vk) + d(yk, vk) ≤ w +
lδw

1− l
=

lδ + w + Llw

1− l
.

We prove the uniqueness part. Let ỹ be another positive orbit in X such
that dsup(x, ỹ) ≤ lR/2. Then dsup(y, ỹ) ≤ lR, and since y is an orbit in A by
Corollary 2.11 we obtain that ỹ = y. �

As a direct corollary we get:

Corollary 3.4. Let X be a complete metric space, let U ⊂ X and let
f :U → X. Let A ⊂ U be a closed subset of X. We assume that f is locally
expanding on A. Then for every ε > 0 there exists δ > 0 such that for every
positive δ-pseudoorbit x in B(A, δ) there exists a unique positive orbit y in X

such that dsup(x, y) ≤ ε. Moreover, y lies in A.

Example 3.5. Let M be a Riemann manifold, let U ⊂ M be open and let
f :U → M be C1. Assume that A ⊂ U is compact and invariant, dxf is invertible
for x ∈ A and

‖(dxf)−1‖ < 1 for x ∈ A.

Then for every ε > 0 there exists δ > 0 such that for every positive δ-pseudoorbit
x in B(A, δ) there exists a unique positive orbit y in A such that dsup(x, y) ≤ ε.

Now applying the above example we are ready to present a simple proof
of shadowing for the Julia map with a specified parameter value. In fact this
method works for all sufficiently large parameters.

Example 3.6. Let c ∈ C be fixed and let fc: C → C be defined by

fc(z) := z2 + c for z ∈ C.

The Julia set Jc (corresponding to the parameter c) is the boundary of Rc —
the set of all points which do not escape to infinity in the semisystem generated
by fc.

Let c = 4. Let us first notice that if z is such that |z| > 3 then z 6∈ Rc:

|fc(z)| ≥ |z|2 − |c| ≥ 5,

and consequently |fn
c (z)| → ∞. Analogously, if |z| < 1 then z 6∈ Rc:

|fc(z)| ≥ |c| − |z| ≥ 4− 1 = 3,
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and the previous works. Thus we get

Rc ⊂ Uc := {z : 1 ≤ |z| ≤ 3}.

Consequently we obtain that f := fc|Uc
is such that Jc is an invariant set

for fc. Moreover, one can easily check that |(dxf)−1| < 1 for x ∈ Jc, which by
Example 3.5 proves that f has the shadowing+ property on Jc.
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