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FIXED POINT RESULTS
FOR GENERALIZED o-CONTRACTION
ON A SET WITH TWO METRICS

TUNDE PETRA PETRU — MONICA BORICEANU

ABSTRACT. The aim of this paper is to present fixed point theorems for

multivalued operators T: X — P(X), on a nonempty set X with two met-

rics d and p, satisfying the following generalized y-contraction condition:
Ho(T(2), T(y)) < o(M" (z,y)), for every z,y € X,

where

MT (z,y) := max{e(z,y), Do(z, T(x)), Do(y, T(y)),
27 Dy (2, T(y)) + Doy, T(2))]}-

1. Introduction

In this paper we will give some local and global fixed point results for multi-
valued generalized p—contractions on a set with two metrics. The multivalued
operator T:Y — Py(X), Y C X will satisfy a generalized y-contraction condi-
tion of the following type:

H,y(T(2),T(y)) < (M7 (x,y)), for every z,y € X,

2000 Mathematics Subject Classification. 47TH10, 54H25, 54C60.
Key words and phrases. Set with two metrics, multivalued operator, fixed point, homotopy
result, data dependence.

©2009 Juliusz Schauder Center for Nonlinear Studies

315



316 T. P. PETRU — M. BORICEANU

where

M7 (z,y) := max{o(z,y), Do(, T(x)), Dy(y, T(y)),
27 [Dy(, T(y)) + Dyly, T(x))]}-
Our results extend and generalize some similar theorems given by Agarwal-
Dshalalow—O’Regan in [1] for the case of a space endowed with a metric, as well

as, the results given in Lazir—O’Regan—Petrusgel [3] for the case of Ciri¢ type
multivalued operator.

2. Notations

Let us consider the following families of subsets of a metric space (X, o):

PX) ={Y e P(X) | Y #0};
Py(X) :={Y € P(X) | Y is bounded};
Py(X) :={Y € P(X) | Y is closed}.

If d is another metric on X we will denote by B, (zo,7) the closure of B,(zo,7)
in (X,d), where By(zo,7r) := {x € X | o(xo,z) < r}. Let us define the gap
functional between the sets A and B in the metric space (X, o) as:

D, P(X) x P(X) = Ry U{oc}, D,(A, B)=inf{o(a,b)|acA, be B}

(in particular, if g € X then D,(xo, B) := D,({zo}, B)) and the (generalized)
Pompeiu—Hausdorff functional as:

H,:P(X) x P(X) — Ry U{oo},

H,(A, B) = max { sup D,(a, B),sup D,(A, b)}
acA beB

Let (X, o) be a metric space. If T: X — P(X) is a multivalued operator, then
z € X is called fixed point for T if and only if z € T(z). The set FixT :=
{r € X |z € T(x)} is called the fixed point set of T, while SFixT = {z € X |
{x} = Tz} is called the strict fixed point set of 7. The operator T is closed if
its graphic is a closed set in X x X. For x,y € X let us denote:

Mg(xvy) = maX{«Q(xuy)» DQ("E’T(i))v DQ(yaT(y))v
27 [Dy(,T(y)) + Dyly, T())]}-

3. Main results

The starting point of our research was the recently given result, a multivalued
version of Maia’s fixed point theorem for multivalued contractions, in [5] by
A. Petrugel and I. A. Rus.
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THEOREM 3.1 (A. Petrusel, I. A. Rus [5]). Let X be a nonempty set, d and
0 two metrics on X and T: X — P(X) be a multivalued operator. We suppose
that:

(i

) (X,d) is a complete metric space;

(ii) there exists ¢ > 0 such that d(x,y) < c¢- o(x,y), for each z,y € X;
) T
)

(i) T:(X,d) — (P(X), Hyq) is closed;
(iv) there exists o € [0,1] such that Hy(T(z),T(y)) < « - o(z,y), for each
z,y € X.

Then we have:
(a) FixT # 0;
(b) for each x € X and each y € T(x) there exists a sequence (Ty)nen such
that:
(bl) zg =z, x1 = y;
(b2) xpy1 € T(xp), n € N;

(b3) xy, Lt e T(x*), as n — oo.

Our first main result is a local version of Cirié’s theorem ([2]) for generalized

(-contractions on a set with two metrics.

THEOREM 3.2. Let X be a nonempty set, xg € X and r > 0. Suppose that d
and o are two metrics on X and F:Ez(xo, r) — P(X) is a multivalued operator.
We suppose that:

(a) (X,d) is a complete metric space;

(b) there exists ¢ > 0 such that d(x,y) < c¢- o(x,y), for each z,y € X;

(c) (cl) if d # o then F:Ei(xo,r) — P(X?) is closed;
(c2) if d = o then F:Ei(xo,r) — Py(X%);

(d) there exists a continuous function :[0,00) — [0,00), with p(t) < t, for
every t > 0, p(0) =0 and ¢ is nondecreasing on (0,r] such that:

3-1) H,(F(x), F(y)) < (M (2,y)),

for every x,y € EZ(Q)(), ), with strict inequality if MgF(a:,y) # 0.

Also assume that:
(3.2) Dy(zo, F(x0)) <1 —(r);

(3.3) Z ©'(t) < oo, forte (0,r—o(r);

(3.4) Z o (r—(r)) < o(r).

Then F has a fixed point.
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PrOOF. If M} (z,y) = 0 for some z,y € EZ(:UO,T) then by Dy(z, F(z)) <
M (z,y) we get that Dy(z, F(z)) = 0 and thus z € F(z)° C F(x)d = F(x).
From (3.2) we may choose x; € F(xp) with

(3.5) o(zo, 1) <7 —p(r)

then z; € EZ(xo,r). We may assume M} (zo,21) # 0, since otherwise z; is a
fixed point, so the proof is complete. If M, QF # 0 then from (3.1) we have that
Hy(F(x0), F(21)) < o(M[ (z0,1)). We may choose £ > 0 with

Hy(F(x0), F(21)) + & < p(Mj (x0,x1)).
Next we choose 2 € F(z1) so that
o(x1,x2) < Hy(F(x0), F(x1)) + €.
It follows that o(z1,z2) < (M (x0,21)). We want to show that

(3.6) o(z1,z2) < p(o(wo, 1))

We have

o(xy,w2) < <P(max{9($o7xl)7Dg(=’17oa F(z0)), Dg(xlvF(‘Tl))a
271Dy (w0, F(x1)) + Dy(1, F(20))]})-
Let

"= maX{Q(x07$1)7DQ(I0,F(.%‘Q)),DQ(.'L‘l,F(xl)),
27 [Dy(wo, F(21)) + Dy(a1, Fx0))]}

If 1 = o(wo,71) then o(x1,72) < w(o(zo,71)). If 71 = Dy(z0, F(70))
then, since D,(zo, F(x0)) < o(zo,x1) we have that o(x1,z2) < @(o(zo, 1))
If v1 = Dy(x1,F(x1)) then if 41 # 0, since zo € F(z1) then p(z1,22) <
o(Dy(x1,F(21))) < Dy(x1, F(21)) < o(21,x2) which is a contradiction. Then
we have that v; = 0 = D,(z1, F(z1)). Thus o(z1,22) < ¢(11) = ¢(0) = 0 and
(3.5) is true. If v; = 27D, (xo, F(21)) + Dy(z1, F(x0))] then:

e if 4 =0 then o(x1,22) < p(71) = ¢(0) = 0 implies that (3.6) is true;

e if 1 # 0 then

1
o(z1,22) <p(n) <m = §[Dg(330,F(fU1)) + Dy(z1, F(0))]
1 1 1
< 5@(3307302) < 5@(330,1‘1) + 5@(3617332) = o(x1,22) < 0(x0,x1).
Then
1 1
n = 5[De(@o, F(21)) + Do(21, F(20))] < 50(20,22)
1 1 1 1
< 59(560,3?1) + 5(9(3617932)) < 59(5607331) + 59(%7%1) = o(zo0,21)



FIXED POINT RESULTS FOR GENERALIZED (p-CONTRACTION 319

which is a contradiction with the definition of 7.
—d
We have that (3.6) is true in all cases. Notice that xo € B,(z0,) since

o(wo, 2) < o(wo, z1) + o(z1,72) < 0(%0,71) + $(0(w0, 1))
<[r =) +er—p(r) <r—o(r) +o(r) =

We may assume that M} (x1,22) # 0 since otherwise we are finished. Now
choose § > 0 such that

H(F(x1), F(2)) + 0 < o(My (21, 22))
and choose x3 € F'(x2) so that
o(za,m3) < H(F(z1), F(x2)) + 4.

Thus o(z2,x3) < (M} (21, 22)). We now show that

(3.7) o(w2,3) < p(o(x1,12)) < *(0(w0, 71))

Indeed, we can notice that

o(w2,23) < p(max{o(z1, z2), Do(21, F'(21)), Dy(z2, F(22)),
27Dy (1, F(22)) 4+ Dy(wa, F(21))]}).

Let

v2 = max{o(x1,x2), Do(x1, F(x1)), Dy(x2, F(22)),
27 [Dy(x1, F(x2)) + Dy(ws, F(21))]}-

If v = o(w1,22) then o(z2,73) < w(o(x1,72)) < ¢?(o(wo, 1)), s0 (3.7) is true.
If 49 = D,(x1, F(21)) then, since D,(x1, F(z1)) < o(x1,2), (3.7) is true again.
If v = D,(x2, F(z2)) and 2 # 0 then, since x3 € F(x2), we will have the
following inequalities

0(z2,23) < ¢(72) <72 = Do(z2, F(72)) < 0(72,73),

which is a contradiction. Thus in this case y5 = D,(x2, F(z2)) = 050 g(z2, 3) <
©(72) = ©(0) = 0 and (3.7) is true. Suppose that vo = 27D, (21, F(z2)) +
Dy(z2, F(x1))]. If 2 = 0 then o(z2,23) < @(v2) = ©(0) = 0 thus (3.7) is

immediate.
If v5 # 0 then
1
o(w2,23) <p(72) <72 = 5[Dy(@1, F(x2)) + Dy(22, F(21))]
1
<o(zr,23) < §Q($1»$2) + 50(5627333)
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1

so 27 o(ze, x3) < 27 p(21, 22). Thus

V2 = 5[Do(@1, F(x2)) + Dy(w2, F(1))]

<

N — N~

1 1
o(ry,23) < 59(931@2) + 59(952,503) < o(z1,72),

which contradicts the definition of «5. Thus in all cases (3.7) is true. Notice

again that x3 € B o(T0,7), since (3.4) implies

o(zo,r3) < o(wo, 1) + 0(71,22) + 0(22,73)
<[r —o(r)] + e(o(zo, 21)) + ©*(o(x0, 1))
<[r—o(r)] +¢(r —o(r) + @*(r — o(r))

<r+ [ ot olr) - otr)| <

_|_
+

Proceeding inductively we obtain x,41 € F(x,) for n € {3,4,...} such that

Q(xn—&-laxn) < @(M@F(xn—laxn))

We assumed without loss of generality that M 5 (Tp—1,2,) # 0. Thus

(3-8) o(@n; nt1) < plo(Tn-1,7n)) < 9" (o(z0, 21))

and x,41 € Ez(l’o, r) forn € {3,4,...}. We want to prove that {x,,} is a Cauchy
sequence. Notice that (3.8) implies

Q(xn-i-pa :En) < Q(zn+p7 xn+p—1) +...4+ Q(l'n+17 xn)

o0

" (o(0, 21)) + - -+ 9" (0(w0, 1)) Z o(zo, 1))

<@
thus (3.3) guarantees that {x,} is a ¢-Cauchy sequence. From (b) we have that
{z,} is a d-Cauchy sequence too. Denote by x € Bg(xo,r) the limit of the
sequence. We can now separate two cases:

o if d # p we have from (a) and (c1) that d(x,,z) — 0, as n — oo, where
z € Fix F. So we have Fix F' # () and the proof is complete.

e if d = p we have that there exists € B,(zo,r) with 2, — x when
n — oo. It only remains to show that x € F(z).

Dy(z, F(z)) <oz, 2n) + Dy(an, F(z))
< Q(xa xn) + HQ(F(xn—1)7F($))
<o(@,zn) + ¢

~—

max{g(xlv‘xQ)a DQ(xl’F(xl))a
), 27 [Dy(a1, F(x2)) + Dy(x2, F(x1))]}).
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Since
Dy(z, F(xn-1)) < o(z,z,) =0,
Dy(xp—1,F(zn_1)) < o(xp_1,2,) — 0,
|Do(n—1, F()) = Dy(, F(x))| < o(wn—1,2) =0,

as n — 0o, we get by letting n — oo that

Dy(z, F(z)) = 0+ p(max{0,0, D,(x, F(x)),27 Dy(z, F(2))}).

Thus D,(z, F(z)) =0, so z € F(z) = F(x). The proof is now complete. O

REMARK 3.3. It is known that if X is a Banach space, then a fixed point
theorem for T: B(zg,7) — Pq(X) induces domain invariance theorems for the
field associated to T' (i.e. G(x) = x—T(x)) see [4], as well as, homotopy theorems
for multivalued operators (see [3]). From this point of view, it is an open question
to obtain such consequences for our multivalued generalized (-contractions. For
a homotopy result see Theorem 3.7.

We continue the section with a global version of Cirié¢’s theorem ([2]) for
generalized (p-contractions on a set with two metrics.

THEOREM 3.4. Let X be a nonempty set, v > 0. Suppose that d and o are
two metrics on X and F: X — P(X) is a multivalued operator. We suppose
that:

(a) (X,d) is a complete metric space;

(b) there exists ¢ > 0 such that d(x,y) < c- o(x,y), for each xz,y € X;

(c) if d # o then F: X% — P(X?) is closed;
if d = o then F: X% — Py(X9);

(d) there exists a continuous function ¢:[0,00) — [0,00), with p(t) < t, for
every t > 0, (0) = 0 and ¢ is nondecreasing on (0,r] such that:

(3.9) Hy(F(x), F(y)) < (M, (z,y)),

for every x,y € X, with strict inequality if Mg(x, y) # 0.

Also assume that:
(3.10) Z(pi(t) < oo, forte (0,r]
i=0

Then F has a fixed point.
PROOF. We claim that we can choose z¢ € X and z1 € F(xg) such that:
(3.11) o1, 7o) <7

If (3.11) is true then, as in the proof of theorem Theorem 3.2, we can choose
Tny1 € F(z,) for n € {1,2,...} with o(zn,Tnt1) < @(Mj(mn,xnﬂ)) <
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©"(o(x0,21)). The same reasonings guarantees that {x,} is a d-Cauchy se-
quence, so there exists € X with d(z,,x) — 0, as n — oco. Thus in Theo-
rem 3.2 we have that € F(x). It remains to show (3.11). If we are in the case
when ¢ is nondecreasing on (0, 00) then (3.11) is satisfied. We can observe that
(3.11) is immediate if we could show

(3.12) 1é1§( Dy(z,F(z)) =0

since if (3.12) is true then there exists € X with D,(z, F(x)) < 7, so there
exists y € F(x) with o(z,y) < r. Suppose that (3.12) is false, i.e. suppose

(3.13) 1g’(D (z,F(x)) =4.

Since ¢(0) < 0 and ¢ is continuous we have that there exists e > 0 such that
(3.14) p(t) <d forteldd+e).

We can choose v € X such that 6 < D,(v, F(v)) < 0 +¢. Then there exists
y € F(v) such that

(3.15) §<o(v,y) <é+e.
Thus
Do(y, F(y)) < Ho(F(v), F(y)) < p(max{o(v,y), Do(v, F(v)),
Dy(y, F(y)), 27 [Dg(v, F(y)) + Dyo(y, F(v))]}).
Let
v = max{e(v,y), Dy(v, F(v)), Do(y, F()), 27 [D,(v, F(y)) + Dy(y, F(v))]}-
If v = o(v,y) then (3.14) and (3.15) yields
Do(y, F(y)) < ¢(e(v,y)) < 0.
If v = D,(v, F(v)) then (3.14) and (3.15) also yields
Dy(y, F(y)) < ¢(Dy(v, F(v))) < 6.
If v = D,(y, F(y)) then v = 0 since if v # 0 then
Dy(y, F(y)) < ¢(Dy(y, F(y))) < Doly, F(y)),

which is a contradiction.
If v = 27Dy (v, F(y)) + D,(y, F(v))] and v # 0 then

Dy(y, F(y) < (1) =7 = 3[Do(v, F(9)) + Dyly, F(0)]

<27 o(v,y) + Dy(y, F(y)) 4+ 0] = 27 [o(v,y) + Dy(y, F())]
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so 271 D,(y,F(y)) < 271 o(y,v). Thus
1

7 =5[De(v, F(y)) + Doy, F(v))]

< 5l0v,1) + Dol FW)] < 3 - 0lu,v) + 5 - oy v) = olyv),

1

2 2

which contradicts the definition of v. So we have proved that in this case v =0
which implies D,(y, F(y)) < ¢(7) = ¢(0) = 0. We can notice that in all cases

we have D,(y, F'(y)) < 6 which contradicts (3.13). Thus (3.12) is true. O

REMARK 3.5. Some examples of functions ¢ are:
o(t) = at, for a € ]0,1),

o(t) for t € R;.

R

Hence, our previous results generalise and extend theorems from [1], [3], [5].
In the following we will give a data dependence theorem.

THEOREM 3.6. Let X be a nonempty set. Suppose that d and o are two
metrics on X and T, F: X — P(X) are two multivalued operators. We suppose
that:

(a) (X,d) is a complete metric space;

(b) there exists ¢ > 0 such that d(x,y) < c- o(x,y), for each x,y € X ;

(c) ifd# o then T, F: X — P(X?) are closed;
ifd=o then T, F: X — Py(X%);

(d) there exists a continuous function ¢:[0,00) — [0,00), with ¢(t) < t, for
every t > 0, p(0) =0 and ¢ is nondecreasing such that:

Ho(T(x),T(y) < (M (z,y)),  Ho(F(x),F(y)) < o(M} (x,9)),

for every x,y € X, with strict inequality if M(x,y) # 0;
(e) Also assume that:

aft) ==Y ¢'(t) < o,
1=0

and a is continuous on (0,400);
(f) there exists n > 0 such that

(3.16) H,(T(z),F(z)) <mn, for everyz e X.

Then Hy(FixT,Fix F) < ¢ - a(n).

PROOF. Let zg € FixT be arbitrary chosen. We will prove that there exists
y* € Fix F such that d(xo,y*) < c¢-a(n). From Theorem 3.2 we can choose
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a Cauchy sequence {y,} starting from yo = x¢ and y, 4, y*, as n — oo,
y* € F(y*) with
o0
0Wntpryn) < D @' (0(yo, 11)).

1=n

Thus we have that

AWYntp Un) < € 0Unipryn) <> ' (0(yo, 11)).
1=1

Since yo = xo € FixT we have that yo € T'(yo). Thus from (3.16) for x = yo and
for every ¢ > 1 we have that there exists y; € F(yp) such that

0(yo,y1) < q- Hy(T'(y0), F(v0)) < g 1.

Since {y,, } is a Cauchy sequence we have that d(ypn+p, Yn) — d(¥*,yn), asp — oo,
so we have the following inequality:

Ay yn) < ¢ Y @' (oo, ) <> ¢ (q-n) = c-alqn).
i=0 i=0
For n = 0 we have that d(y*,y0) < c¢-a(q-n). Letting ¢ — 1 we get that
d(y*,y0) < ¢-a(n). By a similar procedure we obtain that for each 2y € Fix F’
there exists * € Fix T such that d(zg,2*) < ca(n). The proof is complete. [

In what follows we will obtain a homotopy result via Zorn’s Lemma.

THEOREM 3.7. Let (X,d) be a complete metric space and o another metric
on X such that there exists ¢ > 0 with d(z,y) < c¢- o(z,y), for each x,y € X.
Let U be an open subset of (X,0), V be a closed subset of (X,d) with U C V
and rg > 0. Let G:V x [0,1] — P(X) be a multivalued operator such that the
following conditions are satisfied:
(a) = ¢ G(z,t), for each x € V\ U and each t € [0,1];
(b) there exists ro > 0 and a continuous function ¢:[0,00) — [0,00), with
©(z) < z, for every z > 0, ©(0) = 0 and ¢ is nondecreasing on (0,71¢]
such that:

HQ(G(x7t)7G(yat)) S @(Mg(.7t)(xvy))a

for every x,y € X with strict inequality if Mf("t)(x, y) # 0;
(c) there exists a continuous increasing function 1:[0,1] — R such that

HQ(G(xv t)a G(ya t)) < W(t) - 7/)(3)|,
for all t,s € [0,1] and each x € V;
(d) G:V?x[0,1] — P(X?) is closed;

(e) ¢:]0,00) — [0,00) is strictly increasing (here ¢(z) = x — p(x));
(f) o= a) +o71(b) <o~ a+b), fora>0,b>0;
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(g) Zzo (pl(t) < 00, fO’f' te (077.0 - @(TO)]!’
(h) 32521 #'(ro — ¢(r0)) < @(ro).
Then G(-,0) has a fixed point if and only if G(-,1) has a fixed point.

PROOF. Suppose G(-,0) has a fixed point z. Thus from (a) we have that

z € U. Define
Q={tx)e€0,1] xU |z e G(z,t)}.
We can notice that @ # 0, since (0,z2) € Q.

We will consider on @ a partial order defined as follows (t,z) < (s,y) if and
only if t < s and o(z,y) < ¢~ 1(2[t)(s) —1(t)]). Let M be a totally ordered subset
of @ and consider t* = sup{t | (t,2) € M}. Consider a sequence (t, Tn)nen+ C
M such that (t,,z,) < (i1, Tny1) and ¢, — t* as n — oo. Then o(m, x,) <
&7 1(2[(tm) — ¥(tn)]), for each m,n € N*, m > n.

When m,n — oo we obtain o(Z;,,x,) — 0, thus (z,)nen- is o-Cauchy.
So (xp)nen+ is d-Cauchy too. We will denote by z* € (X,d) its limit. Since
Ty € G(Tp,tn), n € N* and condition (d) we have that z* € G(z*,t*). Also,
from (a) we have that 2* € U. Hence (t*,2*) € Q. Since M is totally ordered
we get (t,x) < (t*,2*), for each (t,x) € M. Thus (t*,2*) is an upper bound
of M. By applying Zorn’s Lemma we obtain that ) admits a maximal element
(to,z0) € Q.

We will prove that tg = 1. Suppose that tg < 1. Choose r > 0 with r < r
and t € Jtg,1] such that B,(zo,r) C U, and 7 := ¢~ *(2[¢(t) — ¥(to)]). Then
from condition (c) we have

DQ(I’(), G(IQ, t)) S DQ(I’(), G(:L'(], to)) + HQ(G(I(), to), G(Io, t))
o(r
<[wito) ~v(0) < 27 < 6() = r — (0.
Since EZ(J:O,T) C V, the multivalued operator G( - ,t):EZ(xo, r) — P(X?) sat-
isfies for all ¢ € [0, 1] the assumptions of Theorem 3.2. Hence, for all ¢ € [0, 1]
there exists x € EZ(mo,r) such that z € G(z,t). Thus (t,x) € Q. Since ty < t
and o(zo, ) < r = ¢ 1(2[1(t) — ¥(to)]) we obtain that (tg,z¢) < (¢,z). This
contradicts the maximality of (¢g,x0). For the reverse implication, just put
t:=1—t. ]
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