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FIXED POINT RESULTS
FOR GENERALIZED ϕ-CONTRACTION

ON A SET WITH TWO METRICS

Tünde Petra Petru — Monica Boriceanu

Abstract. The aim of this paper is to present fixed point theorems for
multivalued operators T : X → P (X), on a nonempty set X with two met-

rics d and %, satisfying the following generalized ϕ-contraction condition:

H%(T (x), T (y)) ≤ ϕ(MT (x, y)), for every x, y ∈ X,

where

MT (x, y) := max{%(x, y), D%(x, T (x)), D%(y, T (y)),

2−1[D%(x, T (y)) + D%(y, T (x))]}.

1. Introduction

In this paper we will give some local and global fixed point results for multi-
valued generalized ϕ−contractions on a set with two metrics. The multivalued
operator T :Y → Pcl(X), Y ⊂ X will satisfy a generalized ϕ-contraction condi-
tion of the following type:

H%(T (x), T (y)) ≤ ϕ(MT (x, y)), for every x, y ∈ X,
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where

MT (x, y) := max{%(x, y), D%(x, T (x)), D%(y, T (y)),

2−1[D%(x, T (y)) +D%(y, T (x))]}.

Our results extend and generalize some similar theorems given by Agarwal–
Dshalalow–O’Regan in [1] for the case of a space endowed with a metric, as well
as, the results given in Lazăr–O’Regan–Petruşel [3] for the case of Ćirić type
multivalued operator.

2. Notations

Let us consider the following families of subsets of a metric space (X, %):

P (X) := {Y ∈ P(X) | Y 6= ∅};
Pb(X) := {Y ∈ P (X) | Y is bounded};
Pcl(X) := {Y ∈ P (X) | Y is closed}.

If d is another metric on X we will denote by B
d

%(x0, r) the closure of B%(x0, r)
in (X, d), where B%(x0, r) := {x ∈ X | %(x0, x) < r}. Let us define the gap
functional between the sets A and B in the metric space (X, %) as:

D%:P (X)× P (X) → R+ ∪ {∞}, D%(A,B) = inf{%(a, b) | a ∈ A, b ∈ B}

(in particular, if x0 ∈ X then D%(x0, B) := D%({x0}, B)) and the (generalized)
Pompeiu–Hausdorff functional as:

H%:P (X)× P (X) → R+ ∪ {∞},

H%(A,B) = max
{

sup
a∈A

D%(a,B), sup
b∈B

D%(A, b)
}
.

Let (X, %) be a metric space. If T :X → P (X) is a multivalued operator, then
x ∈ X is called fixed point for T if and only if x ∈ T (x). The set FixT :=
{x ∈ X | x ∈ T (x)} is called the fixed point set of T , while SFixT = {x ∈ X |
{x} = Tx} is called the strict fixed point set of T . The operator T is closed if
its graphic is a closed set in X ×X. For x, y ∈ X let us denote:

MT
% (x, y) = max{%(x, y), D%(x, T (x)), D%(y, T (y)),

2−1[D%(x, T (y)) +D%(y, T (x))]}.

3. Main results

The starting point of our research was the recently given result, a multivalued
version of Maia’s fixed point theorem for multivalued contractions, in [5] by
A. Petruşel and I. A. Rus.
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Theorem 3.1 (A. Petruşel, I. A. Rus [5]). Let X be a nonempty set, d and
% two metrics on X and T :X → P (X) be a multivalued operator. We suppose
that:

(i) (X, d) is a complete metric space;
(ii) there exists c > 0 such that d(x, y) ≤ c · %(x, y), for each x, y ∈ X;
(iii) T : (X, d) → (P (X),Hd) is closed;
(iv) there exists α ∈ [0, 1[ such that H%(T (x), T (y)) ≤ α · %(x, y), for each

x, y ∈ X.

Then we have:

(a) FixT 6= ∅;
(b) for each x ∈ X and each y ∈ T (x) there exists a sequence (xn)n∈N such

that:
(b1) x0 = x, x1 = y;
(b2) xn+1 ∈ T (xn), n ∈ N;
(b3) xn

d−→ x∗ ∈ T (x∗), as n→∞.

Our first main result is a local version of Ćirić’s theorem ([2]) for generalized
ϕ-contractions on a set with two metrics.

Theorem 3.2. Let X be a nonempty set, x0 ∈ X and r > 0. Suppose that d
and % are two metrics on X and F :B

d

%(x0, r) → P (X) is a multivalued operator.
We suppose that:

(a) (X, d) is a complete metric space;
(b) there exists c > 0 such that d(x, y) ≤ c · %(x, y), for each x, y ∈ X;
(c) (c1) if d 6= % then F :B

d

%(x0, r) → P (Xd) is closed;

(c2) if d = % then F :B
d

%(x0, r) → Pcl(Xd);
(d) there exists a continuous function ϕ: [0,∞) → [0,∞), with ϕ(t) < t, for

every t > 0, ϕ(0) = 0 and ϕ is nondecreasing on (0, r] such that:

(3.1) H%(F (x), F (y)) ≤ ϕ(MF
% (x, y)),

for every x, y ∈ Bd

%(x0, r), with strict inequality if MF
% (x, y) 6= 0.

Also assume that:

D%(x0, F (x0)) < r − ϕ(r);(3.2)
∞∑

i=0

ϕi(t) <∞, for t ∈ (0, r − ϕ(r)];(3.3)

∞∑
i=1

ϕi(r − ϕ(r)) ≤ ϕ(r).(3.4)

Then F has a fixed point.
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Proof. If MF
% (x, y) = 0 for some x, y ∈ B

d

%(x0, r) then by D%(x, F (x)) ≤
MF

% (x, y) we get that D%(x, F (x)) = 0 and thus x ∈ F (x)
%
⊆ F (x)

d
= F (x).

From (3.2) we may choose x1 ∈ F (x0) with

(3.5) %(x0, x1) < r − ϕ(r)

then x1 ∈ B
d

%(x0, r). We may assume MF
% (x0, x1) 6= 0, since otherwise x1 is a

fixed point, so the proof is complete. If MF
% 6= 0 then from (3.1) we have that

H%(F (x0), F (x1)) < ϕ(MF
% (x0, x1)). We may choose ε > 0 with

H%(F (x0), F (x1)) + ε ≤ ϕ(MF
% (x0, x1)).

Next we choose x2 ∈ F (x1) so that

%(x1, x2) ≤ H%(F (x0), F (x1)) + ε.

It follows that %(x1, x2) ≤ ϕ(MF
% (x0, x1)). We want to show that

(3.6) %(x1, x2) ≤ ϕ(%(x0, x1)).

We have

%(x1, x2) ≤ ϕ(max{%(x0, x1), D%(x0, F (x0)), D%(x1, F (x1)),

2−1[D%(x0, F (x1)) +D%(x1, F (x0))]}).

Let

γ1 = max{%(x0, x1), D%(x0, F (x0)), D%(x1, F (x1)),

2−1[D%(x0, F (x1)) +D%(x1, F (x0))]}

If γ1 = %(x0, x1) then %(x1, x2) ≤ ϕ(%(x0, x1)). If γ1 = D%(x0, F (x0))
then, since D%(x0, F (x0)) ≤ %(x0, x1) we have that %(x1, x2) ≤ ϕ(%(x0, x1)).
If γ1 = D%(x1, F (x1)) then if γ1 6= 0, since x2 ∈ F (x1) then %(x1, x2) ≤
ϕ(D%(x1, F (x1))) < D%(x1, F (x1)) ≤ %(x1, x2) which is a contradiction. Then
we have that γ1 = 0 = D%(x1, F (x1)). Thus %(x1, x2) ≤ ϕ(γ1) = ϕ(0) = 0 and
(3.5) is true. If γ1 = 2−1[D%(x0, F (x1)) +D%(x1, F (x0))] then:

• if γ1 = 0 then %(x1, x2) ≤ ϕ(γ1) = ϕ(0) = 0 implies that (3.6) is true;
• if γ1 6= 0 then

%(x1, x2) ≤ϕ(γ1) < γ1 =
1
2
[D%(x0, F (x1)) +D%(x1, F (x0))]

≤ 1
2
%(x0, x2) ≤

1
2
%(x0, x1) +

1
2
%(x1, x2) ⇒ %(x1, x2) < %(x0, x1).

Then

γ1 =
1
2
[D%(x0, F (x1)) +D%(x1, F (x0))] ≤

1
2
%(x0, x2)

≤ 1
2
%(x0, x1) +

1
2
(%(x1, x2)) <

1
2
%(x0, x1) +

1
2
%(x0, x1) = %(x0, x1)
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which is a contradiction with the definition of γ1.
We have that (3.6) is true in all cases. Notice that x2 ∈ B

d

%(x0, r) since

%(x0, x2) ≤ %(x0, x1) + %(x1, x2) ≤ %(x0, x1) + ϕ(%(x0, x1))

< [r − ϕ(r)] + ϕ(r − ϕ(r)) ≤ r − φ(r) + ϕ(r) = r.

We may assume that MF
% (x1, x2) 6= 0 since otherwise we are finished. Now

choose δ > 0 such that

H(F (x1), F (x2)) + δ ≤ ϕ(MF
% (x1, x2))

and choose x3 ∈ F (x2) so that

%(x2, x3) ≤ H(F (x1), F (x2)) + δ.

Thus %(x2, x3) ≤ ϕ(MF
% (x1, x2)). We now show that

(3.7) %(x2, x3) ≤ ϕ(%(x1, x2)) ≤ ϕ2(%(x0, x1))

Indeed, we can notice that

%(x2, x3) ≤ ϕ(max{%(x1, x2), D%(x1, F (x1)), D%(x2, F (x2)),

2−1[D%(x1, F (x2)) +D%(x2, F (x1))]}).

Let

γ2 = max{%(x1, x2), D%(x1, F (x1)), D%(x2, F (x2)),

2−1[D%(x1, F (x2)) +D%(x2, F (x1))]}.

If γ2 = %(x1, x2) then %(x2, x3) ≤ ϕ(%(x1, x2)) ≤ ϕ2(%(x0, x1)), so (3.7) is true.
If γ2 = D%(x1, F (x1)) then, since D%(x1, F (x1)) ≤ %(x1, x2), (3.7) is true again.
If γ2 = D%(x2, F (x2)) and γ2 6= 0 then, since x3 ∈ F (x2), we will have the
following inequalities

%(x2, x3) ≤ ϕ(γ2) < γ2 = D%(x2, F (x2)) ≤ %(x2, x3),

which is a contradiction. Thus in this case γ2 = D%(x2, F (x2)) = 0 so %(x2, x3) ≤
ϕ(γ2) = ϕ(0) = 0 and (3.7) is true. Suppose that γ2 = 2−1[D%(x1, F (x2)) +
D%(x2, F (x1))]. If γ2 = 0 then %(x2, x3) ≤ ϕ(γ2) = ϕ(0) = 0 thus (3.7) is
immediate.

If γ2 6= 0 then

%(x2, x3) ≤ϕ(γ2) < γ2 =
1
2
[D%(x1, F (x2)) +D%(x2, F (x1))]

≤ %(x1, x3) ≤
1
2
%(x1, x2) +

1
2
%(x2, x3)



320 T. P. Petru — M. Boriceanu

so 2−1%(x2, x3) ≤ 2−1%(x1, x2). Thus

γ2 =
1
2
[D%(x1, F (x2)) +D%(x2, F (x1))]

≤ 1
2
%(x1, x3) ≤

1
2
%(x1, x2) +

1
2
%(x2, x3) < %(x1, x2),

which contradicts the definition of γ2. Thus in all cases (3.7) is true. Notice
again that x3 ∈ B

d

%(x0, r), since (3.4) implies

%(x0, x3) ≤ %(x0, x1) + %(x1, x2) + %(x2, x3)

≤ [r − ϕ(r)] + ϕ(%(x0, x1)) + ϕ2(%(x0, x1))

< [r − ϕ(r)] + ϕ(r − ϕ(r)) + ϕ2(r − ϕ(r))

≤ r +
[ ∞∑

i=1

ϕj(r − ϕ(r))− ϕ(r)
]
≤ r.

Proceeding inductively we obtain xn+1 ∈ F (xn) for n ∈ {3, 4, . . . } such that

%(xn+1, xn) ≤ ϕ(MF
% (xn−1, xn)).

We assumed without loss of generality that MF
% (xn−1, xn) 6= 0. Thus

(3.8) %(xn, xn+1) ≤ ϕ(%(xn−1, xn)) ≤ ϕn(%(x0, x1))

and xn+1 ∈ B
d

%(x0, r) for n ∈ {3, 4, . . . }. We want to prove that {xn} is a Cauchy
sequence. Notice that (3.8) implies

%(xn+p, xn) ≤ %(xn+p, xn+p−1) + . . .+ %(xn+1, xn)

≤ϕn+p−1(%(x0, x1)) + . . .+ ϕn(%(x0, x1)) ≤
∞∑

j=n

ϕj(%(x0, x1)),

thus (3.3) guarantees that {xn} is a %-Cauchy sequence. From (b) we have that
{xn} is a d-Cauchy sequence too. Denote by x ∈ Bd

%(x0, r) the limit of the
sequence. We can now separate two cases:

• if d 6= % we have from (a) and (c1) that d(xn, x) → 0, as n→∞, where
x ∈ FixF . So we have FixF 6= ∅ and the proof is complete.

• if d = % we have that there exists x ∈ B
d

%(x0, r) with xn → x when
n→∞. It only remains to show that x ∈ F (x).

D%(x, F (x)) ≤ %(x, xn) +D%(xn, F (x))

≤ %(x, xn) +H%(F (xn−1), F (x))

≤ %(x, xn) + ϕ(max{%(x1, x2), D%(x1, F (x1)),

D%(x2, F (x2)), 2−1[D%(x1, F (x2)) +D%(x2, F (x1))]}).
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Since

D%(x, F (xn−1)) ≤ %(x, xn) → 0,

D%(xn−1, F (xn−1)) ≤ %(xn−1, xn) → 0,

|D%(xn−1, F (x))−D%(x, F (x))| ≤ %(xn−1, x) → 0,

as n→∞, we get by letting n→∞ that

D%(x, F (x)) = 0 + ϕ(max{0, 0, D%(x, F (x)), 2−1D%(x, F (x))}).

Thus D%(x, F (x)) = 0, so x ∈ F (x) = F (x). The proof is now complete. �

Remark 3.3. It is known that if X is a Banach space, then a fixed point
theorem for T :B(x0, r) → Pcl(X) induces domain invariance theorems for the
field associated to T (i.e. G(x) = x−T (x)) see [4], as well as, homotopy theorems
for multivalued operators (see [3]). From this point of view, it is an open question
to obtain such consequences for our multivalued generalized ϕ-contractions. For
a homotopy result see Theorem 3.7.

We continue the section with a global version of Ćirić’s theorem ([2]) for
generalized ϕ-contractions on a set with two metrics.

Theorem 3.4. Let X be a nonempty set, r > 0. Suppose that d and % are
two metrics on X and F :X → P (X) is a multivalued operator. We suppose
that:

(a) (X, d) is a complete metric space;
(b) there exists c > 0 such that d(x, y) ≤ c · %(x, y), for each x, y ∈ X;
(c) if d 6= % then F :Xd → P (Xd) is closed;

if d = % then F :Xd → Pcl(Xd);
(d) there exists a continuous function ϕ: [0,∞) → [0,∞), with ϕ(t) < t, for

every t > 0, ϕ(0) = 0 and ϕ is nondecreasing on (0, r] such that:

(3.9) H%(F (x), F (y)) ≤ ϕ(MF
% (x, y)),

for every x, y ∈ X, with strict inequality if MF
% (x, y) 6= 0.

Also assume that:

(3.10)
∞∑

i=0

ϕi(t) <∞, for t ∈ (0, r].

Then F has a fixed point.

Proof. We claim that we can choose x0 ∈ X and x1 ∈ F (x0) such that:

(3.11) %(x1, x0) < r.

If (3.11) is true then, as in the proof of theorem Theorem 3.2, we can choose
xn+1 ∈ F (xn) for n ∈ {1, 2, . . . } with %(xn, xn+1) ≤ ϕ(MF

% (xn, xn+1)) ≤
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ϕn(%(x0, x1)). The same reasonings guarantees that {xn} is a d-Cauchy se-
quence, so there exists x ∈ X with d(xn, x) → 0, as n → ∞. Thus in Theo-
rem 3.2 we have that x ∈ F (x). It remains to show (3.11). If we are in the case
when ϕ is nondecreasing on (0,∞) then (3.11) is satisfied. We can observe that
(3.11) is immediate if we could show

(3.12) inf
x∈X

D%(x, F (x)) = 0

since if (3.12) is true then there exists x ∈ X with D%(x, F (x)) < r, so there
exists y ∈ F (x) with %(x, y) < r. Suppose that (3.12) is false, i.e. suppose

(3.13) inf
x∈X

D%(x, F (x)) = δ.

Since ϕ(δ) < δ and ϕ is continuous we have that there exists ε > 0 such that

(3.14) ϕ(t) < δ for t ∈ [δ, δ + ε).

We can choose v ∈ X such that δ ≤ D%(v, F (v)) < δ + ε. Then there exists
y ∈ F (v) such that

(3.15) δ ≤ %(v, y) < δ + ε.

Thus

D%(y, F (y)) ≤ H%(F (v), F (y)) ≤ ϕ(max{%(v, y), D%(v, F (v)),

D%(y, F (y)), 2−1[D%(v, F (y)) +D%(y, F (v))]}).

Let

γ = max{%(v, y), D%(v, F (v)), D%(y, F (y)), 2−1[D%(v, F (y)) +D%(y, F (v))]}.

If γ = %(v, y) then (3.14) and (3.15) yields

D%(y, F (y)) ≤ ϕ(%(v, y)) < δ.

If γ = D%(v, F (v)) then (3.14) and (3.15) also yields

D%(y, F (y)) ≤ ϕ(D%(v, F (v))) < δ.

If γ = D%(y, F (y)) then γ = 0 since if γ 6= 0 then

D%(y, F (y)) ≤ ϕ(D%(y, F (y))) < D%(y, F (y)),

which is a contradiction.
If γ = 2−1[D%(v, F (y)) +D%(y, F (v))] and γ 6= 0 then

D%(y, F (y)) ≤ϕ(γ) = γ =
1
2
[D%(v, F (y)) +D%(y, F (v))]

≤ 2−1[%(v, y) +D%(y, F (y)) + 0] = 2−1[%(v, y) +D%(y, F (y))]
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so 2−1 ·D%(y, F (y)) ≤ 2−1 · %(y, v). Thus

γ =
1
2
[D%(v, F (y)) +D%(y, F (v))]

≤ 1
2
[%(v, y) +D%(y, F (y))] <

1
2
· %(y, v) +

1
2
· %(y, v) = %(y, v),

which contradicts the definition of γ. So we have proved that in this case γ = 0
which implies D%(y, F (y)) ≤ ϕ(γ) = ϕ(0) = 0. We can notice that in all cases
we have D%(y, F (y)) ≤ δ which contradicts (3.13). Thus (3.12) is true. �

Remark 3.5. Some examples of functions ϕ are:

ϕ(t) = at, for a ∈ [0, 1),

ϕ(t) =
t

1 + t
, for t ∈ R+.

Hence, our previous results generalise and extend theorems from [1], [3], [5].

In the following we will give a data dependence theorem.

Theorem 3.6. Let X be a nonempty set. Suppose that d and % are two
metrics on X and T, F :X → P (X) are two multivalued operators. We suppose
that:

(a) (X, d) is a complete metric space;
(b) there exists c > 0 such that d(x, y) ≤ c · %(x, y), for each x, y ∈ X;
(c) if d 6= % then T, F :X → P (Xd) are closed;

if d = % then T, F :X → Pcl(Xd);
(d) there exists a continuous function ϕ: [0,∞) → [0,∞), with ϕ(t) < t, for

every t > 0, ϕ(0) = 0 and ϕ is nondecreasing such that:

H%(T (x), T (y)) ≤ ϕ(MT
% (x, y)), H%(F (x), F (y)) ≤ ϕ(MF

% (x, y)),

for every x, y ∈ X, with strict inequality if M(x, y) 6= 0;
(e) Also assume that:

a(t) :=
∞∑

i=0

ϕi(t) <∞,

and a is continuous on (0,+∞);
(f) there exists η > 0 such that

(3.16) H%(T (x), F (x)) ≤ η, for every x ∈ X.

Then Hd(FixT,FixF ) ≤ c · a(η).

Proof. Let x0 ∈ FixT be arbitrary chosen. We will prove that there exists
y∗ ∈ FixF such that d(x0, y

∗) ≤ c · a(η). From Theorem 3.2 we can choose
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a Cauchy sequence {yn} starting from y0 = x0 and yn
d−→ y∗, as n → ∞,

y∗ ∈ F (y∗) with

%(yn+p, yn) ≤
∞∑

i=n

ϕi(%(y0, y1)).

Thus we have that

d(yn+p, yn) ≤ c · %(yn+p, yn) ≤ c ·
∞∑

i=1

ϕi(%(y0, y1)).

Since y0 = x0 ∈ FixT we have that y0 ∈ T (y0). Thus from (3.16) for x = y0 and
for every q > 1 we have that there exists y1 ∈ F (y0) such that

%(y0, y1) ≤ q ·H%(T (y0), F (y0)) ≤ q · η.

Since {yn} is a Cauchy sequence we have that d(yn+p, yn) → d(y∗, yn), as p→∞,
so we have the following inequality:

d(y∗, yn) ≤ c ·
∞∑

i=0

ϕi(%(y0, y1)) ≤ c ·
∞∑

i=0

ϕi(q · η) = c · a(qη).

For n = 0 we have that d(y∗, y0) ≤ c · a(q · η). Letting q → 1 we get that
d(y∗, y0) ≤ c · a(η). By a similar procedure we obtain that for each x0 ∈ FixF
there exists x∗ ∈ FixT such that d(x0, x

∗) ≤ ca(η). The proof is complete. �

In what follows we will obtain a homotopy result via Zorn’s Lemma.

Theorem 3.7. Let (X, d) be a complete metric space and % another metric
on X such that there exists c > 0 with d(x, y) ≤ c · %(x, y), for each x, y ∈ X.
Let U be an open subset of (X, %), V be a closed subset of (X, d) with U ⊂ V

and r0 > 0. Let G:V × [0, 1] → P (X) be a multivalued operator such that the
following conditions are satisfied:

(a) x /∈ G(x, t), for each x ∈ V \ U and each t ∈ [0, 1];
(b) there exists r0 > 0 and a continuous function ϕ: [0,∞) → [0,∞), with

ϕ(z) < z, for every z > 0, ϕ(0) = 0 and ϕ is nondecreasing on (0, r0]
such that:

H%(G(x, t), G(y, t)) ≤ ϕ(MG( · ,t)
% (x, y)),

for every x, y ∈ X with strict inequality if MG( · ,t)
% (x, y) 6= 0;

(c) there exists a continuous increasing function ψ: [0, 1] → R such that

H%(G(x, t), G(y, t)) ≤ |ψ(t)− ψ(s)|,

for all t, s ∈ [0, 1] and each x ∈ V ;
(d) G:V d × [0, 1] → P (Xd) is closed;
(e) φ: [0,∞) → [0,∞) is strictly increasing (here φ(x) = x− ϕ(x));
(f) φ−1(a) + φ−1(b) ≤ φ−1(a+ b), for a ≥ 0, b ≥ 0;
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(g)
∑∞

i=0 ϕ
i(t) <∞, for t ∈ (0, r0 − ϕ(r0)];

(h)
∑∞

i=1 ϕ
i(r0 − ϕ(r0)) ≤ ϕ(r0).

Then G( · , 0) has a fixed point if and only if G( · , 1) has a fixed point.

Proof. Suppose G( · , 0) has a fixed point z. Thus from (a) we have that
z ∈ U . Define

Q = {(t, x) ∈ [0, 1]× U | x ∈ G(x, t)}.

We can notice that Q 6= ∅, since (0, z) ∈ Q.
We will consider on Q a partial order defined as follows (t, x) ≤ (s, y) if and

only if t ≤ s and %(x, y) ≤ φ−1(2[ψ(s)−ψ(t)]). Let M be a totally ordered subset
of Q and consider t∗ = sup{t | (t, x) ∈ M}. Consider a sequence (tn, xn)n∈N∗ ⊂
M such that (tn, xn) ≤ (tn+1, xn+1) and tn → t∗ as n→∞. Then %(xm, xn) ≤
φ−1(2[ψ(tm)− ψ(tn)]), for each m,n ∈ N∗, m > n.

When m,n → ∞ we obtain %(xm, xn) → 0, thus (xn)n∈N∗ is %-Cauchy.
So (xn)n∈N∗ is d-Cauchy too. We will denote by x∗ ∈ (X, d) its limit. Since
xn ∈ G(xn, tn), n ∈ N∗ and condition (d) we have that x∗ ∈ G(x∗, t∗). Also,
from (a) we have that x∗ ∈ U . Hence (t∗, x∗) ∈ Q. Since M is totally ordered
we get (t, x) ≤ (t∗, x∗), for each (t, x) ∈ M . Thus (t∗, x∗) is an upper bound
of M . By applying Zorn’s Lemma we obtain that Q admits a maximal element
(t0, x0) ∈ Q.

We will prove that t0 = 1. Suppose that t0 < 1. Choose r > 0 with r ≤ r0
and t ∈ ]t0, 1] such that B%(x0, r) ⊂ U , and r := φ−1(2[ψ(t) − ψ(t0)]). Then
from condition (c) we have

D%(x0, G(x0, t)) ≤D%(x0, G(x0, t0)) +H%(G(x0, t0), G(x0, t))

≤ |ψ(t0)− ψ(t)| ≤ φ(r)
2

< φ(r) = r − ϕ(r).

Since B
d

%(x0, r) ⊂ V , the multivalued operator G( · , t):Bd

%(x0, r) → P (Xd) sat-
isfies for all t ∈ [0, 1] the assumptions of Theorem 3.2. Hence, for all t ∈ [0, 1]
there exists x ∈ B

d

%(x0, r) such that x ∈ G(x, t). Thus (t, x) ∈ Q. Since t0 < t

and %(x0, x) ≤ r = φ−1(2[ψ(t) − ψ(t0)]) we obtain that (t0, x0) < (t, x). This
contradicts the maximality of (t0, x0). For the reverse implication, just put
t := 1− t. �
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