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ABSTRACT CAUCHY PROBLEM
FOR FRACTIONAL FUNCTIONAL

DIFFERENTIAL EQUATIONS

Yong Zhou — Feng Jiao — Josip Pečarić

Abstract. In this paper, the existence and continuation of solutions for

the Cauchy initial value problem of fractional functional differential equa-

tions in an arbitrary Banach space is discussed under hypotheses based
on Carathéodory condition and the measure of noncompactness. In addi-

tion, an example is given to show that the criteria on existence of solutions

for the initial value problem of fractional differential equations in finite-
dimensional spaces may not be true in infinite-dimensional cases.

1. Introduction

Fractional differential equations are generalization of classical differential
equations with integer order derivatives. Based on the wide application in en-
gineering and sciences such as physics, mechanics, chemistry, economics and bi-
ology, research of fractional differential equations is active and extensive around
the world. In recent years, there has been a significant development in ordi-
nary and partial differential equations involving fractional derivatives, see the
monographs of Kilbas et al. [9], Miller and Ross [6], Podlubny [20], Lakshmikan-
tham et al. [11] and the papers [1], [3]–[6], [8], [12]–[14], [17], [21]–[25] and
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the references therein. In [12], Lakshmikantham and Vasundhara Devi investi-
gated the theory of fractional differential equations in a Banach space. In [17],
N’Guerekata discussed some fractional abstract differential equations with non-
local conditions. In [21], Salem gave some existence results of solutions to a class
of nonlinear integral equations in Banach spaces and apply these results to the
boundary value problem of fractional order.

In this paper, we assume that E is a Banach space with the norm ‖ · ‖. Let
J ⊂ R. Denote C(J,E) be the Banach space of continuous functions from J

into E.
Let r > 0 and C = C([−r, 0], E) be the space of continuous functions from

[−r, 0] into E. For any element z ∈ C, define the norm ‖z‖∗ = sup
θ∈[−r,0]

‖z(θ)‖.

Consider the initial value problem (IVP) for fractional functional differential
equation given by

(1.1)

{
cDqx(t) = f(t, xt), t ∈ (0, a),

x0 = ϕ ∈ C,

where cDq is Caputo fractional derivative of order 0 < q < 1, f : [0, a)×C → E is
a given function satisfying some assumptions and define xt by xt(θ) = x(t+ θ),
for θ ∈ [−r, 0].

In this paper, we shall start with an example to illustrate that the existence
result of nonlocal Cauchy problem for fractional abstract differential equations
which have been obtained in [17, Theorem 2.3] is not true. We then discuss the
existence and continuation of the solutions for IVP (1.1) under assumptions that
f satisfies Carathéodory condition and the condition on measure of noncompact-
ness. Finally, we give an example to illustrate the application of our abstract
results.

2. Preliminaries

In this section, we introduce definitions and preliminary facts which are used
throughout this paper.

Definition 2.1 ([9], [20]). The fractional integral of order µ with the lower
limit 0 for a function f is defined as

Iµf(t) =
1

Γ(µ)

∫ t

0

f(s)
(t− s)1−µ

ds, t > 0, µ > 0,

provided the right-hand side is pointwise defined on [0,∞), where Γ is the gamma
function.
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Definition 2.2 ([9], [20]). Riemann–Liouville derivative of order µ with the
lower limit 0 for a function f : [0,∞) → Rn can be written as

(2.1) Dµf(t) =
1

Γ(n− µ)
dn

dtn

∫ t

0

f(s)
(t− s)µ+1−n

ds, t > 0, n− 1 < µ < n.

Definition 2.3 ([9], [20]). Caputo derivative of order µ with the lower limit
0 for a function f : [0,∞) → Rn can be written as

cDµf(t) =
1

Γ(n− µ)

∫ t

0

f (n)(s)
(t− s)µ+1−n

ds = In−µf (n)(t),

for t > 0, 0 ≤ n − 1 < µ < n. Obviously, Caputo’s derivative of a constant is
equal to zero.

Remark 2.4. We need to mention that there exits a link between Riemann–
Liouville and Caputo’s fractional derivative of order µ (see [9]). Namely,

cDµf(t) =
1

Γ(n− µ)

∫ t

0

f (n)(s)
(t− s)µ+1−n

ds

=Dµf(t)−
n−1∑
k=0

f (k)(0)
Γ(k − µ+ 1)

tk−µ = Dµ

[
f(t)−

n−1∑
k=0

f (k)(0)
k!

tk
]
,

for t > 0, n− 1 < µ < n.

If f is an abstract function with values in E, then the integrals which appear
in Definitions 2.1–2.3 and Remark 2.4 are taken in Bochner’s sense.

Definition 2.5. A function x ∈ C([−r, T ], E) is a solution for IVP (1.1) on
[−r, T ] for T ∈ (0, a) if:

(a) the function x(t) is absolutely continuous on [0, T ],
(b) x0 = ϕ, and
(c) x satisfies the equation in (1.1).

Let A be a bounded subset in a Banach space E. The diameter of A is
defined by

diam(A) = sup{‖x− y‖ : x, y ∈ A}.
Clearly, 0 ≤ diam(A) <∞.

Kuratowski’s measure of noncompactness of A is defined by

α(A) = inf{d > 0 : A is covered by a finite number of sets with diameter ≤ d}.

We have α(A) ≤ diam(A) and α(A) ≤ 2d if sup
x∈A

‖x‖ ≤ d. We recall some

properties for α (see [10]).
Let A, B be bounded subsets of E. Then:

(1) α(A) = 0 if and only if A is compact, where A denotes the closure of A,
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(2) α(A) = α(A) = α(co(A)),
(3) α(λA) = |λ|α(A) for every λ ∈ R, where λA = {λx : x ∈ A},
(4) α(A) ≤ α(B) if A ⊂ B,
(5) α(A+B) ≤ α(A) + α(B), where A+B = {x+ y : x ∈ A, y ∈ B},
(6) α(A ∪B) = max{α(A), α(B)}.

Assume that J ⊂ R and 1 ≤ p ≤ ∞. For measurable functions m: J → R, define
the norm

‖m‖LpJ =


( ∫

J

|m(t)|p dt
)1/p

, 1 ≤ p <∞,

inf
µ(J)=0

{
sup

t∈J−J

|m(t)|
}
, p = ∞,

where µ(J) is the Lebesgue measure on J . Let Lp(J,R) be the Banach space of
all Lebesgue measurable functions m: J → R with ‖m‖LpJ <∞.

Lemma 2.6 (Hölder inequality). Assume that σ, p ≥ 1, and 1/σ + 1/p = 1.
If l ∈ Lσ(J,R), m ∈ Lp(J,R), then for 1 ≤ p ≤ ∞, lm ∈ L1(J,R) and

‖lm‖L1J ≤ ‖l‖LσJ‖m‖LpJ .

Lemma 2.7 (Bochner’s theorem). A measurable function Q: (0, a) → E is
Bochner integrable if ‖Q‖ is Lebesgue integrable.

Lemma 2.8 ([2], [19]). Let E be a Banach space and A ∈ C([a1, a2], E)
bounded and equicontinuous. Then t→ α(A(t)) is continuous on [a1, a2], and

α(A) = max
t∈[a1,a2]

α(A(t)).

Lemma 2.9 ([19]). If E is a Banach space and {un}n≥1 is a sequence of
Bochner integrable functions from [0, b] into E with ‖un(t)‖ ≤ h(t) for almost
all t ∈ [0, b] and every n ≥ 1, where h ∈ L1([0, b],R), then the function ψ(t) =
α({un(t) : n ≥ 1}) belongs to L1([0, b],R) and satisfies

α

({ ∫ b

0

un(s) ds : n ≥ 1
})

≤ 2
∫ b

0

ψ(s) ds.

We note that the factor 2 in the above inequality can be dropped if E is
a separable Banach space and α is the Hausdorff measure of noncompactness
(see [19] and [15]).

3. Main results

It is well know that Peano’s theorem of integer order ordinary differential
equations is not true in infinite-dimensional Banach spaces. The first result in
this direction was obtained by Dieudonne [7]. He produced an example which
showed that Peano’s theorem is not true in the space c0 of sequences which
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converge to zero. In fact, Peano’s theorem of fractional differential equations is
also not true in infinite-dimensional Banach spaces. In the following, we shall
show that the existence result of nonlocal Cauchy problem for fractional abstract
differential equations which has been obtained in [17] is not true in the space c0.

Example 3.1. Let E = c0 = {z = (z1, z2, . . . ) : zn → 0 as n→∞} with the
norm ‖z‖ = sup

n≥1
|zn| and f(z) = 2(

√
|z1|,

√
|z2|, . . . ) with z = (z1, z2, . . . ) ∈ c0.

Consider the nonlocal Cauchy problem for fractional differential equations given
by

(3.1) cDqx(t) = f(x(t)), x(0) = ξ, t ∈ (0, t0]

where cDq is Caputo fractional derivative of order 0 < q < 1, ξ = (1, 1/22, . . . ) ∈
c0, t0 < min{1, (Γ(1 + q)/2)1/q}.

It is obvious that f : c0 → c0 is continuous. According to [17], there exists
a constant k∗ = Γ(1 + q)/(Γ(1 + q)− 2tq0), such that IVP (3.1) possesses at
least one continuous solution x ∈ C([0, t0], c0) and x(t) = (x1(t), x2(t), . . . ) ∈ c0
on [0, t0] with sup

t∈[0,t0]

‖x(t)‖ ≤ k∗. According to the definition of the norm of c0,

we can conclude that

(3.2) cDqxn(t) = 2
√
|xn(t)|, xn(0) =

1
n2
, t ∈ (0, t0], n = 1, 2, . . . ,

where xn satisfies that xn ∈ C([0, t0],R) with sup
t∈[0,t0]

|xn(t)| ≤ k∗.

Let us consider equation (3.2) which can be written as the following equiva-
lent form

(3.3) xn(t) =
1
n2

+ 2Iq
√
|xn(t)| = 1

n2
+

2
Γ(q)

∫ t

0

(t− s)q−1
√
|xn(s)| ds,

for t ∈ [0, t0]. Since (t− s)q−1 > 1 with s ∈ [0, t) for t ∈ (0, t0], we have by (3.3)

(3.4) xn(t) ≥ 1
n2

+
2

Γ(q)

∫ t

0

√
|xn(s)| ds, t ∈ [0, t0], n = 1, 2, . . .

Assume that yn ∈ C([0, t0],R) is a solution of the following integral equation

(3.5) yn(t) =
1

4n2 +
2

Γ(q)

∫ t

0

√
|yn(s)| ds, t ∈ [0, t0], n = 1, 2, . . .

We can get

(3.6) xn(t) ≥ yn(t), t ∈ [0, t0], n = 1, 2, . . .

In fact, suppose (for contraction) that the conclusion (3.6) is not true. Then,
because of the continuity of x and y, and that xn(0) > yn(0), it follows that
there exists a t1 ∈ (0, t0] such that

(3.7) xn(t1) = yn(t1), xn(t) > yn(t), t ∈ [0, t1), n = 1, 2, . . .
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Then using (3.4) and (3.7), for n = 1, 2, . . . , we get

yn(t1) =
1

4n2 +
2

Γ(q)

∫ t1

0

√
|yn(s)| ds < 1

n2
+

2
Γ(q)

∫ t1

0

√
|xn(s)| ds ≤ xn(t1),

which is a contraction in view of (3.7). Hence the conclusion (3.6) is valid.
Since the integral (3.5) is equivalent to the following IVP

(3.8) y′n(t) =
2

Γ(q)

√
|yn(t)|, yn(0) =

1
4n2

, t ∈ [0, t0], n = 1, 2, . . . ,

and noting yn(t) > 0, t ∈ [0, t0], we can conclude that IVP (3.8) has a continuous
solution

yn(t) =
(

t

Γ(q)
+

1
2n

)2

, t ∈ [0, t0], n = 1, 2, . . . ,

which means that

(3.9) xn(t) ≥ yn(t) =
(

t

Γ(q)
+

1
2n

)2

, t ∈ [0, t0], n = 1, 2, . . .

Therefore, for t ∈ (0, t0], lim
n→∞

xn(t) 6= 0 by (3.9), contracting x(t) ∈ c0. Hence

IVP (3.1) has no nonlocal solution in c0.

We are now ready to prove the existence and continuation of the solutions
for IVP (1.1) under the following hypotheses:

(H1) For almost all t ∈ [0, a), the function f(t, · ): C → E is continuous and
for each z ∈ C, the function f( · , z): [0, a) → E is strongly measurable,

(H2) for each τ > 0, there exist a constant q1∈ [0, q) andm1∈L1/q1([0, a),R+)
such that ‖f(t, z)‖ ≤ m1(t) for all z ∈ C with ‖z‖∗ ≤ τ and almost all
t ∈ [0, a),

(H3) there exist a constant q2 ∈ (0, q) and m2 ∈ L1/q2([0, a),R+) such that
α(f(t, B)) ≤ m2(t)α(B) for almost all t ∈ [0, a) and B a bounded set
in C.

In order to prove our main results, we need the following lemma.

Lemma 3.2. Assume that the hypotheses (H1)–(H2) hold. x ∈ C([−r, T ], E)
is a solution for IVP (1.1) on [−r, T ] for T ∈ (0, a) if and only if x satisfies the
following relation

(3.10)


x(θ) = ϕ(θ) for θ ∈ [−r, 0],

x(t) = ϕ(0) +
1

Γ(q)

∫ t

0

(t− s)q−1f(t, xs) ds for t ∈ [0, T ].

Proof. Since xt is continuous in t ∈ [0, a), according to (H1), f(t, xt)
is a measurable function in [0, a). Direct calculation gives that (t − s)q−1 ∈
L1/(1−q1)[0, t] for t ∈ (0, a) and q1 ∈ [0, q). Let

b1 =
q − 1
1− q1

∈ (−1, 0), M = ‖m1‖L1/q1 [0,a).
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By using Lemma 2.6 (Hölder inequality) and (H2), for t ∈ (0, a), we obtain that

(3.11)
∫ t

0

‖(t− s)q−1f(s, xs)‖ ds ≤
( ∫ t

0

(t− s)(q−1)/(1−q1) ds

)1−q1

‖m1‖L1/q1 [0,t]

≤ M

(1 + b1)1−q1
a(1+b1)(1−q1).

Thus, ‖(t− s)q−1f(s, xs)‖ is Lebesgue integrable with respect to s ∈ [0, t) for all
t ∈ (0, a). From Lemma 2.7 (Bochner’s theorem), it follows that (t−s)q−1f(s, xs)
is Bochner integrable with respect to s ∈ [0, t) for all t ∈ (0, a).

Let L(τ, s) = (t− τ)−q|τ − s|q−1m1(s). Since L(τ, s) is a nonnegative, mea-
surable function on D = [0, t]× [0, t], then we have∫ t

0

[ ∫ t

0

L(τ, s) ds
]
dτ =

∫
D

L(τ, s) ds dτ =
∫ t

0

[ ∫ t

0

L(τ, s) dτ
]
ds

and ∫
D

L(τ, s) ds dτ =
∫ t

0

[ ∫ t

0

L(τ, s) ds
]
dτ

=
∫ t

0

(t− τ)−q

[ ∫ t

0

|τ − s|q−1m1(s) ds
]
dτ

=
∫ t

0

(t− τ)−q

[ ∫ τ

0

(τ − s)q−1m1(s) ds
]
dτ

+
∫ t

0

(t− τ)−q

[ ∫ t

τ

(s− τ)q−1m1(s) ds
]
dτ

≤ 2M
(1 + b1)1−q1

a(1+b1)(1−q1)

∫ t

0

(t− τ)−q dτ

≤ 2M
(1− q)(1 + b1)1−q1

a(1+b1)(1−q1)+1−q.

Therefore, L1(τ, s) = (t−τ)−q(τ−s)q−1f(s, xs) is a Bochner integrable function
on D = [0, t]× [0, t], then we have∫ t

0

dτ

∫ τ

0

L1(τ, s) ds =
∫ t

0

ds

∫ t

s

L1(τ, s) dτ.

We now prove that DqIqf(t, xt) = f(t, xt), for t ∈ (0, T ], where Dq is
Riemann−Liouville fractional derivative. Indeed, for t ∈ (0, T ], we have

DqIqf(t, xt) =
1

Γ(1− q)Γ(q)
d

dt

∫ t

0

(t− τ)−q

[ ∫ τ

0

(τ − s)q−1f(s, xs) ds
]
dτ

=
1

Γ(1− q)Γ(q)
d

dt

∫ t

0

dτ

∫ τ

0

L1(τ, s) ds

=
1

Γ(1− q)Γ(q)
d

dt

∫ t

0

ds

∫ t

s

L1(τ, s) dτ
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=
1

Γ(1− q)Γ(q)
d

dt

∫ t

0

f(s, xs) ds
∫ t

s

(t− τ)−q(τ − s)q−1 dτ

=
d

dt

∫ t

0

f(s, xs) ds = f(t, xt).

If x satisfies the relation (3.10), then we can get that x(t) is absolutely continuous
on [0, T ]. In fact, for any disjoint family of open intervals {(ci, di)}1≤i≤n in [0, T ]

with
n∑

i=1

(di − ci) → 0, we have

n∑
i=1

‖x(di)− x(ci)‖

=
n∑

i=1

1
Γ(q)

∥∥∥∥∫ di

0

(di − s)q−1f(s, xs) ds−
∫ ci

0

(ci − s)q−1f(s, xs) ds
∥∥∥∥

≤
n∑

i=1

1
Γ(q)

∥∥∥∥∫ di

ci

(di − s)q−1f(s, xs) ds
∥∥∥∥

+
n∑

i=1

1
Γ(q)

∥∥∥∥∫ ci

0

(di − s)q−1f(s, xs) ds−
∫ ci

0

(ci − s)q−1f(s, xs) ds
∥∥∥∥

≤
n∑

i=1

1
Γ(q)

∫ di

ci

(di − s)q−1m1(s) ds

+
n∑

i=1

1
Γ(q)

∫ ci

0

((ci − s)q−1 − (di − s)q−1)m1(s) ds

≤
n∑

i=1

1
Γ(q)

( ∫ di

ci

(di − s)(q−1)/(1−q1) ds

)1−q1

‖m1‖L1/q1 [0,T ]

+
n∑

i=1

1
Γ(q)

( ∫ ci

0

(ci − s)(q−1)/(1−q1)

− (di − s)(q−1)/(1−q1) ds

)1−q1

‖m1‖L1/q1 [0,T ]

=
n∑

i=1

(di − ci)(1+b1)(1−q1)

Γ(q)(1 + b1)1−q1
‖m1‖L1/q1 [0,T ]

+
n∑

i=1

(c1+b1
i − d1+b1

i + (di − ci)1+b1)1−q1

Γ(q)(1 + b1)1−q1
‖m1‖L1/q1 [0,T ]

≤ 2
n∑

i=1

(di − ci)(1+b1)(1−q1)

Γ(q)(1 + b1)1−q1
‖m1‖L1/q1 [0,T ] → 0.

Therefore, x(t) is absolutely continuous on [0, T ], which implies that x(t) is
differentiable almost everywhere on [0, T ]. According to the argument above
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and Remark 2.4, for t ∈ (0, T ], we have

cDqx(t) = cDq

[
ϕ(0) +

1
Γ(q)

∫ t

0

(t− s)q−1f(s, xs) ds
]

= cDq

[
1

Γ(q)

∫ t

0

(t− s)q−1f(s, xs) ds
]

= cDq(Iqf(t, xt))

=Dq(Iqf(t, xt))− [Iqf(t, xt)]t=0
t−q

Γ(1− q)

= f(t, xt)− [Iqf(t, xt)]t=0
t−q

Γ(1− q)
.

Since (t − s)q−1f(s, xs) is Lebesgue integrable with respect to s ∈ [0, t) for all
t ∈ (0, T ], we know that [Iqf(t, xt)]t=0 = 0, which means that cDqx(t) = f(t, xt),
for t ∈ (0, T ]. Hence, x ∈ C([−r, T ], E) is a solution of IVP (1.1). On the other
hand, it is obvious that if x ∈ C([−r, T ], E) is a solution of IVP (1.1), then x

satisfies the relation (3.10), and this completes the proof. �

Theorem 3.3 (Existence). Assume that hypotheses (H1)–(H3) hold. Then,
for every ϕ ∈ C, there exists a solution x ∈ C([−r, T ], E) for IVP (1.1) with
some T ∈ (0, a).

Proof. Let k > 0 be any number and we can choose T ∈ (0, a) such that

T (1+b1)(1−q1)

Γ(q)(1 + b1)1−q1
‖m1‖L1/q1 [0,T ] ≤ k,(3.12)

T (1+b2)(1−q2)

Γ(q)(1 + b2)1−q2
‖m2‖L1/q2 [0,T ] < 1,(3.13)

where bi = (q − 1)/(1− qi) ∈ (−1, 0), i = 1, 2.

Consider the set Bk defined as follows

Bk =
{
x ∈ C([−r, T ], E) : x0 = ϕ, sup

s∈[0,T ]

‖x(s)− ϕ(0)‖ ≤ k

}
.

Define the operator F on Bk as follows
Fx(θ) = ϕ(θ) for θ ∈ [−r, 0],

Fx(t) = ϕ(0) +
1

Γ(q)

∫ t

0

(t− s)q−1f(t, xs) ds, for t ∈ [0, T ],

where x ∈ Bk. We prove that the operator equation x = Fx has a solution
x ∈ Bk, which means that x is a solution of IVP (1.1).
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First, we observe that for every y ∈ Bk, (Fy)(t) is continuous on t ∈ [−r, T ]
and for t ∈ [0, T ], by (3.12) and Lemma 2.6 (Hölder inequality), we have

(3.14) ‖(Fy)(t)− ϕ(0)‖ ≤ 1
Γ(q)

∫ t

0

‖(t− s)q−1f(s, ys)‖ ds

≤ 1
Γ(q)

( ∫ t

0

(t− s)(q−1)/(1−q1) ds

)1−q1

‖m1‖L1/q1 [0,T ]

≤ T (1+b1)(1−q1)

Γ(q)(1 + b1)1−q1
‖m1‖L1/q1 [0,T ] ≤ k,

where b1 = (q − 1)/(1− q1) ∈ (−1, 0). Thus, sup
t∈[0,T ]

‖(Fy)(t)− ϕ(0)‖ ≤ k, which

implies that F :Bk → Bk.
Further, we prove that F is a continuous operator on Bk. Let {yn} ⊆ Bk

with yn → y on Bk. Then by (H1) and the fact that yn
t → yt, t ∈ [0, T ], we have

f(s, yn
s ) → f(s, ys), a.e. t ∈ [0, T ] as n→∞.

Noting that ‖f(s, yn
s ) − f(s, ys)‖ ≤ 2m1(s), by the dominated convergence the-

orem, as n→∞, we have

sup
t∈[0,T ]

‖(Fyn)(t)− (Fy)(t)‖ = sup
t∈[0,T ]

∥∥∥∥ 1
Γ(q)

∫ t

0

(t− s)q−1[f(s, yn
s )− f(s, ys)] ds

∥∥∥∥
≤ 1

Γ(q)

∫ T

0

(t− s)q−1‖f(s, yn
s )− f(s, ys)‖ ds→ 0,

which implies that F is continuous.
For each n ≥ 1, we define a sequence {xn : n ≥ 1} in the following way

xn(t) =


ϕ0(t) for t ∈ [−r, T/n],

ϕ(0) +
1

Γ(q)

∫ t−T/n

0

(t− s)q−1f(t, xn
s ) ds for t ∈ [T/n, T ],

where ϕ0 ∈ C([−r, a), E) denotes the function defined by

ϕ0(t) =

{
ϕ(t) for t ∈ [−r, 0],

ϕ(0) for t ∈ [0, a).

Using the similar method as we did in (3.14), we get that xn ∈ Bk for all n ≥ 1.
Let A = {xn : n ≥ 1}. It follows that the set A is uniformly bounded.

Further, we show that the set A is equicontinuous on [−r, T ].
If −r ≤ t1 < t2 ≤ T/n, then for each xn ∈ A, we have

lim
t1→t2

‖xn(t2)− xn(t1)‖ = lim
t1→t2

‖ϕ0(t2)− ϕ0(t1)‖ = 0

independently of xn ∈ A.



Abstract Cauchy Problem 129

Next, if −r ≤ t1 ≤ T/n < t2 ≤ T , then for each xn ∈ A, by using Lemma 2.6,
we have

‖xn(t2)− xn(t1)‖ ≤ ‖ϕ(0)− ϕ0(t1)‖+
∥∥∥∥ 1

Γ(q)

∫ t2−T/n

0

(t2 − s)q−1f(s, xn
s ) ds

∥∥∥∥
≤‖ϕ(0)− ϕ0(t1)‖+

1
Γ(q)

∫ t2−T/n

0

(t2 − s)q−1m1(s) ds

≤‖ϕ(0)− ϕ0(t1)‖+
1

Γ(q)

( ∫ t2−T/n

0

(t2 − s)(q−1)/(1−q1) ds

)1−q1

‖m1‖L1/q1 [0,T ]

= ‖ϕ(0)− ϕ0(t1)‖+
(t1+b1

2 − (T/n)1+b1)1−q1

Γ(q)(1 + b1)1−q1
‖m1‖L1/q1 [0,T ].

According to the definition of ϕ0, and using the last inequality, we obtain that

‖xn(t2)− xn(t1)‖ → 0

independently of xn ∈ A, as t1 → t2.
Finally, if T/n ≤ t1 < t2 ≤ T , then for each xn ∈ A, by using Lemma 2.6,

we have

‖xn(t2)− xn(t1)‖

=
∥∥∥∥ 1

Γ(q)

∫ t2−T/n

0

(t2 − s)q−1f(s, xn
s ) ds− 1

Γ(q)

∫ t1−T/n

0

(t1 − s)q−1f(s, xn
s ) ds

∥∥∥∥
≤

∥∥∥∥ 1
Γ(q)

∫ t2−T/n

t1−T/n

(t2 − s)q−1f(s, xn
s ) ds

∥∥∥∥
+

∥∥∥∥ 1
Γ(q)

∫ t1−T/n

0

(t2 − s)q−1f(s, xn
s ) ds

− 1
Γ(q)

∫ t1−T/n

0

(t1 − s)q−1f(s, xn
s )ds

∥∥∥∥
≤ 1

Γ(q)

∫ t2−T/n

t1−T/n

(t2 − s)q−1m1(s) ds

+
1

Γ(q)

∫ t1−T/n

0

((t1 − s)q−1 − (t2 − s)q−1)m1(s) ds

≤ 1
Γ(q)

( ∫ t2−T/n

t1−T/n

(t2 − s)(q−1)/(1−q1) ds

)1−q1

‖m1‖L1/q1 [0,T ]

+
1

Γ(q)

( ∫ t1−T/n

0

(t1 − s)(q−1)/(1−q1) − (t2 − s)(q−1)/(1−q1) ds

)1−q1

· ‖m1‖L1/q1 [0,T ]

=
((t2 − t1 + T/n)1+b1 − (T/n)1+b1)1−q1

Γ(q)(1 + b1)1−q1
‖m1‖L1/q1 [0,T ]
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+
(t1+b1

1 − (T/n)1+b1 − t1+b1
2 + (t2 − t1 + T/n)1+b1)1−q1

Γ(q)(1 + b1)1−q1
‖m1‖L1/q1 [0,T ]

≤ 2
((t2 − t1 + T/n)1+b1 − (T/n)1+b1)1−q1

Γ(q)(1 + b1)1−q1
‖m1‖L1/q1 [0,T ].

It is easy to see that the last inequality tends to zero independently of xn ∈ A,
as t1 → t2, which means that the set A is equicontinuous.

Set A(t) = {xn(t) : n ≥ 1} and At = {xn
t : n ≥ 1} for any t ∈ [0, T ]. By

the properties (3.2) and (3.4) of the measure of noncompactness, for any fixed
t ∈ (0, T ] and δ ∈ (0, t), we have

α(A(t)) ≤α
({

1
Γ(q)

∫ t−δ

0

(t− s)q−1f(s, xn
s ) ds : n ≥ 1

})
+ α

({
1

Γ(q)

∫ t

t−δ

(t− s)q−1f(s, xn
s ) ds : n ≥ 1

})
+ α

({
1

Γ(q)

∫ t

t−T/n

(t− s)q−1f(s, xn
s ) ds : n ≥ 1

})
,

for all ε > 0, we can find δ sufficiently small such that

δ(1+b1)(1−q1)

Γ(q)(1 + b1)1−q1
‖m1‖L1/q1 [0,T ] <

ε

4
.

Therefore, for each t ∈ (0, T ], we have that

α

({
1

Γ(q)

∫ t

t−δ

(t− s)q−1f(s, xn
s ) ds : n ≥ 1

})
≤ 2

Γ(q)

∫ t

t−δ

(t− s)q−1m1(s) ds <
ε

2
.

Moreover, we can choose Nδ ≥ 1 such that T/n ≤ δ for n ≥ Nδ. Then we obtain
that

α

({
1

Γ(q)

∫ t

t−T/n

(t− s)q−1f(s, xn
s ) ds : n ≥ Nδ

})
≤ 2

Γ(q)
sup

n≥Nδ

∫ t

t−T/n

(t− s)q−1m1(s) ds <
ε

2
,

for each t ∈ (0, T ]. Hence, by the properties (1.1) and (3.5) of the measure of
noncompactness, it follows that

α

({
1

Γ(q)

∫ t

t−T/n

(t− s)q−1f(s, xn
s ) ds : n ≥ 1

})
<
ε

2
.

Then, we obtain that

α(A(t)) ≤ α

({
1

Γ(q)

∫ t−δ

0

(t− s)q−1f(s, xn
s ) ds : n ≥ 1

})
+ ε,
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for t ∈ (0, T ]. By Lemma 2.9 and (H3), we have that

α(A(t)) ≤ 2
Γ(q)

∫ t−δ

0

α((t− s)q−1f(s,As)) ds+ ε

=
2

Γ(q)

∫ t−δ

0

(t− s)q−1α(f(s,As)) ds+ ε

≤ 2
Γ(q)

∫ t

0

(t− s)q−1m2(s)α(As) ds+ ε,

where t ∈ (0, T ]. Since xn(θ) = ϕ(θ), θ ∈ [−r, 0], we have α({xn(θ) : n ≥ 1}) = 0
for θ ∈ [−r, 0]. Moreover, by Lemma 2.8, for s ∈ [0, t] with t ∈ (0, T ], we deduce
that

α(As) = max
θ∈[−r,0]

α({xn
s (θ) : n ≥ 1}) ≤ sup

s∈[0,t]

α({xn(s) : n ≥ 1}) = sup
s∈[0,t]

α(A(s)).

Since ε is arbitrary, we have that

α(A(t)) ≤ 2T (1+b2)(1−q2)

Γ(q)(1 + b2)1−q2
‖m2‖L1/q2 [0,T ] sup

s∈[0,t]

α(A(s)),

where t ∈ (0, T ] and b2 = (q − 1)/(1− q2) ∈ (−1, 0).
Since (3.13) and xn

0 = ϕ, we must have that α(A(t)) = 0 for every t ∈ [−r, T ].
Then, by Lemma 2.8, we have that α(A) = sup

t∈[−r,T ]

α(A(t)) = 0. Therefore, A is

a relatively compact subset of Bk. Then, there exists a subsequence if necessary,
we may assume that the sequence {xn}n≥1 converges uniformly on [−r, T ] to
a continuous function x ∈ Bk with x(θ) = ϕ(θ), θ ∈ [−r, 0].

Moreover, for t ∈ [0, T/n], we have

‖(Fxn)(t)− xn(t)‖ ≤ 1
Γ(q)

∫ T/n

0

(t− s)q−1‖f(t, xn
s )‖ ds

≤ 1
Γ(q)

∫ T/n

0

(t− s)q−1m1(s) ds

and for t ∈ [T/n, T ], we have

‖(Fxn)(t)− xn(t)‖

=
1

Γ(q)

∥∥∥∥∫ t

0

(t− s)q−1f(t, xn
s ) ds−

∫ t−T/n

0

(t− s)q−1f(t, xn
s ) ds

∥∥∥∥
=

1
Γ(q)

∥∥∥∥∫ t

t−T/n

(t− s)q−1f(t, xn
s ) ds

∥∥∥∥ ≤ 1
Γ(q)

∥∥∥∥∫ t

t−T/n

(t− s)q−1m1(s) ds
∥∥∥∥.

Therefore, it follows that

(3.15) sup
t∈[0,T ]

‖(Fxn)(t)− xn(t)‖ → 0 as n→∞.
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Since

sup
t∈[0,T ]

‖(Fx)(t)− x(t)‖ ≤ sup
t∈[0,T ]

‖(Fx)(t)− (Fxn)(t)‖

+ sup
t∈[0,T ]

‖(Fxn)(t)− xn(t)‖+ sup
t∈[0,T ]

‖xn(t)− x(t)‖,

then, by (3.15) and the fact that F is a continuous operator, we obtain that
sup

t∈[0,T ]

‖(Fx)(t) − x(t)‖ = 0. It follows that x(t) = (Fx)(t) for every t ∈ [0, T ].

Hence

x(t) =


ϕ(t) for t ∈ [−r, 0],

ϕ(0) +
1

Γ(q)

∫ t

0

(t− s)q−1f(t, xs) ds for t ∈ [0, T ],

solve IVP (1.1), and this completes the proof. �

Corollary 3.4. Assume that hypotheses (H1)–(H3) hold. Then, for ev-
ery ϕ ∈ C, there exists T ∈ (0, a) and a sequence of continuous functions
xn: [−r, T ] → E, such that:

(a) xn are absolutely continuous on [0, T ],
(b) xn

0 = ϕ, for every n ≥ 1, and
(c) extracting a subsequence which is labeled in the same way such that

xn(t) → x(t) uniformly on [−r, T ] and x: [−r, T ] → E is a solution for
IVP (1.1).

Theorem 3.5 (Continuation). Assume that hypotheses (H1)–(H3) hold. Then
the largest interval of existence of any bounded solution of IVP (1.1) is [0, a).

Proof. Let x: [−r, β) → E be a solution of IVP (1.1) existing on the interval
[−r, β), where β ∈ (0, a). Suppose (for contraction) that the value of β cannot
be increased. For 0 < t1 < t2 < β, we have

‖x(t2) − x(t1)‖

=
∥∥∥∥ 1

Γ(q)

∫ t2

0

(t2 − s)q−1f(s, xs) ds−
1

Γ(q)

∫ t1

0

(t1 − s)q−1f(s, xs) ds
∥∥∥∥

≤
∥∥∥∥ 1

Γ(q)

∫ t2

t1

(t2 − s)q−1f(s, xs) ds
∥∥∥∥

+
∥∥∥∥ 1

Γ(q)

∫ t1

0

(t2 − s)q−1f(s, xs) ds−
1

Γ(q)

∫ t1

0

(t1 − s)q−1f(s, xs) ds
∥∥∥∥

≤ 1
Γ(q)

∫ t2

t1

(t2 − s)q−1m1(s) ds

+
1

Γ(q)

∫ t1

0

((t1 − s)q−1 − (t2 − s)q−1)m1(s) ds
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≤ 1
Γ(q)

( ∫ t2

t1

(t2 − s)(q−1)/(1−q1) ds

)1−q1

‖m1‖L1/q1 [0,β]

+
1

Γ(q)

( ∫ t1

0

(t1 − s)(q−1)/(1−q1) − (t2 − s)(q−1)/(1−q1) ds

)1−q1

· ‖m1‖L1/q1 [0,β]

≤ (t2 − t1)(1+b1)(1−q1)

Γ(q)(1 + b1)1−q1
‖m1‖L1/q1 [0,β]

+
(t1+b1

1 − t1+b1
2 + (t2 − t1)1+b1)1−q1

Γ(q)(1 + b1)1−q1
‖m1‖L1/q1 [0,β]

≤ 2
(t2 − t1)(1+b1)(1−q1)

Γ(q)(1 + b1)1−q1
‖m1‖L1/q1 [0,β].

Letting t1, t2 → β− and using Cauchy criterion, it follows that lim
t→β−

x(t) exists.

We denote x(β) = lim
t→β−

x(t), then the function x can be extended by continuity

on [0, β].
Further, let g(t, z) = f(t+ β, z) for t ∈ [0, a− β) and z ∈ C. Then, for each

τ > 0 and almost all t ∈ [0, a − β), we have ‖g(t, z)‖ ≤ m∗1(t) = m1(t + β) for
all z ∈ C with ‖z‖∗ ≤ τ and α(f(t, B)) ≤ m∗2(t)α(B) = m2(t + β)α(B) for B
a bounded set in C.

Consider the new IVP

(3.16)

{
cDqy(t) = g(t, yt) for a.e. t ∈ (0, a− β),

y0 = φ,

where φ ∈ C([−r, 0], E) = C is defined by φ(θ) = x(θ + β), for all θ ∈ [−r, 0].
By Theorem 3.3, there exists a solution y: [−r, τ ] → E of IVP (3.16), where

τ ∈ (0, a− β). It follows that v: [−r, β + τ ] → E, given by

v(t) =

{
x(t) for t ∈ [−r, β],

y(t− β) for t ∈ [β, β + τ ],

is a solution of IVP (1.1) because, for almost all t ∈ [β, β + τ ], we have that

cDqv(t) = cDqy(t− β) = g(t− β, yt−β) = f(t, yt−β) = f(t, vt).

Therefore, the solution x can be continued beyond β, contracting our assumption.
Hence every solution x of IVP (1.1) exists on [−r, a) and the proof is complete.�

We now give an example to illustrate the application of our abstract results.

Example 3.6. Consider the infinite system of fractional functional differen-
tial equations

(3.17)


cD1/2xn(t) =

1
nt1/3

x2
n(t− r) for t ∈ (0, a),

xn(θ) = ϕ(θ) =
θ

n
for θ ∈ [−r, 0], n = 1, 2, . . .
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Let E = c0 = {x = (x1, x2, . . . ):xn → 0} with norm ‖x‖ = sup
n≥1

|xn|. Then

the infinite system (3.17) can be regarded as a IVP of form (1.1) in E. In this
situation,

q = 1/2,

x = (x1, . . . , xn, . . . ),

xt = x(t− r) = (x1(t− r), . . . , xn(t− r), . . . ),

ϕ(θ) = (θ, θ/2, . . . , θ/n, . . . ) for θ ∈ [−r, 0]

and f = (f1, . . . , fn, . . . ), in which

(3.18) fn(t, xt) =
1

nt1/3
x2

n(t− r).

It is obviously that conditions (H1) and (H2) are satisfied. Now, we check the
condition (H3) and the argument is similar to [25]. Let t ∈ (0, a), R > 0 be given
and {w(m)} be any sequence in f(t, B), where w(m) = (w(m)

1 , . . . , w
(m)
n , . . . ) and

B = {z ∈ C : ‖z‖∗ ≤ R} is a bounded set in C. By (3.18), we have

(3.19) 0 ≤ w(m)
n ≤ R2

nt1/3
, n,m = 1, 2, . . .

So, {w(m)
n } is bounded and, by the diagonal method, we can choose a subsequence

{mi} ⊂ {m} such that

(3.20) w(mi)
n → wn as i→∞, n = 1, 2, . . . ,

which implies by virtue of (3.19) that

(3.21) 0 ≤ wn ≤
R2

nt1/3
, n = 1, 2, . . .

Hence w = (w1, . . . , wn, . . . ) ∈ c0. It is easy to see from (3.19)–(3.21) that

‖w(mi) − w‖ = sup
n
|w(mi)

n − wn| → 0 as i→∞.

Thus, we have proved that f(t, B) is relatively compact in c0 for t ∈ (0, a),
which means that f(t, B) = 0 for almost all t ∈ [0, a) and B a bounded set in C.
Hence, the condition (H3) is satisfied. Finally, from Theorems 3.3 and 3.5, we
can conclude that the infinite system (3.17) has a continuous solution and the
largest interval of existence of the solution is [−r, a).
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