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NODAL SOLUTIONS
FOR A NONHOMOGENEOUS ELLIPTIC
EQUATION WITH SYMMETRY

MARCELO F. FURTADO

ABSTRACT. We consider the semilinear problem —Awu + \u = |u|P~2u +
f(u) in Q, u = 0 on 9Q where 2 C RV is a bounded smooth domain,
2 < p <2 =2N/(N —2) and f(t) behaves like tP~17¢ at infinity. We
show that if € is invariant by a nontrivial orthogonal involution then, for
A > 0 sufficiently large, the equivariant topology of €2 is related with the
number of solutions which change sign exactly once. The results are proved
by using equivariant Lusternik—Schnirelmann theory.

1. Introduction
Consider the problem

—Au+ M= |ulP2u+ f(u) in Q,

1.1
(L) u=0 on 012,

where Q C RY is a bounded smooth domain, A > 0, 2 < p < 2* := 2N/(N — 2)
and the function f € C!'(R,R) satisfies

(f1) limy—oo f(8)/tP71 = 0;
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(f2) there exists v > 0 such that

d (f(t) .
dt(t“”)zo for any t > 0;

(f3) f(t) >0 for any ¢ > 0.

We are interested in investigating the effect of the topology of € on the
number of solutions of (1.1). The starting point of our study is the paper of
Benci and Cerami [4], where the authors considered f = 0 and proved that (1.1)
possesses at least cat(£2) positive solutions provided A is large enough or p is close
to 2*. Here, cat(f2) stands the usual Lusternik—Schnirelmann category of Q in
itself. The result for A large was extended for nonhomogeneous nonlinearities by
the same authors in [5]. Since the work [4], multiplicity results for problems like
(1.1) involving the category have been intensively studied (see [6], [7], [11] for
subcritical, and [16], [14], [2], [1] for critical nonlinearities).

In the aforementioned works, the authors obtained positive solutions. Castro,
Cossio and Neuberger considered in [10] a slightly different class of nonlinearities
and proved that the problem possesses a solution which changes sign exactly
once. This means that the solution u is such that Q \ «~!(0) has exactly two
connected components, u is positive in one of them and negative in the other.
In [3], Bartsch obtained infinite nodal solutions for (1.1). Motivated by these
works and by a recent paper of Castro and Clapp [9], we are interested in relating
the topology of Q2 with the number of solutions which change sign exactly once.

We deal with the problem

—Au+ M= |ulP2u+ f(u) in Q,
(P3) u=0 on 09,
u(tz) = —u(x) for all z € Q,

where 7:RY — R¥ is a linear orthogonal transformation such that 7 # id,
72 =id, and Q C RY is a bounded smooth domain such that 7Q = €. Since we

are looking for nodal solutions we suppose that f is odd, that is,
(1) f(=t)=—f(t) for anyte€R.

Before to state our main results, we would like to quote the paper [8], where
Cao, Li and Zhong proved that, under (f;)—(fy), the problem without symmetry
(1.1) has at least cat(2) positive solutions. Quite recently, Furtado [13] consid-
ered the problem (PY) for f = 0 and proved that, if A > 0 is fixed and p is
sufficiently close to 2*, then there exists an effect of the equivariant topology
of 0 on the number of solutions which change sign exactly once. In view of
this and the results of [4], [5], [8], it is natural to ask if the same kind of result
holds for the nonhomogeneous symmetric problem (P7) when p is fixed and A
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is large. In this paper we give an affirmative answer to this question by proving
the following result.

THEOREM 1.1. Suppose p € (2,2%) and f satisfies (f1)—(fs). Then there
exists A(p) such that, for all X > X(p), the problem (P%) has at least T-catqo (2 \
Q7) pairs of solutions which change sign exactly once.

Here, Q" = {x € Q : 72 = z} and 7-cat is the G -equivariant Lusternik—
Schnirelmann category for the group G, = {id,7} (see Section 3). There are
several situations where the equivariant category turns out to be larger than the
nonequivariant one. The classical example is the unit sphere S¥=1 ¢ RY with
7 = —id. In this case cat(SV~!) = 2 whereas 7-cat(S¥~!) = N. Thus, as a

consequence of Theorem 1.1 we have

COROLLARY 1.2. Suppose p € (2,2*) and f satisfies (f1)—(f4). Assume fur-
ther that S is symmetric with respect to the origin, 0 & Q and there is an odd map
©:SN=1 — Q. Then there exists X(p) such that, for all X\ > X(p), the problem
(1.1) has at least N pairs of odd solutions which change sign exactly once.

The above results complement those of [9] where the authors considered the
critical semilinear problem

—Au = u+|u* 2u, wue HLQ), u(tz) = —u(z) in Q,

and obtained the same results for A > 0 small enough. They also complement
the results of [8] since we obtain nodal solutions under the same hypothesis on
f, as well the aforementioned works which deal only with positive solutions.

The paper is organized as follows. In Section 2 we present the abstract
framework of the problem and some technical results. Section 3 is devoted to
recalling some facts about equivariant Lusternik—Schnirelmann theory. The main
results are proved in Section 4.

2. Functional setting and some technical results

Throughout this paper, we denote by H the Sobolev space H{(Q2) endowed

1/2
full ={ [ (vuac}
Q

and by |uls the L*(2)-norm of a function u € L*(§2). For simplicity of notation,

with the norm

we write only [, u instead of [, u(x) da.
We start by noting that the involution 7 of € induces an action on H, which
we also denote by 7, in the following way: for each u € H we define Tu € H by

(2.1) (tu)(x) = —u(rx).
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If we set H™ = {u € H : Tu = u} as being the subspace of 7-invariant functions,
it follows from the above expression that any function u € H” satisfies the
symmetry condition which appears in (PY).

It is well known that the nontrivial weak solutions of the problem (1.1) are
precisely the nontrivial critical points of the C2-functional Ey: H — R given by

Baw = 5 [ (VuP +x?) = = [ jup — [ P,

where F(t) = fg f(s)ds is the primitive of f. All of them belong to the Nehari
manifold of E) given by

N = {u€ H\ {0} : (B (u).u} = 0}
={u € H\ {0 sl + Nl = [uly + [ f(u)u}.

In order to obtain 7-invariant solutions, we will look for critical points of E
restricted to the T-invariant Nehari manifold

T={ueNy:Tu=u}l=N\NH".
By using conditions (f2) — (fs) we can check that
(2.2) 0< (2+7)F(t) < f(t)t,

for any t € R. Thus, if u € Ny, we have

B =(5-3) [+ [ su- [ Fw
(D) et oo

and therefore the following minimization problems are well defined

= inf E d m} = inf Ex(u).
A uler}\fx )\(U) o " “ler'}v; )\(U)

By using the symmetry of the problem (P}) we can obtain the following
relation between the two minimizers defined above.

LEMMA 2.1. For any A > 0, we have that 2my < mj.

PROOF. Let u € N7 and set u* = max{=+wu,0}. Since u € H”, we can use
(2.1) to conclude that u is negative in 7(A) whenever w is positive in some subset

A C Q. We claim that

1 1 L1,
(2.3) / Flutyt =2 / fwyu, [t = Saf? and ut = L,
o 2 Jo 2 2
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for any 2 < s < 2*. Indeed, if we set Q1 = {z € Q : u(z) > 0}, we can use (2.1)
to verify that Q7 = {z € Q : u(z) < 0} = 7(Q"). Recalling that u = u™ — u~
and f is an odd function, we obtain

u)u = uh)ut — —u)u = ut)ut u-
) [ = [ st [ = [ gt [ g

1

Moreover, since 7 = 77+, we can use a change of variables to conclude that

fhu® = [ fu())u( )dw—/ fu(ry))u(Ty) dy
Q

Q+ 1(Q+)

= [ ruumydy = [ p

This and (2.4) imply the first equality in (2.3). The other ones can be proved in
a similar way.

Since F'is even and F'(0) = 0, we can argue as above to conclude that

/QF(u):/QF(M—u—):/QF(u+)+/QF(u—).

Moreover, since u € N7, it follows from (2.3) that u= € Ny. Thus, we can use
the above equation and (2.3) to get

Ey(u) = Ek(u—‘r) + Ex(u™) > 2my,
which concludes the proof of the lemma. O

In what follows we denote by ||E4(u)|/+« the norm of the derivative of the
restriction of Ey to N at u, which is defined by (see [18, Section 5.3])

E} » = min || E} —0J; Ty
IEA ()l = min || B} (u) = 65 (u) | ¢zrr)-

where (H7)* is the dual space of H™ and Jy: H™ — R is given by
Ta(w) = ol + A = g = [

LEMMA 2.2. Ifu is a critical point of Ey restricted to N7, then E'(u) =0
in the dual space of H.

PROOF. By definition, there exits § € R such that (E} (u) — u), ¢y =0,
for all ¢ € H™. Since u € Ny, we can take ¢ = u to get 0(J{(u), > 0.
By using (f2)—(f4) we can check that

f)t —f()t* < —yf(t)t <0 for any t € R.
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This and the definition of Jy imply that
(T3 (), w) =2(jul® + 2X[ul3 — plulh — /Q{f’(u)u2 + f(u)u}

=(2 —p)|u|1][j—|-/Q {f(u)u— f’(u)uQ} < 0.

Thus § = 0 and therefore (E4 (u),¢) = 0 for all ¢ € H™. The result follows from
the principle of symmetric criticality [15] (see also [18, Theorem 1.28]). O

Let V be a Banach space, M be a C'-manifold of V and I: V — R a C'-
functional. We recall that I restricted to M satisfies the Palais—Smale condition
at level ¢ ((PS), for short) if any sequence (u,) C M such that I(u,) — ¢ and
[II"(un) ||« — O contains a convergent subsequence. We end this section by stating
the compactness property satisfied by E.

LEMMA 2.3. The functional Ey restricted to N satisfies the Palais—Smale
condition at any level c € R.

PROOF. Since we are dealing with a subcritical nonlinearity, the proof follows
from the boundedness of 2, the Ambrosetti-Rabinowitz condition in (2.2) and
standard arguments (see [5]). We omit the details. O

3. Equivariant Lusternik—Schnirelmann theory

We recall in this section some facts about equivariant Lusternik—Schnirel-
mann theory. An involution on a topological space X is a continuous function
7x: X — X such that 7% is the identity map of X. A subset A of X is called
Tx-invariant if 7x(A4) = A. If X and Y are topological spaces equipped with
involutions 7x and 7y, respectively, then an equivariant map is a continuous
function f: X — Y such that forx = 7y o f. Two equivariant maps fy, f1: X —
Y are equivariantly homotopic if there is an homotopy ©: X x [0,1] — Y such
that ©(z,0) = fo(x), O(x,1) = fi(z) and O(rx(x),t) = 7v(O(z,1)), for all
x e X,tel0,1].

DEFINITION 3.1. The equivariant category of an equivariant map f: X — Y,
denoted by (7x,7y)-cat(f), is the smallest number k of open invariant subsets
X1,..., X, of X which cover X and which have the property that, for each
i =1,...,k, there is a point y; € Y and a homotopy ©;: X; x [0,1] — Y such
that ©;(x,0) = f(z), O;(z,1) € {y;, 7v (y;)} and O;(7x (x),t) = 7v(0;(x, 1)) for
every z € X;, t € [0,1]. If no such covering exists we define (7x, 7y )-cat(f) = .

If A is a 7x-invariant subset of X and ¢ : A — X is the inclusion map we

write
Tx-catx(A) = (7x,7x)-cat(t) and 7x-cat(X) = Tx-catx(X).

The following properties can be verified.
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LEMMA 3.2.

(a) If f: X =Y and h:Y — Z are equivariant maps then
(1x,7z)-cat(ho f) < ty-cat(Y).
(b) If fo, f1: X — Y are equivariantly homotopic then

(Tx, Ty)—Cat(fo) = (Tx,Ty)—Cat(fl).

Let 7,:V — V be the antipodal involution 7,(u) = —u on the vector space
V. Equivariant Lusternik—Schnirelmann category provides a lower bound for the
number of pairs {u, —u} of critical points of an even functional, as stated in the
following abstract result (see [12, Theorem 1.1], [17, Theorem 5.7]).

THEOREM 3.3. Let I: M — R be an even C'-functional on a complete sym-
metric C%-submanifold M of some Banach space V.. Assume that I is bounded
below and satisfies (PS). for all ¢ < d. Then, if [* = {u € M : I(u) < d}, the
functional I has at least To-cata(I?) antipodal pairs {u,—u} of critical points
with I(+u) < d.

4. Proofs of the main results

By standard regularity theory we know that if u is a solution of (P}), then
it is of class C'*. We say it changes sign k times if the set {x € Q : u(z) # 0} has
k + 1 connected components. By (2.1), if u is a nontrivial solution of problem
(P%) then it changes sign an odd number of times. More specifically, we have
the following relation between the number of nodal regions of a solution and its
energy.

LEMMA 4.1. If u is a solution of problem (P}) which changes sign 2k — 1
times, then Ey(u) > km}. In particular, if u is a nontrivial solution of (P7)
such that Ey(u) < 2m3, then u changes sign exactly once.

ProoF. Theset {x € © : u(x)>0} has k connected components Ay, ... , Ag.
Let u;(z) = u(x) if x € A; UTA; and u;(z) = 0, otherwise. We have that

0 =(E}\(u), u;) = /Q(Vu Vg + Mg — [ulP 2w — f(w)ug)

s + Mo — Jus]? / ().

Thus, u; € N for all i =1,... ,k, and E\(u) = Ex(u1) + ...+ Ex(ug) > km3,
as desired. 0

Given r > 0, we define the sets

QF = {z e RY : dist(z,Q) <r} and Q. = {z € Q:dist(z,00UQ7) >r}.
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From now on we fix r > 0 sufficiently small in such way that the inclusion maps
Q7 — Q\ Q" and Q — QF are equivariant homotopy equivalences. We also
define the barycenter map 3 : H \ {0} — RY by setting
Joz - |Vu(x)]? de

Jo IVu(z)?da

Let Ey: H} (B;(0)) — R be defined as
1 1
Exr(u) =5 (IVul* + x?) — 7/ Jul? ~ / F(u),
2 JB.(0) P JB.(0) B,.(0)

mx,r = ueljr\l/{\ TEA r( )

where N, stands the Nehari manifold of E),. The following lemma is an

Blu) =

and set

important tool for the proof of Theorem 1.1.

LEMMA 4.2. For any fized p € (2,2*) there exists \(p) such that, for any
A > X(p), there hold

(a) my, < 2my,
(b) if u € Ny and Ex(u) < my., then B(u) € Q.

PRrROOF. See [8, Corollary 3.20 and Lemma 3.24]. O

For any given d > 0 we set E{ = {u € NJ : Ex(u) < d}. By using the second
statement of the above lemma we are able to prove the following result.

LEMMA 4.3. For any fized p € (2,2%), let X(p) be given by Lemma 4.2. Then
Ta—cat(Eim*”") > 7-catq(Q\ Q7), for any A > \(p).
PRrOOF. We claim that, for any A > A\(p) fixed, there exist two maps
O o Eim” ENTORS

such that ay(7z) = —ax(z), ya(—u) = 7y (u), and vy o @) is equivariantly
homotopic to the inclusion map € — QF. Assuming the claim and recalling
that the maps Q7 — Q\Q7 and Q — Q are equivariant homotopy equivalences,
we can use Lemma 3.2 to get

7'a—cat(EzmA ") > T-catq () = T-cato(Q\ Q7).

In order to prove the claim we follow [9]. Let vy € NAm be a positive radial
function such that Ej . (vy) = my . We define ay: Q. — Eimk” by

(4.1) ax(z) =uva(- —x) —ua(- — 7).

It is clear that ay(raz) = —a)(z). Furthermore, since vy is radial and 7 is
an isometry, we have that a)(z) € H". The definition of 2, implies that
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|z — 7| > 2r for any = € Q. Thus, we can check that E)(ax(x)) = 2my, and
ax(z) € NY. All this considerations show that a is well defined.

Given u € Eim“ we can proceed as in the proof of Lemma 2.1 to conclude
that ut € N, and 2E, (u") = Ex(u) < 2my .. It follows from Lemma 4.2(b) that
Ya: Eim“ — QF given by vy (u) = B(ut) is well defined. A simple calculation
shows that v, (—u) = 7y, (u). Moreover, using (4.1) and the fact that vy is radial

we get
Jo. ¥ IVy—2)Pdy [ o)y +2) [Vor(y)l*dy
lante)) = Jow Vx—0)Bdy g o Vo@Pdy
for any x € Q.. This concludes the proof. O

We are now ready to present the proof of our main results.

PrROOF OF THEOREM 1.1. Let p € (2,2*) and A(p) be given by the Lem-
ma 4.2. For any A > \(p), we can apply Theorem 3.3 and Lemma 4.3 to obtain
T-cato (2 \ Q7) pairs tu; of critical points of the even functional E) restricted
to N verifying

Eyx(fu;) < 2my , < 4my < 2mj,

where we have used Lemma 4.2(a) and Lemma 2.1. It follows from Lemmas 2.2

and 4.1 that +u; are solutions of (P}) which change sign exactly once. O

PROOF OF COROLLARY 1.2. Let 7:RY — RY be given by 7(z) = —z. It

is proved in [9, Corollary 3] that our assumptions imply 7-cat(2) > N. Since

0¢Q, Q" =(. It suffices now to apply Theorem 1.1. O
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