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EXISTENCE THEORY
FOR SINGLE AND MULTIPLE SOLUTIONS

TO SINGULAR BOUNDARY VALUE PROBLEMS
FOR SECOND ORDER IMPULSIVE

DIFFERENTIAL EQUATIONS

Li Zu — Xiaoning Lin — Daqing Jiang

Abstract. In this paper we present some new existence results for singular
boundary value problems for second order impulsive differential equations.

Our nonlinearity may be singular in its dependent variable.

1. Introduction

This paper is devoted to study the existence of multiple positive solutions
for the singular Dirichlet boundary value problem with impulse effects

(1.1)


y′′ + q(t)f(t, y) = 0, for t 6= tk, t ∈ (0, 1),

−∆y′|t=tk
= Ik(y(tk)), for k = 1, . . . ,m,

y(0) = 0, y(1) = 0.

Here, let 0 < t1 < . . . < tm < 1 be given, where f(t, y)∈C((0, 1)×(0,∞), (0,∞)),
and nonlinearity f may be singular at y = 0; q may be singular at t = 0
and/or t = 1; Ik: [0,∞) → [0,∞) is continuous and nondecreasing; ∆y′|t=tk

=
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y′(tk + 0)− y′(tk − 0), where y′(tk + 0) (respectively, y′(tk − 0)) denote the right
limit (respectively, left limit) of y′(t) at t = tk.

In recent years, boundary problems of second-order differential equations
with impulses have been studied extensively in the literature (see for instance [1],
[3], [5]–[8], [11]–[13] and their references), there are two most common techniques
to approach this problem: (1) the method of lower and upper solutions with
monotone iterative technique has been used (see [5]–[7]); (2) Krasnoselskĭı’s fixed
point theorem in a cone has been used (see [1], [7]). The existence of positive
solutions of problem (1.1) for the case of nonsingular has been studied by [13],
by employing a cone index theory.

For the case of Ik = 0, k = 1, . . . ,m, problem (1.1) is related to two points
boundary value problem of ODE. Agarwal and O’Regan [2] have applied a fixed
point index theorem in cones to establish the existence of multiple positive so-
lutions to singular problem (1.1).

Motivated by the work above, in this paper we shall extend the results of [2]
to second order impulsive differential equations.

First, we present an existence principle for the nonsingular boundary value
problem which will be needed in Section 2. We use Schauder’s fixed point the-
orem and a nonlinear alternative of Leray–Schauder type to obtain a general
existence principle for the Dirichlet boundary value problem for second order
impulsive differential equations

(1.2)


y′′ + f(t, y) = 0 for t 6= tk, t ∈ (0, 1),

−∆y′|t=tk
= Ik(y(tk)) for k = 1, . . . ,m,

y(0) = a, y(1) = b.

Let J = [0, 1], PC[J,R] = {y: J → R|y(t) is continuous, y′(tk + 0) and y′(tk − 0)
are existence, and y′(tk) = y′(tk − 0)}, then PC[J,R] is a Banach space with
|y|0 = supt∈[0,1] |y(t)|. Let J ′ = (0, 1), J0 = (0, 1)/{t1, . . . , tm}, J0 = (0, t1],
J1 = (t1, t2] . . . , Jm−1 = (tm−1, tm], Jm = (tm, 1).

If y ∈ PC[J,R]
⋂
C2[J0, R] satisfies all of the equations of (1.2), we call y is

a solution of (1.2).

Theorem 1.1. Suppose the following two conditions are satisfied:

f : J ×R→ R is continuous,(1.3)

Ik:R→ R is continuous.(1.4)

(a) Assume

(1.5)


for each r > 0 there exists hr ∈ L1

loc(J
′)

with
∫ 1

0
t(1− t)hr(t) dt <∞

such that |y| ≤ r implies |f(t, y)| ≤ hr(t) for t ∈ J ′
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holds. In addition suppose there is a constant M > |a|+|b|, independent
of λ, with

(1.6) |y|0 = sup
t∈[0,1]

|y(t)| 6= M

for any solution y ∈ PC[J,R]
⋂
C2[J0, R] to

(1.7)λ


y′′ + λf(t, y) = 0 for t ∈ J0,

−∆y′|t=tk
= λIk(y(tk)) for k = 1, . . . ,m,

y(0) = a, y(1) = b,

for each λ ∈ (0, 1). Then (1.2) has a solution y with |y|0 ≤M .
(b) Assume

(1.8)

{
there exists h ∈ L1

loc(J
′) with

∫ 1

0
t(1− t)h(t) dt <∞

such that |f(t, y)| ≤ h(t) for t ∈ J ′ and y ∈ R

holds. Then (1.2) has a solution.

Proof. (a) We begin by showing that solving (1.7)λ is equivalent to finding
a solution y ∈ PC[J,R]

⋂
C2[J0, R] to

(1.9)λ y(t) = a(1−t)+bt+λ
∫ 1

0

G(t, s) f(s, y(s)) ds + λ

m∑
k=1

G(t, tk) Ik(y(tk)),

where G(t, s) is Green’s function to the Dirichlet boundary value problem −x′′ =
0, x(0) = x(1) = 0, and

G(t, s) :=

{
(1− t)s for 0 ≤ s ≤ t ≤ 1,

(1− s)t for 0 ≤ t ≤ s ≤ 1.

To see this notice if y ∈ PC[J,R]
⋂
C2[J0, R] satisfies (1.9)λ then it is easy to

see (since (1.6) holds; see [9], [10]) that y′ ∈ L1[Jk], and note for t ∈ J0 we have

y′(t) = − a+ b− λ

∫ t

0

s f(s, y(s)) ds

+ λ

∫ 1

t

(1− s) f(s, y(s)) ds+ λ
∑

0<tk<1

G
′

t(t, tk) Ik(y(tk)).

Now we prove that if y ∈ PC[J,R]
⋂
C2[J0, R] satisfy (1.9)λ, then y is a solution

of (1.7)λ. Since G′′(t, tk) = 0, t 6= tk, so

y′′(t) = −λtf(t, y(t))− λ(1− t)f(t, y(t)) = −λf(t, y(t)), t ∈ J0

and

y′(tk +0)−y′(tk−0) = λ[G′t(tk +0, tk)−G′t(tk−0, tk))]Ik(y(tk)) = −λIk(y(tk)).
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Integrate y′(t) from 0 to x(x ∈ (0, t1)) and interchange the order of the
integration to get∫ x

0

y′(t) dt =
∫ x

0

dy(t) = y(x)− y(0)

= a (1− x) + b x+ λ

∫ 1

0

G(x, s)f(s, y(s)) ds

+ λ
m∑

k=1

G(x, tk) Ik(y(tk))− y(0).

∫ x

0

y′(t) dt =
∫ x

0

(−a+ b+ λ

∫ 1

0

G′t(t, s) f(s, y(s)) ds

+ λ
m∑

k=1

G′t(t, tk) Ik(y(tk))

=− ax+ bx+ λ

∫ 1

0

[G(x, s)−G(0, s)]f(s, y(s)) ds

+ λ
m∑

k=1

[G(x, tk)−G(0, tk)] Ik(y(tk))

=− ax+ bx+ λ

∫ 1

0

G(x, s)f(s, y(s)) ds+ λ
m∑

k=1

G(x, tk) Ik(y(tk)),

so y(0) = a. Similarly integrate y′(t) from x (x ∈ (tm, 1)) to 1 and interchange
the order of integration to get y(1) = b. Thus if y ∈ PC[J,R]∩C2[J0, R] satisfies
(1.9)λ then y is a solution of (1.7)λ.

Define the operator N :C[0, 1] → C[0, 1] by

(1.10) N y(t) = a(1− t) + bt+
∫ 1

0

G(t, s) f(s, y(s)) ds+
m∑

k=1

G(t, tk) Ik(y(tk)).

Then (1.9)λ is equivalent to the fixed point problem

(1.11)λ y = (1− λ)p+ λN y, where p = a(1− t) + bt.

Set U = {u ∈ C[0, 1] : |u|0 < M}. We will show N :U → C[0, 1] is uniformly
bounded, equicontinuous and continuous on [0, 1]. Without loss of generality, we
assume that a = 0, b = 0.

(1.12) |(Ny)(t)| = |
∫ 1

0

G(t, s)f(s, y(s)) ds+
m∑

k=1

G(t, tk) Ik(y(tk))|

≤
∫ 1

0

G(t, s)|f(s, y(s))| ds+
m∑

k=1

G(t, tk)|Ik(y(tk))|

≤
∫ 1

0

G(t, s)hM (s) ds+
m∑

k=1

G(t, tk) · sup
|x|≤M

|Ik(x)| := Y (t),
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t ∈ [0, 1], where Y (t) is the solution of following equations

(1.13)


Y ′′ + hM (t) = 0 for t ∈ J0,

−∆Y ′|t=tk
= sup

|x|≤M

|Ik(x)|, for k = 1, . . . ,m,

Y (0) = 0, Y (1) = 0,

we have Y ∈ PC[J,R]
⋂
C2[J0, R]. So N is uniformly bounded on [0,1]. Noting

the facts that Y (0) = Y (1) = 0 and the continuity of Y (t) on [0,1], we have from
(1.12) that for any ε > 0, one can find a δ1 > 0 such that 0 < δ1 < 1/8 and
t1, . . . , tm ∈ (δ1, 1− δ1), we have

(1.14) |(Ny)(t)| < ε

2
, t ∈ [0, 2δ1] ∪ [1− 2δ1, 1]

We also have

(1.15) |(Ny)′(t)| =
∣∣∣∣ ∫ 1

0

G′t(t, s)f(s, y(s)) ds+
m∑

k=1

G′t(t, tk) Ik(y(tk))
∣∣∣∣

≤
∫ 1

t

(1− s)|f(s, y(s))| ds+
∫ t

0

s|f(s, y(s))| ds

+
∑
t<tk

(1− tk)| Ik(y(tk))|+
∑
tk<t

tk| Ik(y(tk))|

≤
∫ 1

δ1

(1− s)hM (s) ds+
∫ 1−δ1

0

s hM (s) ds

+
m∑

k=1

sup
|x|≤M

|Ik(x)| := L,

t ∈ [δ1, 1− δ1], t 6= tk, k = 1, . . . ,m and if t = tk (k = 1, . . . ,m), thus

|(Ny)′(tk + 0)| ≤ |(Ny)′(tk − 0)|+ sup
|x|≤M

|Ik(x)| ≤ L+ sup
|x|≤M

|Ik(x)|,

which is also bounded. So (Ny)′(t) is bounded on [δ1, 1− δ1] i.e.

(1.16) |(Ny)′(t)| ≤ L, t ∈ [δ1, 1− δ1].

Let δ2 = ε/2L, then for t, s ∈ [δ1, 1− δ1], |t− s| < δ2, we have

(1.17) |(Ny)(t)− (Ny)(s)| ≤ L|t− s| < ε

2
.

Define δ = min{δ1, δ2}, then by using (1.14), (1.17), we obtain that

(1.18) |(Ny)(t)− (Ny)(s)| < ε, for s ∈ [0, 1], |t− s| < δ.

This shows that {(Ny)(t) : y ∈ U} is equicontinuous on [0, 1]. We can obtain the
continuity of N in a similar way above. In fact, if yn, y ∈ U and |yn − y|0 → 0
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as n→∞, then we have

(1.19) |(Nyn)(t)− (Ny)(t)|

≤ 2
[ ∫ 1

0

G(t, s)hM (s) ds+
m∑

k=1

G(t, tk) · sup
|x|≤M

|Ik(x)|
]

= 2Y (t)

for t ∈ [0, 1]. Noting the facts that Y (0) = Y (1) = 0 and the continuity of Y (t)
on [0, 1], then for 0 < δ1 < 1/8 we have

(1.20) |(Nyn)(t)− (Ny)(t)| < ε, t ∈ [0, δ1] ∪ [1− δ1, 1].

On the other hand, from the continuity of f , one has

(1.21) |(Nyn)(t)− (Ny)(t)| → 0, t ∈ [δ1, 1− δ1] as n→∞.

This together with (1.20) implies that |(Nyn)(t) − (Ny)(t)|0 → 0 as n → ∞.
Therefore, N :U → C[0, 1] is completely continuous.

Now the nonlinear alternative of Leray–Schauder type (see [10]) guarantees
that N has a fixed point i.e. (1.9)λ has a solution.

(b) Solving (1.2) is equivalent to the fixed point problem y = Ny where N
is as in (1.10). It is easy to see that N :C[0, 1] → C[0, 1] is continuous and com-
pact (since (1.8) holds). The result follows from Schauder’s fixed point theorem
(see [10]). �

2. Singular boundary value problems

Lemma 2.1 ([4])). S ⊂ PC[J,R] is a relative compact set if and only if
for each function of S is uniform bounded on J and equicontinuous on every
Jk(k = 0, . . . ,m).

Consider the Dirichlet boundary value problem

(2.1)


y′′ + q(t)f(t, y) = 0 for t ∈ J0,

−∆y′|t=tk
= Ik(y(tk)) for k = 1, . . . ,m,

y(0) = 0, y(1) = 0.

Here the nonlinearity f may be singular at y = 0 and q may be singular at t = 0
and/or t = 1; Ik: [0,∞) → [0,∞) is continuous and nondecreasing. We begin
by showing that (2.1) has a PC[J,R] ∩ C2[J0, R] solution. To do so, we first
establish, via Theorem 1.1, the existence of a PC[J,R] ∩ C2[J0, R] solution, for
each sufficiently large n, to the “modified” problem

(2.2)n


y′′ + q(t)f(t, y) = 0 for t ∈ J0,

−∆y′|t=tk
= Ik(y(tk)) for k = 1, . . . ,m,

y(0) = 1/n, y(1) = 1/n.
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To show that (2.1) has a solution we let n→∞; the key idea in this step is the
Arzela–Ascoli theorem.

Theorem 2.2. Suppose the following conditions are satisfied:

(2.3) q ∈ C(0, 1), q > 0 on J ′ and
∫ 1

0

t(1− t)q(t) dt <∞

(2.4) f : J × (0,∞) → (0,∞) is continuous.

(2.5)


0 ≤ f(t, y) ≤ g(y) + h(y) on J × (0,∞)

with g > 0 continuous and nonincreasing on (0,∞),

h ≥ 0 continuous on [0,∞),

and h/g nondecreasing on (0,∞)

(2.6)


for each constant H > 0 there exists a function ψH

continuous on J and positive on J ′

such that f(t, u) ≥ ψH(t) on J ′ × (0,H]

and

(2.7) there exists r > 0 with
∫ r

0

du

g(u)
>

m∑
k=1

Ik(r)

2g(r)
+ b0

{
1 +

h(r)
g(r)

}
hold; here

(2.8) b0 = max
{

2
∫ 1/2

0

t(1− t)q(t) dt, 2
∫ 1

1/2

t(1− t)q(t) dt
}
.

Then (2.1) has a solution y ∈ PC[J,R]∩C2[J0, R] with y > 0 on J ′ and |y|0 < r.

Proof. Choose ε > 0, ε < r, with

(2.9)
∫ r

ε

du

g(u)
>

m∑
k=1

Ik(r)

2g(r)
+ b0

{
1 +

h(r)
g(r)

}
.

Let n0 ∈ {1, 2, . . . } be chosen so that 1/n0 < ε/2 and let N0 = {n0, n0 + 1, . . . }.
To show (2.2)n, n ∈ N0, has a solution we examine

(2.10)n


y′′ + q(t)Fn(t, y) = 0 for t ∈ J0,

−∆y′|t=tk
= Ĩk(y(tk)) for k = 1, . . . ,m,

y(0) = 1/n, y(1) = 1/n,

where

Fn(t, u) =

{
f(t, u) for u ≥ 1/n,

f(t, 1/n) for u < 1/n,
Ĩk(u) =

{
Ik(u) for u ≥ 0,

Ik(0) for u < 0.
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To show (2.10)n has a solution for each n ∈ N0 we will apply Theorem 1.1.
Consider the family of problems

(2.11)n
λ


y′′ + λq(t)Fn(t, y) = 0 for t ∈ J0,

−∆y′|t=tk
= λĨk(y(tk)) for k = 1, . . . ,m,

y(0) = 1/n, y(1) = 1/n for n ∈ N0,

where 0 < λ < 1. Let y be a solution of (2.11)n
λ, thus by (1.9)λ, we obtain

y(t) =
1
n

+ λ

∫ 1

0

G(t, s)Fn(s, y(s)) ds+ λ
m∑

k=1

G(t, tk) Ĩk(y(tk)),

then

y(t) ≥ 1/n, t ∈ [0, 1], Ĩk(y(tk)) = Ik(y(tk)), Fn(t, y(t)) = f(t, y(t)).

Since y′′ ≤ 0 on J0, there exists τn with y(τn) = maxt∈[0,1]{y(t)}, and y′(τn−0) ≥
0, y′(τn +0) ≤ 0. Since y′′ ≤ 0 (t ∈ J0), then y′ is nonincreasing on Jk. Suppose
t1, . . . , tp are the impulsive points in (0, τn). Then we have

y′(t) ≥ y′(τn − 0) ≥ 0, t ∈ (tp, τn),

∆y′|t=tp
= −λIp(y(tp)) ≤ 0.

So
y′(tp) = y′(tp − 0) ≥ y′(tp + 0) ≥ y′(τn − 0) ≥ 0.

Similarly y′(t) ≥ 0 on J0, . . . , Jp−1, so y′(t) ≥ 0 on (0, τn). Similarly y′(t) ≤ 0
on (τn, 1).

For x ∈ J0, we have

(2.12) −y′′(x) ≤ g(y(x))
{

1 +
h(y(x))
g(y(x))

}
q(x).

Integrate from t (t ≤ τn) to τn to obtain

−
(
y′(τn−0)−y′(t+0)−

∑
t<tk<τn

∆y′|t=tk

)
≤ g(y(t))

{
1+

h(y(τn))
g(y(τn))

} ∫ τn

t

q(x) dx,

so we have

y′(t+ 0) ≤ y′(τn − 0) +
∑

t<tk<τn

Ik(y(tk)) + g(y(t))
{

1 +
h(y(τn))
g(y(τn))

} ∫ τn

t

q(x) dx.

Since y′(τn + 0)− y′(τn − 0) = −Ik(y(τn)), so

y′(t+ 0) ≤ y′(τn + 0) + Ik(y(τn))

+
∑

t<tk<τn

Ik(y(tk)) + g(y(t))
{

1 +
h(y(τn))
g(y(τn))

} ∫ τn

t

q(x) dx

≤
m∑

k=1

Ik(y(τn)) + g(y(t))
{

1 +
h(y(τn))
g(y(τn))

} ∫ τn

t

q(x) dx,
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and then integrate from 0 to τn to obtain

∫ y(τn)

1/n

du

g(u)
≤ τn

m∑
k=1

Ik(y(τn))

g(y(τn))
+

{
1 +

h(y(τn))
g(y(τn))

} ∫ τn

0

xq(x) dx,

and so

(2.13)
∫ y(τn)

ε

du

g(u)
≤ τn

m∑
k=1

Ik(y(τn))

g(y(τn))

+
{

1 +
h(y(τn))
g(y(τn))

}
1

1− τn

∫ τn

0

x(1− x) q(x) dx.

Similarly if we integrate (2.12) from τn to t (t ≥ τn) and then from τn to 1 we
obtain

(2.14)
∫ y(τn)

ε

du

g(u)
≤ (1− τn)

m∑
k=1

Ik(y(τn))

g(y(τn))

+
{

1 +
h(y(τn))
g(y(τn))

}
1
τn

∫ 1

τn

x(1− x) q(x) dx.

Now (2.13) and (2.14) imply

∫ y(τn)

ε

du

g(u)
≤

m∑
k=1

Ik(y(τn))

2g(y(τn))
+ b0

{
1 +

h(y(τn))
g(y(τn))

}
This together with (2.9) implies |y|0 6= r. Then Theorem 1.1 implies that (2.10)n

has a solution yn with |yn|0 ≤ r. In fact (as above),

1
n
≤ yn(t) < r for t ∈ J.

Next we obtain a sharper lower bound on yn, namely we will show that there
exists a constant k > 0, independent of n, with

(2.15) yn(t) ≥ kt (1− t) for t ∈ J.

To see this notice (2.6) guarantees the existence of a function ψr(t) continuous
on J and positive on J ′ with f(t, u) ≥ ψr(t) for (t, u) ∈ J ′ × (0, r]. Now, using
the Green’s function representation for the solution of (2.10)n, we have

yn(t) =
1
n

+
∫ 1

0

G(t, x) q(x) f(x, yn(x)) dx+
m∑

k=1

G(t, tk)Ik(yn(tk))

and so

(2.16) yn(t) ≥
∫ 1

0

G(t, x) q(x)ψr(x) dx ≡ Φr(t).
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Now it is easy to check (as in Theorem 1.1) that

Φr(t) =
∫ 1

0

G(t, x) q(x)ψr(x) dx

≥ t(1− t)
∫ 1

0

G(x, x) q(x)ψr(x) dx ≥ t(1− t)|Φr|0

on J , let k = |Φr|0 > 0, then (2.15) is true.
Next we will show

(2.17) {yn}n∈N0 is a bounded, equicontinuous family on J.

Returning to (2.12) (with y replaced by yn) we have

(2.18) −y′′n(x) ≤ g(yn(x))
{

1 +
h(r)
g(r)

}
q(x) for x ∈ J0.

Now since y′′n ≤ 0 on J0 and yn ≥ 1/n on J , as discussing as from (2.11)n
λ–

(2.12), we know there exists τn ∈ J ′ with y′n ≥ 0 on (0, τn) and y′n ≤ 0 on (τn, 1).
Integrate (2.18) from t (t < τn) to τn to obtain

(2.19)
y′n(t+ 0)
g(yn(t))

≤

m∑
k=1

Ik(r)

g(r)
+

{
1 +

h(r)
g(r)

} ∫ τn

t

q(x) dx.

On the other hand integrate (2.18) from τn to t (t > τn) to obtain

(2.20)
− y′n(t− 0)
g(yn(t))

≤

m∑
k=1

Ik(r)

g(r)
+

{
1 +

h(r)
g(r)

} ∫ t

τn

q(x) dx.

We now claim that there exists a0 and a1 with a0 > 0, a1 < 1, a0 < a1 with

(2.21) a0 < inf{τn : n ∈ N0} ≤ sup{τn : n ∈ N0} < a1.

Remark 2.3. Here τn (as before) is the unique point in (0, 1) with yn(τn) =
maxt∈[0,1]{yn(t)}.

We now show inf{τn : n ∈ N0} > 0. If this is not true then there is a subse-
quence S of N0 with τn → 0 as n→∞ in S. Now integrate (2.19) from 0 to τn
to obtain

(2.22)
∫ yn(τn)

0

du

g(u)
≤ τn

m∑
k=1

Ik(r)

g(r)
+

{
1 +

h(r)
g(r)

} ∫ τn

0

xq(x) dx+
∫ 1/n

0

du

g(u)

for n ∈ S. Since τn → 0 as n→∞ in S, we have from (2.22) that yn(τn) → 0 as
n→∞ in S. However since the maximum of yn on J occurs at τn we have yn → 0
as n → ∞ in S. This contradicts (2.15). Consequently inf{τn : n ∈ N0} > 0.
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A similar argument shows sup{τn : n ∈ N0} < 1. Let a0 and a1 be chosen as
in (2.21). Now (2.19)–(2.21) imply

(2.23)
|y′n(t)|
g(yn(t))

≤

m∑
k=1

Ik(r)

g(r)
+

{
1 +

h(r)
g(r)

}
v(t) for t ∈ J ′

where

v(t) =
∫ max{t,a1}

min{t,a0}
q(x) dx.

It is easy to see that v ∈ L1[J ]. Let B: [0,∞) → [0,∞) be defined by

B(z) =
∫ z

0

du

g(u)
.

Note B is an increasing map from [0,∞) onto [0,∞) (notice B(∞) = ∞ since
g > 0 is nonincreasing on (0,∞)) with B continuous on [0, a] for any a > 0.
Notice

(2.24) {B(yn)}n∈N0 is a bounded, equicontinuous family on J.

The equicontinuity follows from (here t, s ∈ J)

|B(yn(t))−B(yn(s))| =
∣∣∣∣∫ t

s

d(yn(x))
g(yn(x))

∣∣∣∣
≤

{
1 +

h(r)
g(r)

} ∣∣∣∣∫ t

s

v(x) dx
∣∣∣∣ +

1
2
|t− s|

m∑
k=1

Ik(r)

g(r)
.

This inequality, the uniform continuity of B−1 on [0, B(r)], and

|yn(t)− yn(s)| = |B−1(B(yn(t)))−B−1(B(yn(s)))|

now establishes (2.17).
The Arzela–Ascoli Theorem guarantees the existence of a subsequence N of

N0 and a function y ∈ PC[J,R] ∩ C2[J0, R] with yn converging uniformly on J

to y as n → ∞ through N . Also y(0) = y(1) = 0, |y|0 ≤ r and y(t) ≥ kt(1 − t)
for t ∈ J . In particular y > 0 on J ′. Fix t ∈ (0, t1), then yn (n ∈ N) satisfies the
integral equation

yn(x) = yn

(
t1
2

)
+ y′n

(
t1
2

)(
x− t1

2

)
+

∫ x

t1/2

(s− x) q(s) f(s, yn(s)) ds,

for x ∈ (0, t1). Notice that {y′n(t1/2)}, n ∈ N , is a bounded sequence since ks(1−
s) ≤ yn(s) ≤ r for s ∈ J ′. Thus {y′n(t1/2)}n∈N has a convergent subsequence;
so {yn(t)}n∈N is relative compact on (0, t1). For convenience, let {y′n(t1/2)}n∈N

denote this subsequence also let r0 ∈ R be its limit and let n → ∞ through N
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(we note here that f is uniformly continuous on compact subsets of [min(t1/2, t),
max(t1/2, t)]× (0, r]) to obtain

y(t) = y

(
t1
2

)
+ r0

(
t− t1

2

)
+

∫ t

t1/2

(s− t) q(s) f(s, y(s)) ds.

We can do this argument for each t ∈ (0, t1) and so y′′(t) + q(t) f(t, y(t)) = 0 for
t ∈ (0, t1).

Similarly, we can obtain the same results in (t1, t2), (t2, t3), . . . , (tm, 1).
Finally it is easy to see that |y|0 < r (note if |y|0 = r then following essentially

the argument from (2.12)–(2.14) will yield a contradiction). �

Next we establish the existence of two nonnegative solutions to the singular
second order Dirichlet problem

(2.25)


y′′(t) + q(t)[g(y(t)) + h(y(t))] = 0 for t ∈ J0,

−∆y′|t=tk
= Ik(y(tk)) for k = 1, . . . ,m,

y(0) = y(1) = 0;

here our nonlinear term g+ h may be singular at y = 0. First we state the fixed
point result.

Theorem 2.4 ([1]). Let E = (E, ‖·‖) be a Banach space, K ⊂ E a cone and
let ‖ · ‖ be increasing with respect to K. Also r, R are constants with 0 < r < R.
Suppose A: ΩR ∩ K → K (here ΩR = {x ∈ E : ‖x‖ < R}) is a continuous,
compact map and assume the following conditions hold:

(2.26) x 6= λA(x) for λ ∈ [0, 1) and x ∈ ∂EΩr ∩K

and

(2.27) ‖Ax‖ > ‖x‖ for x ∈ ∂EΩR ∩K.

Then A has a fixed point in K ∩ {x ∈ E : r ≤ ‖x‖ ≤ R}.

Remark 2.5. In Theorem 2.4 if (2.26) and (2.27) are replaced by

(2.28) x 6= λA(x) for λ ∈ [0, 1) and x ∈ ∂EΩR ∩K

and

(2.29) ‖Ax‖ > ‖x‖ for x ∈ ∂EΩr ∩K.

then A has a fixed point in K ∩ {x ∈ E : r ≤ ‖x‖ ≤ R}.
medskip Now E = (PC[J,R], |·|0) (here |u|0 = supt∈[0,1] |u(t)|, u ∈ PC[J,R])

will be our Banach space and

(2.30) K = {y ∈ PC[J,R] : y(t) ≥ 0, t ∈ J and y(t) ≥ t(1− t)|y|0 on J}.
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From Theorem 2.2 we have immediately the following existence result for
(2.25).

Theorem 2.6. Suppose the following conditions are satisfied:

q ∈ C(0, 1), q > 0 on J ′ and
∫ 1

0

t(1− t)q(t) dt <∞,(2.31)

g > 0 is continuous and nonincreasing on (0,∞),(2.32)

h ≥ 0 continuous on [0,∞) with h/g nondecreasing on (0,∞)(2.33)

and

(2.34) there exists r > 0 with
∫ r

0

du

g(u)
>

m∑
k=1

Ik(r)

2g(r)
+ b0

{
1 +

h(r)
g(r)

}
;

here

(2.35) b0 = max
{

2
∫ 1/2

0

t(1− t)q(t) dt, 2
∫ 1

1/2

t(1− t)q(t) dt
}
.

Then (2.25) has a solution y ∈ PC[J,R] ∩ C2[J0, R] with y > 0 on J ′ and
|y|0 < r.

Proof. The result follows from Theorem 2.2 with f(t, u) = g(u) + h(u).
Notice (2.6) is clearly satisfied with ψH(t) = g(H). �

Theorem 2.7. Assume (2.31)–(2.34) hold. Choose a ∈ (0, 1/2) and fix it
and suppose there exists R > r with

(2.36) R < g(R)
{

1 +
h(a(1− a)R)
g(a(1− a)R)

} ∫ 1−a

a

G(σ, s) q(s) ds

+
m∑

k=1

G(σ, tk)Ik(tk(1− tk)R);

here 0 ≤ σ ≤ 1 is such that

(2.37)
∫ 1−a

a

G(σ, s) q(s) ds = sup
t∈[0,1]

∫ 1−a

a

G(t, s) q(s) ds

and

G(t, s) =

{
(1− t)s for 0 ≤ s ≤ t,

(1− s)t for t ≤ s ≤ 1.

Then (2.25) has a solution y ∈ PC[0, 1] ∩ C2[J0, R] with y > 0 on J ′ and
r < |y|0 ≤ R.

Proof. To show the existence of the solution described in the statement of
Theorem 2.10 we will apply Theorem 2.4. First however choose ε > 0 and ε < r



184 Li Zu — Xiaoning Lin — Daqing Jiang

with

(2.38)
∫ r

ε

du

g(u)
>

m∑
k=1

Ik(r)

2g(r)
+ b0

{
1 +

h(r)
g(r)

}
.

Let n0 ∈ {1, 2, . . . } be chosen so that (1/n0) < (ε/2) and (1/n0) < a(1 − a)R
and let N0 = {n0, n0 + 1, . . . }. We first show that

(2.39)n


y′′(t) + q(t) [g(y(t)) + h(y(t))] = 0 for t ∈ J0,

−∆y′|t=tk
= Ik(y(tk)) for k = 1, . . . ,m,

y(0) = y(1) = 1/n,

has a solution yn for each n ∈ N0 with yn(t) ≥ 1/n on J and r ≤ |yn|0 ≤ R. To
show (2.39)n has such a solution for each n ∈ N0, we will look at

(2.40)n


y′′(t) + q(t) [g∗(y(t)) + h(y(t))] = 0 for t ∈ J0,

−∆y′|t=tk
= Ĩk(y(tk)) for k = 1, . . . ,m,

y(0) = y(1) = 1/n,

with

g?(u) =

{
g(u) for u ≥ 1/n,

g(1/n), for 0 ≤ u < 1/n.
Ĩk(u) =

{
Ik(u) for u ≥ 0,

Ik(0) for u < 0.

Remark 2.8. Notice g?(u) ≤ g(u) for u ≥ 0.

Fix n ∈ N0. Let E = (PC[J,R], | · |0) and

(2.41) K = {u ∈ PC[J,R] : u(t) ≥ 0, t ∈ J and u(t) ≥ t(1− t)|u|0 on J}.

Clearly K is a cone of E. Let A:K → PC[J,R] be defined by

(2.42) Ay(t) =
1
n

+
∫ 1

0

G(t, s) q(s) [g?(y(s))+h(y(s))] ds+
m∑

k=1

G(t, tk)Ĩk(y(tk)).

A standard argument implies A:K → PC[J,R] is continuous and completely
continuous. Next we show A:K → K. If u ∈ K then clearly Au(t) ≥ 0 for
t ∈ J . Also notice that

Ay(t) ≥ 1
n

+ t(1− t)
∫ 1

0

s(1− s)q(s)[g?(y(s) + hy(s))] ds

+ t(1− t)
m∑

k=1

tk(1− tk)Ĩk(y(tk))
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and

t(1− t)|Ay|0 ≤ t(1− t)
[

1
n

+
∫ 1

0

s(1− s)q(s)[g?(y(s) + hy(s))
]
ds

+
m∑

k=1

tk(1− tk)Ĩk(y(tk))],

so Ay(t) ≥ t(1− t)|Ay|0 and{
(Au)′′(t) ≤ 0 on J0,

Au(0) = Au(1) = 1/n.

Consequently Au ∈ K so A:K → K. Let Ω1 = {u ∈ PC[J,R] : |u|0 < r} and
Ω2 = {u ∈ PC[J,R] : |u|0 < R}. We first show

(2.43) y 6= λAy for λ ∈ [0, 1) and y ∈ K ∩ ∂Ω1.

Suppose this is false i.e. suppose there exists y ∈ K ∩ ∂Ω1 and λ ∈ [0, 1) with
y = λAy. We can assume λ 6= 0. Now since y = λAy we have

(2.44)


y′′(t) + λ q(t)[g?(y(t)) + h(y(t))] = 0 for t ∈ J0,

−∆y′|t=tk
= λIk(y(tk)) for k = 1, . . . ,m,

y(0) = y(1) = 1/n.

Since y′′ ≤ 0 on J0 and there exists t0 ∈ J ′ with y(t0) = maxt∈[0,1]{y(t)} and
y′(t0 − 0) ≥ 0, y′(t0 + 0) ≤ 0. As the same way as in Theorem 2.4, y′(t) ≥ 0 on
(0, t0) and y′(t) ≤ 0 on (t0, 1) and y ≥ (1/n) on J and y(t0) = |y|0 = r (note
y ∈ K ∩ ∂Ω1). Also notice

g?(y(t)) + h(y(t)) ≤ g(y(t)) + h(y(t)) for t ∈ J ′

since g is nonincreasing on (0,∞). For x ∈ J0 we have

(2.45) −y′′(x) ≤ g(y(x))
{

1 +
h(y(x))
g(y(x))

}
q(x).

Integrate from t (t ≤ t0) to t0 to obtain

y′(t+ 0) ≤
m∑

k=1

Ik(r) + g(y(t))
{

1 +
h(r)
g(r)

} ∫ t0

t

q(x) dx

and then integrate from 0 to t0 to obtain

∫ r

1/n

du

g(u)
≤ t0

m∑
k=1

Ik(r)

g(r)
+

{
1 +

h(r)
g(r)

} ∫ t0

0

xq(x) dx.
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Consequently

∫ r

ε

du

g(u)
≤ t0

m∑
k=1

Ik(r)

g(r)
+

{
1 +

h(r)
g(r)

} ∫ t0

0

x q(x) dx

and so

(2.46)
∫ r

ε

du

g(u)
≤ t0

m∑
k=1

Ik(r)

g(r)
+

{
1 +

h(r)
g(r)

}
1

1− t0

∫ t0

0

x(1− x) q(x) dx.

Similarly if we integrate (2.45) from t0 to t (t ≥ t0) and then from t0 to 1 we
obtain

(2.47)
∫ r

ε

du

g(u)
≤ (1− t0)

m∑
k=1

Ik(r)

g(r)
+

{
1 +

h(r)
g(r)

}
1
t0

∫ 1

t0

x(1− x) q(x) dx.

Now (2.46) and (2.47) imply

(2.48)
∫ r

ε

du

g(u)
≤

m∑
k=1

Ik(r)

2g(r)
+ b0

{
1 +

h(r)
g(r)

}
where b0 is as defined in (2.35). This contradicts (2.38) and consequently (2.43)
is true.

Next we show

(2.49) |Ay|0 > |y|0 for y ∈ K ∩ ∂Ω2.

To see this let y ∈ K ∩ ∂Ω2 so |y|0 = R. Also since y(t) is satisfied

y(t) ≥ t(1− t)|y|0 ≥ t(1− t)R, for ∈ J.

Also for s ∈ [a, 1− a] we have

g?(y(s)) + h(y(s)) = g(y(s)) + h(y(s))

since y(s) ≥ a(1− a)R > (1/n0) for s ∈ [a, 1− a]. Note in particular that

(2.50) y(s) ∈ [a(1− a)R, R] for s ∈ [a, 1− a] .

With σ as defined in (2.37) we have using (2.50) and (2.36),

Ay(σ) =
1
n

+
∫ 1

0

G(σ, s) q(s) [g?(y(s)) + h(y(s))] ds+
m∑

k=1

G(σ, tk)Ik(y(tk))

≥
∫ 1−a

a

G(σ, s)q(s) [g?(y(s)) + h(y(s))] ds+
m∑

k=1

G(σ, tk)Ik(tk(1− tk)R)

=
∫ 1−a

a

G(σ, s) q(s) g(y(s))
{

1 +
h(y(s))
g(y(s))

}
ds
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+
m∑

k=1

G(σ, tk)Ik(tk(1− tk)R)

≥ g(R)
{

1 +
h(a (1− a)R)
g(a (1− a)R)

} ∫ 1−a

a

G(σ, s) q(s) ds

+
m∑

k=1

G(σ, tk)Ik(tk(1− tk)R) > R = |y|0,

and so |Ay|0 > |y|0. Hence (2.49) is true.
Now Theorem 2.4 implies A has a fixed point yn ∈ K ∩ (Ω2 \ Ω1) i.e. r ≤

|yn|0 ≤ R. In fact |yn|0 > r (note if |yn|0 = r then following essentially the same
argument from (2.45)–(2.48) will yield a contradiction). Consequently (2.40)n

(and also (2.39)n) has a solution yn ∈ PC[J,R] ∩ C2[J0, R], yn ∈ K, with

(2.51)
1
n
≤ yn(t) for t ∈ J, r < |yn|0 ≤ R

and (note yn ∈ K)

(2.52) yn(t) ≥ t(1− t) r for t ∈ J.

Next we will show

(2.53) {yn}n∈N0 is a bounded, equicontinuous family on J.

Returning to (2.45) (with y replaced by yn) we have

(2.54) −y′′n(x) ≤ g(yn(x))
{

1 +
h(R)
g(R)

}
q(x) for x ∈ J0.

Now since y′′n ≤ 0 on J0 and yn ≥ 1
n on J . As discussing as in Theorem 2.2,

there exists τn ∈ J ′ with y′n ≥ 0 on (0, τn) and y′n ≤ 0 on (τn, 1). Integrate (2.54)
from t (t < τn) to τn to obtain

(2.55)
y′n(t+ 0)
g(yn(t))

≤

m∑
k=1

Ik(R)

g(R)
+

{
1 +

h(R)
g(R)

} ∫ τn

t

q(x) dx.

On the other hand integrate (2.54) from τn to t (t > τn) to obtain

(2.56)
−y′n(t− 0)
g(yn(t))

≤

m∑
k=1

Ik(R)

g(R)
+

{
1 +

h(R)
g(R)

} ∫ t

τn

q(x) dx.

We now claim that there exists a0 and a1 with a0 > 0, a1 < 1, a0 < a1 with

(2.57) a0 < inf{τn : m ∈ N0} ≤ sup{τn : n ∈ N0} < a1.

Remark 2.9. Here τn (as before) is the unique point in (0, 1) with yn(τn) =
maxt∈[0,1]{yn(t)}.
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We now show inf{τn : n ∈ N0} > 0. If this is not true then there is a
subsequence S of N0 with τn → 0 as n→∞ in S. Now integrate (2.55) from 0
to τn to obtain

(2.58)
∫ yn(τn)

0

du

g(u)
≤ τn

m∑
k=1

Ik(R)

g(R)
+

{
1 +

h(R)
g(R)

} ∫ τn

0

x q(x) dx+
∫ 1/n

0

du

g(u)

for n ∈ S. Since τn → 0 as n → ∞ in S, we have from (2.58) that yn(τn) → 0
as n → ∞ in S. However since the maximum of yn on J occurs at τn we have
yn → 0 in PC[J,R] as n → ∞ in S. This contradicts (2.52). Consequently
inf{τn : n ∈ N0} > 0. A similar argument shows sup{τn : n ∈ N0} < 1. Let a0

and a1 be chosen as in (2.57). Now (2.55)–(2.57) imply

(2.59)
|y′n(t)|
g(yn(t))

≤

m∑
k=1

Ik(R)

g(R)
+

{
1 +

h(R)
g(R)

}
v(t) for t ∈ J ′

where

v(t) =
∫ max{t,a1}

min{t,a0}
q(x) dx.

It is easy to see that v ∈ L1[J ]. Let B: [0,∞) → [0,∞) be defined by

B(z) =
∫ z

0

du

g(u)
.

Note B is an increasing map from [0,∞) onto [0,∞) (notice B(∞) = ∞ since
g > 0 is nonincreasing on (0,∞)) with B continuous on [0, a] for any a > 0.
Notice

(2.60) {B(yn)}n∈N0 is a bounded, equicontinuous family on J.

The equicontinuity follows from (here t, s ∈ J)

|B(yn(t))−B(yn(s))| =
∣∣∣∣ ∫ t

s

d(yn(x))
g(yn(x))

∣∣∣∣
≤ 1

2
|t− s|

m∑
k=1

Ik(R)

g(R)
+

{
1 +

h(R)
g(R)

}∣∣∣∣ ∫ t

s

v(x) dx
∣∣∣∣.

This inequality, the uniform continuity of B−1 on [0, B(R)], and

|yn(t)− yn(s)| = |B−1(B(yn(t)))−B−1(B(yn(s)))|

now establishes (2.53).
The Arzela–Ascoli Theorem guarantees the existence of a subsequence N of

N0 and a function y ∈ PC[J,R]∩C2[J0, R] with yn converging uniformly on J to
y as n→∞ through N . Also y(0) = y(1) = 0, r ≤ |y|0 ≤ R and y(t) ≥ t(1− t) r
for t ∈ J . In particular y > 0 on J ′.



Singular Boundary Value Problems 189

In the same way as in Theorem 2.2, we can prove y′′(t) + q(t) [g(y(t)) +
h(y(t))] = 0 for t ∈ J0. Finally, it is easy to see that |y|0 > r (note if |y|0 = r

then following essentially the argument from (2.45)–(2.48) will yield a contradic-
tion). �

Theorem 2.10. Assume (2.31)–(2.34) and (2.36) hold. Then (2.25) has
two solutions y1, y2 ∈ PC[J,R] ∩ C2[J0, R] with y1 > 0, y2 > 0 on J ′ and
|y1|0 < r < |y2|0 ≤ R.

Proof. The existence of y1 follows from Theorem 2.6 and the existence of
y2 follows from Theorem 2.2. �

Example 2.11. Consider the singular boundary value problem for second
order impulsive differential equation:

(2.61)


y′′ +

1
α+ 1

(y−α + yβ + 1) = 0 for t ∈ J0,

−∆y′|t=tk
= cky(tk), for k = 1, . . . ,m, ck ≥ 0,

y(0) = y(1) = 0, α > 0, β > 1.

Suppose 0 <
∑m

k=1 ck < (1/α+ 1), then (2.61) has two solutions y1, y2 ∈
PC[J,R] ∩ C2[J0, R] with y1 > 0, y2 > 0 on J ′ and |y1|0 < 1 < |y2|0.

To see this we will apply Theorem 2.10 with q = (1/α+ 1), g(u) = u−α and
h(u) = uβ + 1. Clearly (2.31)–(2.33) hold. Also note

b0 = max
{

2
α+ 1

∫ 1/2

0

t(1− t) dt,
2

α+ 1

∫ 1

1/2

t(1− t) dt
}

=
1

6(α+ 1)
.

Consequently (2.34) holds (with r = 1) since

∫ r

0

du

g(u)
− 1

2g(r)

m∑
k=1

Ik(r){
1 +

h(r)
g(r)

} =

rα+1

α+ 1
− 1

2
rα

m∑
k=1

ckr

(1 + rα+β + rα)

=

1
(α+ 1)

− 1
2

m∑
k=1

ck

3

>

1
(α+ 1)

− 1
2(α+ 1)

3
=

1
6(α+ 1)

> b0.
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Finally note (since β > 1), take a = 1/4, that

lim
R→∞

[
R−

m∑
k=1

G(σ, tk)Ik(tk(1− tk)R)
]
g

(
3R
16

)
g(R) g

(
3R
16

)
+ g(R)h

(
3R
16

)

= lim
R→∞

[
R−

m∑
k=1

G(σ, tk)cktk(1− tk)R
](

3
16
R

)−α

R−α

[(
3
16
R

)β

+ 1 +
(

3
16

)−α]

= lim
R→∞

R

[
1−

m∑
k=1

G(σ, tk)cktk(1− tk)
](

16
3

)α

[(
3
16
R

)β

+ 1 +
(

16
3R

)α] = 0,

so there exists R > 1 with (2.36) holding. The result now follows from Theo-
rem 2.10.
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