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ON SOME RESONANT BOUNDARY VALUE PROBLEM
ON AN INFINITE INTERVAL

KATARZYNA SZYMANSKA-DEBOWSKA

ABSTRACT. The existence of at least one solution to a nonlinear second
order differential equation on the half-line with the boundary conditions
z’(0) = 0 and with the first derivative vanishing at infinity is proved.

1. Introduction

In the paper the following asymptotic boundary value problem

(1.1) 2 = f(t,z,2’), 2'(0)=0, lim 2'(t)=0,

t—o0

where f:R, x R*¥ x R*¥ — R* is continuous and satisfies the appropriate growth
conditions, is studied. Observe that the corresponding homogeneous linear prob-
lem, i.e.
/=0, 2/(0)=0, lim 2'(t)=0,
t—o0
has nontrivial constant solutions; hence we deal with a resonant situation.

The problem (1.1) has been already studied in [13]. In that paper, we have
obtained the existence result in a completely different way than by using stan-
dard methods for resonant problems (by standard methods we mean methods
considered, for instance, in the following papers: [1]-[4], [7], [10]-[12]). The
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method used in [13] enabled us to get existence under weak assumptions: a lin-
ear growth condition and a sign condition for the nonlinear term f. Similar
assumptions appear also for other boundary value problems.

2. Preliminaries

First, we shall introduce notation and terminology.

By a space we mean a metric space. Given a space X with a metric d, a set
AC X and e >0, B(A,¢e) :=={x € X |da(x) :=inf,ca d(x,a) < €} denotes the
open e-neighbourhood of A. Recall that a space X is an absolute neighbourhood
retract (we write X € ANR) if, given a space Y and a homeomorphic embedding
i: X — Y of X onto a closed subset i(X) C Y, i(X) is a neighbourhood retract
of Y, i.e. there is an open neighbourhood U of i(X) in Y and a retraction
r:U — i(X) (a map U — i(X) is a retraction provided that r(y) = y for
y € i(X)).

We shall say that a nonempty space X is contractible provided there exist
xg € X and a homotopy h: X x [0, 1] — X such that h(x,0) = z and h(z,1) = zg
for every z € X.

A compact (nonempty) space X is an Rs-set (we write X € Ry) if there
is a decreasing sequence X,, of compact contractible spaces such that X =
Mozt X

Let X, Y be spaces. A set-valued map ®: X — Y is upper semicontinuous
(written u.s.c.) if, given an open V C Y, the set {z € X | ®(x) C V'} is open. We
say that ®: X — Y is an Rs-map if it is u.s.c. and, for each z € X, ®(z) € R;.

By a decomposable map we mean a pair (D, F') consisting of a set-valued map

F: X — Y and a diagram D:X—(Do z -2 Y, where Z € ANR, ®: X — Z is an
Rs-map, and ¢: Z — Y a single-valued continuous map, such that F' = ¢ o ®.
A superposition of a set-valued map with compact values and a continuous
function is an u.s.c. map, so any decomposable map is u.s.c.
We say the two decomposable maps (Dq, Fy), (D1, Fy) where Dy: X Eo
Zp 25 Y, k = 0,1 are homotopic (we write (Dg, Fy) ~ (D1, Fy)) if there is

- o & 5
a decomposable map (D, F') with D: X x [0,1] —o Z 25 Y and maps ji: Z, —
Z, k= 0,1 such that the diagram

where iy (x) = (x, k) for x € X, k = 0,1, is commutative.
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THEOREM 2.1 ([8, p. 1797]). If a decomposable map (D, F): X — X, where
X is a compact ANR and is homotopic to identity idx, i.e. there is a decom-
posable map (D', F'): X — X such that (D,F) ~ (D', F’) and F'(z) = x for
x € X, then
A(D,F) = A(idx) = x(X).
Hence, if x(X) # 0, then Fix(F) # 0.

The following simple corollary will be of crucial importance.

COROLLARY 2.2. Let Q be a compact polyhedron with nontrivial Fuler char-
acteristic x(Q) # 0. If a decomposable map (D, F):Q — @Q is homotopic to
identity, then Fix(F) # 0.

Now, we shall present a result about the topological structure of the set of

solutions of some nonlinear functional equation.

THEOREM 2.3 ([6, p. 159]). Let X be a space, (E,||-||) a Banach space and
h: X — FE a proper map, i.e. h is continuous and for every compact K C E
the set h=1(K) is compact. Assume further that for each ¢ > 0 a proper map
he: X — FE is given and the following two conditions are satisfied:

(a) ||he(z) — h(z)|| < &, for every x € X;
(b) for anye >0 and u € E such that ||u| < e, the equation he(x) = u has

ezactly one solution.

Then the set S = h=1(0) is Rs.

Denote by BC(R,R¥) (we write BC) the Banach space of continuous and
bounded functions with supremum norm and by BCL(R, R¥) (we write BCL)
its closed subspace of continuous and bounded functions which have finite limits
at +oo0.

The following theorem gives a sufficient condition for compactness in the
space BC and, by the definition, in the space BCL as well.

THEOREM 2.4 ([9]). If B C BC satisfies following conditions:

(a) there exists L>0, that for every x € B and t €0, 00) we have |z(t)| <L,

(b) for each tg > 0, the family B is equicontinuous at to,

(c) for anye > 0 there exist T > 0 and § > 0 such that if |2(T) —y(T)| < 6,
then |x(t) —y(t)| < e fort > T and all x,y € B.

Then B is relatively compact in BC.

3. The main result
Let us consider an asymptotic BVP

(3.1) 2" = f(t,z,2'), 2'(0)=0, lim 2/'(t)=0,

t—o0



122 K. SZYMANSKA-DEBOWSKA

where f:R, x RF x RF — RF is continuous.
The following assumptions will be needed throughout the paper:
) [f(t,z,9)] < a(t)|y] + b(t), where fooo s)ds < oo, fo 5)ds < oo;
(ii) there exists M > 0 such that z; f;(¢t,z,y) > 0 for t > 0, y € RF z ¢ RF
and |z;| > M, i=1,... k.

DEFINITION 3.1. A function x: R, — RF is called a solution of (3.1) if the
following holds:

(a) = € C2(R,RY)
(b) (1) = f(t, 2(t), (1)) for every € R
(¢) 2/(0) =0, lim¢_, oo 2'(t) = 0.

Now, we can formulate our main result.

THEOREM 3.2. Under assumptions (i) and (ii), problem (3.1) has at least
one solution.

The proof will be divided into a sequence of lemmas.
Given ¢ € R¥ and 2 € BCL let

Ale,z)(t) = /Ot f<s,c—|— /OS x(u) du,:c(s)) ds, t>0.

It is clear that A(c,x):[0,00) — R is continuous. For ¢t > 0,

[A(e, 2)(#)] < /O (a(s)ye(s)] +b(s)) ds < M |[z||c + Mo,

where
o0 o0
M, ::/ a(s)ds, Mo ::/ b(s) ds.
0 0
Hence
(3:2) [A(e,2)()lge < M l|zllge + Mo.

Therefore A(c,z) € BC.

Moreover, observe that the function [0,00) > t +— f(t,c+ fo Ye(u) du, ye(t))
is integrable. Hence, in particular, lim; o, A(c, z)(t) exists, i.e. A(c,x) € BCL.
It follows that the operator A:R*¥ x BCL — BCL is well-defined.

LEMMA 3.3. Under assumption (i) the operator A:RF x BCL — BCL is
completely continuous.

PRrROOF. The continuity of A is an easy consequence of the Lebesque Dom-
inated Convergence Theorem. It order to prove the complete continuity let us
consider the set B := {y = A(c,z) | ¢ € R*, ||z|| < R}, where R > 0. We shall
see that B is relatively compact in BCL. To this reason we use Theorem 2.4.
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First observe that B is bonded (see (3.2)): for any y € B,
yllBc < MiR+ M.

Hence the condition (a) of the Theorem 2.4 holds true.

We shall now show that the family B is equicontinuos, i.e. given tg > 0 and
€ > 0, there is 6 > 0 such that if t > 0 and |t — to| <, then |y(¢) — y(to)| < e
for any ¢ € R¥ and y € B. Let us choose an arbitrary € > 0. By (i) , there exist
01,02 > 0 such that

max{to,t} e
if |t —to| <d1, then / a(s)ds < —,
min{to,t} 2R
max{to,t} €
if |t —to| < d2, then / b(s)ds < =.
min{tg,t} 2

Let § = min{dy,d2}. Then, for |t —to| < J, we get

max{to,t}

\Mﬂ—y@wlg/

min{to,t}

f(s,c+ /OS x(u) du,x(s))‘ ds

max{tg,t} max{to,t}
SR/ a(s)d5+/ b(s)ds < Rsp + 5 =¢.

min{to,t} min{to,t}

It remains to prove condition (¢) of Theorem 2.4, i.e. we shall show that given
€ > 0, there are T > 0 and 0 > 0 such that for any y, 2z € B if |y(T) — 2(T)| < 6,
then |y(t) — z(t)| < e for any ¢t > T. There is T > 0 such that

e € o €
a(s)ds < —, / b(s)ds < —.
| eas<gm [ ueas<

Let § :=¢/3. If |y(T) — 2(T)| < 4, then for t > T we get

) = 0] < (D)~ (D) 428 [ alwyds 2 [ b)ds
T T
g g g
<Z42R— 425 =
=3 + oR + 6 €,
and the proof is complete. O

Given ¢ € R, let 2 € BCL and x = AA(c, z) for some A € [0,1]. Then

a(t) = )\/Otf(s,c+/osa:(u) du,x(s)) ds.

The Gronwall inequality implies that
(3.3) lz(t)] < MyeM,

Therefore, the Leray-Schauder Alternative implies that for each ¢ € R¥ the set
Fix(A(e, +)) of fixed points of A(c, - ): BCL — BCL is nonempty.
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LEMMA 3.4. Let assumption (i) hold and let ®:R* — BCL be given by
®(c) := Fix(A(c, -)). The set-valued map ® is upper semicontinuous with com-

pact values.

PrROOF. The set-valued map @ is upper semicontinuous with compact values
if given a sequence (c,) in R¥, ¢,, — ¢o and (,) € ®(c,,), (7,) has a converging
subsequence to some xg € ®(z¢). Taking any sequence (¢,), ¢, — ¢o and
(xn) € ®(cy,) we have

(3.4) T = A(Cn, ).

By (3.3), we get that the fixed points of A(c, - ) are equibounded for any ¢. Hence
both sequences (z,) and (c,) are bounded. Lemma 3.3 yields that the operator
A is completely continuous. Then, by (3.4), (z,) is relatively compact. Hence,
passing to a subsequence if necessary, we may assume that x, — x¢ in BCL.
The continuity of A implies that zo = A(co,zo). Hence, ¢ € ®(cp) and the
proof is complete. |

LEMMA 3.5. If assumption (1) holds, then ® is an Rs-map.

PROOF. Since the map ® is u.s.c., it remains to show that for any ¢ € R¥
the set ®(c) is Rs. Let X = {z € BCL | ||z|| < L}, where L := MyeMt is taken
from (3.3). We will show that if A(c, -): X — BCL is a compact map (it is easy
to see that A, is compact) and h: X — BCL is a compact vector field associated
with A(c, -), i.e. h(z) = — A(c, z), then there exists a sequence h,,: X — BCL
of continuous proper mappings satisfying conditions (a) and (b) of Theorem 2.3
with respect to h.

First, notice that A(c, z) = 0 for every € X. Moreover, for every T € (0, co
and for every z,y € BCL, if z(t) = y(t) for each ¢ € [0,T], then A(c,z)(t) =
A(c,y)(t) for each t € [0,T].

For the proof it is sufficient to define a sequence A™(c,-): X — BCL of com-
pact maps such that A(c,x) = lim,, o, A™(¢,z) uniformly in X and show that
hn(x) = 2 — A™(¢, x) is a one-to-one map. To do this we define auxiliary map-
pings r,: Ry — Ry by

0 for t € [0,1/n],
rn(t) ==
t—1/n forte (1/n,00).
Now we are able to define the sequence (A"(c, -)) as follows
(3.5) A™(e,z) = A(e,z)(rp(t)), forze X, neN.

It is easy to see that A” are continuous and compact. Since |r,(t) —¢| < 1/n,
we deduce from the compactness of A(c, -) and (3.5) that A™(¢,z) — A(c, z)
uniformly in X.
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Now, we shall prove that h, is a one-to-one map. Assume that fore some
z,y € X we have h,(z) = h,(y). This implies that

x—y=A"c,z)— A"(c,y).
If t € [0,1/n], then we have

z(t) = y(t) = Ale,z)(ra(t)) — Ale, ) (rn(t)) = Alc, 2)(0) — A(c,y)(0) = 0.

Thus, we obtain z(t) = y(t) for every t € [0,1/n].

If t € [1/n,2/n], then we have that 0 < r,(t) < 1/n. Hence, by the property
of operator A(c, ...) mentioned above, we get z(t) = y(t) for ¢t € [0,2/n]. Finally,
by repeating the procedure infinitely many times we infer that x(t) = y(¢) for
every t € [0,00). Therefore h,, is a one-to-one map. Hence the assumptions of
Theorem 2.3 hold and h=1(0) = FixA(c, - ) is an Rs-set. O

REMARK 3.6. For a different treatment of Lemma 3.5, see [5].

Let ¢: BCL — R* be given by o(y) = limy o y(t). It is easily seen that ¢ is
continuous. Hence the map g = ¢ o ® is decomposable with a decomposition

RE 20 BCL -2 RF.

If, for some ¢ € R*, 0 € g(c), then there is y € ®(c) (in other words y'(t) =
f(t, c—i—fot y(s)ds,y(t))) such that 0 = lim;_, y(t). Putting z(¢) := c—i—fot y(s) ds,
we see that

2/ (t) = f(t,z(t),2'(t)), 2'(0)=0= Jim 7' (t),

— 00

i.e. x is a solution to the initial equation (3.1).
Now, set M := M + 1, where M is as in (ii).

LEMMA 3.7. Let Q := [,]\7’ MJ*. There is ¢ € Q such that 0 € g(c).

PROOF. Let ¢; = M and y € ®(c). First, we shall show that y;(t) > 0 for
t > 0. We have y;(0) = 0. Assume that for some t we have y;(t) < 0. Then
there exists ¢, := inf{t | y;(¢) < 0} such that, y;(¢t.) = 0 and y;(¢) > 0 for ¢ < t..
Since y;(t) is continuous there exists ¢; > ¢, such that fttj lyi(t)| dt < 1. Hence,
we get

t t
xi(t):ciJr/ yi(s)d52M+1+/ yi(s)ds > M for t € [t.,t1].
t t

Now, by condition (ii) we get =;(t) f; (¢, z(t),y(t)) = x;(t)yi(t) > 0. Hence
yi(t) > 0 for t € [ts,t1]. It means that y;(t) is increasing on [t.,t1]. Since
yi(t«) = 0, we get a contradiction. Hence y;(¢) > 0 for ¢t > 0.

Moreover, by the above arguments, lim;_, y;(¢) > 0.

Let d = (dy,... ,dy) € R¥. By the definition of g, for i = 1,... , k, we get

(3.6) if degle,... ,ci,l,]/\/f7 Cit1y--- ,Ck), then d; > 0.
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We can proceed analogously to prove that, for every i = 1,... |k,
(3.7) if degle,... 7ci,17—]\//.7,ci+1,... ,¢k), then d; <O.

Let g; = P;g for i = 1,... ,k, where P;:R¥ — R is the projection onto the
i-th axis. By (3.6) and (3.7), for i =1,... , k, we have

g’i(cla"' 7ci717M7ci+1u"' 7Ck) C(07OO)7

gi(cla-' g ,Ci_l,_M,Ci_A,_l,-.- ,Ck) C(—O0,0)

It is easy to see that g; is u.s.c. map. By (3.6) and the fact that g; is u.s.c.
there exists v; > 0 such that for any ¢ € @, where ¢; € (]/\/[\ — 'yi,]/\/l\], we get
gi(c) C (0,00), for every i = 1,... , k. Similarly, by (3.7) and the fact that g; is
u.s.c. there exists 8; > 0 such that for any ¢ € Q, where ¢; € [—J\//j, M + Bi),
we have g;(c) C (—00,0), for every i =1,... k.

The image of g is compact, hence g := sup{|d| | d € gi(¢),c € Q, i =
1,...,k} < 0.

Let § := min {ﬁl, ey By, - ,'yk,l\/i} and set € := §/g. Considering the
set-valued mapping given by F;(c) = ¢; — £g;(c) we get the following inequality

~M<c¢;i—ey<M, foranyc; € [—J\//.T,]\//f] and y € g;(c).

Now, let us consider the multi-valued mapping F(c¢) = c—eg(c), where ¢ € Q.
By the above, we get that F' maps the hypercube @ into itself.

Let us define a pair (D, F') consisting of a set-valued map F: Q — @ and the
diagram

D:Q 2% BCL -4 Q,
where F' = po ®g and ®g(c) := {z € BCL | z(t) = c—ey(t), t e Ry, y € ®(c)}.

Notice, that BCL, as a Banach space, is AN R. Moreover, ®( is an Rs-map.
Hence (D, F) is a decomposable map.

Now, to apply Corollary 2.2, it is sufficient to show that the decomposable
map (D, F) is homotopic to the identity idg, which means that there exists
a decomposable map (D', F'): Q — @ such that (D, F) ~ (D', F') and F'(c) = ¢
for c € Q.

Let D':Q o BCL % Q, where ®1:Q 3> ¢ — z(t) = ¢ € BCL, then
F':Q — Q and F'(c) = ¢ for every c € Q.

Now, let us put X, Y =Q, Z = Zy = Z; = BCL, ¢ = ¢g = ¢1 and consider
the following decomposable map (D, F’) with D: Q x [0,1] 2 BCL % Q, where
®(c,\) :={z € BCL | z(t) = (1= Ny(t)+Az(t), t e Ry, y € Bo(c), z € Dy1(c)}.
It is immediate to see that @ is an Rs-map. Moreover, one can see that the
appropriate diagram is commutative. Hence, (D, F') is homotopic to the identity.
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The Euler characteristic of @ satisfies x(Q) = 1. Thus, by Corollary 2.2,
Fix(F') # 0 and hence there exists ¢ € Q such that ¢ € F(¢).

On the other hand F(¢) = ¢ —eg(¢). Thus 0 € F(¢) — ¢ = —eg(¢), and from
this 0 € g(¢). O

This ends the proof of Theorem 3.2 and completes the paper.
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