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PERIODIC SOLUTIONS
OF A FORCED RELATIVISTIC PENDULUM

VIA TWIST DYNAMICS

Stefano Marò

Abstract. We prove the existence of at least two geometrically different
periodic solutions with winding number N for the forced relativistic pen-

dulum. The instability of a solution is also proved. The proof is topologi-

cal and based on the version of the Poincaré–Birkhoff theorem by Franks.
Moreover, with some restriction on the parameters, we prove the existence

of twist dynamics.

1. Introduction and statement of the main results

We are concerned with the equation of the forced relativistic pendulum

(1.1)
d

dt

(
ẋ√

1− ẋ2

)
+ a sinx = f(t),

where a is a positive real constant and f is a T -periodic real function with mean
value zero over a period.

Results on the existence of solutions to (1.1) and on their qualitative prop-
erties have been recently given (by different methods) by various authors. We
refer to the works of Brezis–Mawhin [3] where it is proved the existence of a T -
periodic solution and of Bereanu–Torres [2] who provided the existence of a sec-
ond solution not differing from the previous by a multiple of 2π. From now on,
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multiplicity has to be understood in this way. These works use very delicate va-
riational techniques. As for topological methods we refer to Bereanu–Jebelean–
Mawhin [1] where it is proved the existence of two T -periodic solutions using
degree arguments and upper and lower solutions. In this case, a restriction on
the parameters a and T is required.

Another interesting topic concerning (1.1) is the question of the stability
of the solutions; in this direction, Chu–Lei–Zhang [5] found stable T -periodic
solutions for the related case of a relativistic pendulum with variable length
using KAM theory and Birkhoff normal form.

Our contribution in the present paper contains two main results (Theo-
rems 1.1 and 1.3 below) which we describe in what follows.

Our first result deals with the existence of T -periodic solutions with winding
number N , i.e. solutions x( · ) such that x(t + T ) = x(t) + 2Nπ, N ∈ Z for all
t ∈ R. Obviously, T -periodic solutions correspond to the case N = 0. We first
show (Proposition 3.1) that the condition

(1.2)
∣∣∣∣2NπT

∣∣∣∣ < 1

is necessary for the existence of T -periodic solutions with winding number N ;
this agrees with physical intuition, which suggests (due to the bound arising from
the speed of light) that we cannot expect solutions for every value of N and T .
The necessary condition is also sufficient; in fact we prove:

Theorem 1.1. For every N ∈ Z such that |2Nπ/T | < 1 there exist at least
two solutions such that x(t+ T ) = x(t) + 2Nπ, N ∈ Z for all t ∈ R. Moreover,
at least one of them is unstable.

The crucial fact is the passage from the Lagrangian to the Hamiltonian form
performed by the Legendre transform. This eliminates the singularity and allows
us to obtain solutions as fixed points of the Poincaré map associated to the planar
Hamiltonian system corresponding to (1.1). If we consider the case N = 0 we
obtain

(1.3) q̇ = Hp, ṗ = −Hq

where H =
√
p2 + 1− a cos q− f(t)q. This transform has been used by Mawhin

in [16] for other purposes. More precisely, in Section 2 we first give a version of
the Poincaré–Birkhoff theorem (Theorem 2.2) which is a variant of the result by
Franks [7]. Then, in Section 3 we show (Lemmas 3.2 and 3.3) that under (1.2)
the assumptions of Theorem 2.2 are satisfied. The proof of Theorem 4.2 in [7] is
developed by elaborated techniques from differential geometry, while the proof of
our Theorem 2.2 requires more elementary techniques based on the application
of a result of Le Calvez–Wang [4] (Theorem 2.3). The crucial notion for our
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argument is that of exact symplectic map (see [14] for an introduction on exact
symplectic maps). It is worth mentioning that Franks gave in [7] applications
of his abstract result to the equation of the forced (non-relativistic) pendulum;
anyway they need some clarification. As for a comparison with this and other
results on the (non-relativistic) pendulum, we refer the interested reader to the
end of this introductory section. For the proof of the instability result in The-
orem 1.1 we use a theorem by Ortega [20], together with the Poincaré–Hopf
Theorem [8].

Our second result provides a restriction on the parameter a which makes
the Poincaré map a “twist map”, whose definition is recalled at the beginning
of Section 2.2. More precisely, in Section 3.2 we prove, by a Sturm comparison
argument:

Theorem 1.2. If a < π2/T 2, then the Poincaré map associated to system
(1.3) is twist. If a = π2/T 2 and f does not vanish identically the same result
holds true. Moreover, the condition a ≤ π2/T 2 is optimal.

This important fact leads us to more information on the number of solutions
and their stability properties. To state these results, we adapt a definition given
in [22] saying that a planar first order system in the variables (q, p) is degenerate
if there exists a curve (qs(0), ps(0)) such that the application s 7→ qs(0) is defined
from R onto R, satisfies qs+2π(t) = qs(t) + 2π and ps+2π(t) = ps(t), is bijective
in [0, 2π) and continuous and for every s ∈ [0, 2π) the point (qs(0), ps(0)) is the
initial condition of a T -periodic solutions with winding number N . Then we can
state

Theorem 1.3. If 0 < a < π2/T 2 either the number of isolated T -periodic
solutions with winding number N is finite or we are in the degenerate case and
every degenerate solution is unstable. If a = π2/T 2 and f(t) is not the trigono-
metric function a sin(2Nπt/T ), the same result holds true.

The qualitative properties of the T -periodic solutions with winding numberN
(whose existence is guaranteed by Theorem 1.1 and, in the context of twist maps,
by Ortega’s result [21] recalled in Theorem 2.8) follow from the application of
two abstract facts for planar, exact symplectic and twist maps (Corollaries 2.11
and 2.12 in Section 2) which follow from Theorem 2.8 as well. At this stage, it
is important to recall and develop the “intersection property”.

We end this introductory section by a comparison between our results (and
their method of proof) and some (somehow analogue) results for the forced non-
relativistic pendulum equation

(1.4) ẍ+ a sinx = f(t)

with analogous hypothesis as in equation (1.1).
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It is well known that it has at least two T -periodic solutions. The existence
of one solution was proved by Hamel [9] and rediscovered independently by
Dancer [6] and Willem [23]. Then the existence of a second solution has been
proved by Mawhin and Willem [17] using mountain pass arguments. It is worth
mentioning that also Franks [7] gave his contribution using his version of the
Poincaré–Birkhoff theorem. More details on Franks’s result will be given at the
end of Section 3.1. We stress that our approach and results apply also in the
case of equation (1.4): it is just a matter of computation, the arguments are
completely analogous. Therefore our results are an improvement also concerning
the non-relativistic case.

The paper is organised as follows. In Section 2 we state and prove the
abstract results for planar maps that we need in the sequel. More precisely,
in Section 2.1 we deal with the existence of two fixed points of a planar exact
symplectic map (Theorem 2.2); in Section 2.2 we focus on exact symplectic
and twist maps, recall the existence of two fixed points (Theorem 2.8) and give
some qualitative results on the number of such solutions (Corollary 2.11) and
of their index (Corollary 2.12). In Section 3 we prove, using the results of
Section 2, Theorems 1.1–1.3. In Section 4 we give some more detailed results in
the particular case when equation (1.1) is autonomous. This is done for a better
understanding of the main results.

I want to thank Professor Rafael Ortega who introduced me to this problem.
Without his constant and patient supervision this work would have not been
possible. I am indebted to Professor Anna Capietto whose suggestions have
been very useful for the final layout.

2. Two versions of the Poincaré–Birkhoff theorem

2.1. If the annulus is not invariant. The classical Poincaré–Birkhoff the-
orem gives two fixed points of an area preserving homeomorphism of the annulus
which satisfies a boundary twist condition. In this section we will state a varia-
tion of this theorem due to Franks [7] in which it is eliminated the invariance of
the annulus despite an increasing of regularity.

In a plane with coordinate (θ, r), consider, for 0 < a < b, the two strips
Ã = R × [−a, a] and B̃ = R × [−b, b] so that Ã ⊂ B̃, and the corresponding
annuli A = S1× [−a, a] and B = S1× [−b, b] so that A ⊂ B. Here we understand
S1 = R/2πZZ. We will deal with an embedding S̃: Ã→ B̃ defined as follows:

S̃(θ, r) = (θ1, r1) and

{
θ1 = F (θ, r),

r1 = G(θ, r),

where F,G: R2 → R are functions of class C2 such that

F (θ + 2π, r) = F (θ, r) + 2π, G(θ + 2π, r) = G(θ, r).



Periodic Solutions of a Forced Relativistic Pendulum 55

By the definition of S̃ we are allowed to think S̃ as a lift of a map S:A → B

defined on the cylinder. Moreover, we will suppose that the map S is isotopic to
the inclusion i, i.e. there exists a C2 map f :A × [0, 1] → B such that for every
t ∈ [0, 1], ft(x) = f(t, x) is a diffeomorphism from A onto its image, f0 = S and
f1 = i.

Now consider the standard volume form ω = dθ ∧ dr and remember that S̃
is area preserving if dθ ∧ dr = dθ1 ∧ dr1. Now, if we consider the 1-form

α = r1dθ1 − rdθ,

we have that S̃ is symplectic if and only if α is closed. But the strip is con-
tractible, so closed and exact forms coincide. Summing up we have that S̃ is
symplectic if and only if there exists V ∈ C3(Ã) such that

dV = r1dθ1 − rdθ.

This equivalence is no longer true in the cylinder, in fact the primitive V could
be multi-valued. So we have the following

Definition 2.1. We say that S̃ is exact symplectic if there exists a function
V ∈ C3(Ã) such that

dV = r1dθ1 − rdθ and V (θ + 2π, r) = V (θ, r) for all (θ, r).

Now we can state the slightly modified theorem by Franks. He dealt with
a map defined from an annulus into itself, we will need the case of a map defined
from a strip into itself. His proof deals with very sophisticated techniques of
differential geometry. We will reach the requested version translating his proof
in our concrete case of the cylinder so that it will be understandable also for
people who do not deal with those abstract tools.

Theorem 2.2. Consider a map S̃: Ã → B̃ which is the lift of an exact
symplectic embedding S : A → B isotopic to the inclusion such that S(A) ⊂
intB. Suppose that the following boundary twist condition is satisfied: there
exists δ > 0 such that

F (θ, a)− θ > δ, θ ∈ [0, 2π),

F (θ,−a)− θ < −δ, θ ∈ [0, 2π).

Then S̃ has at least two fixed points.

The strategy of the proof is to extend S̃ to an homeomorphism g̃ of the
strip B̃. So we can use the fact that the fixed points of the Poincaré–Birkhoff
theorem are in fact fixed points of the lift. More precisely, we will use the
following result in [4]:
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Theorem 2.3. Let Ã be a strip and let A be its corresponding annulus.
Consider a map S̃: Ã → Ã which is the lift of a homeomorphism S:A → A,
isotopic by homeomorphisms to the identity and area preserving. Suppose that
the following boundary twist condition is satisfied:

(2.1)
F (θ, a)− θ > 0, θ ∈ [0, 2π),

F (θ,−a)− θ < 0, θ ∈ [0, 2π).

Then S̃ has at least two fixed points.

At the beginning we will work in the annuli A and B. We observe that in this
case is not possible to apply the isotopy extension theorem as stated in [18, p. 63]
because B should be without boundary. Anyway, by the hypothesis S(A) ⊂ intB
it is possible to slightly modify it in order to extend S to g1:B → B so that g1 is
isotopic to the identity and restricted to a neighbourhood of ∂B is the identity
(this is achieved in [11, Theorem 1.3, p. 180]). Notice that g1 does not preserve
the area out of A.

Now choose a0 slightly smaller than a and define the following subsets that
we will use during the proof

Ã0 = R× [−a0, a0], A0 = S1 × [−a0, a0].

In order to apply Theorem 2.3 and get the result, let us prove the following two
lemmas:

Lemma 2.4. It is possible to alter g1:B → B finding a diffeomorphism
g2:B → B such that:

(a) g2 is area preserving on B,
(b) g2|A0 = S,
(c) g2|∂B = id.

Lemma 2.5. It is possible to alter the lift g̃2: B̃ → B̃ finding g̃: B̃ → B̃ such
that:

(a) g̃ is area preserving on B̃,
(b) g̃ has no fixed points out of Ã,
(c) g̃ satisfy the boundary twist condition (2.1),
(d) g̃ = g̃2 on Ã.

So Theorem 2.2 will follow from the application of Theorem 2.3 to g̃.

Proof of Lemma 2.4. To prove this lemma we will use Moser’s ideas,
presented in [19] in a more general framework. Let us break the proof in several
steps.
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Step 1. Let B+ = S1 × [a0, b] ⊂ B. It results

µ(B+) =
∫

B+
det g′1(θ, r) dθ dr.

Let g1(θ, r) = (θ1, r1). The 1-form r1dθ1 − rdθ is exact symplectic on A so its
integral over any closed path in A must vanish, in particular we have∫

S1×{a0}
r dθ =

∫
g1(S1×{a0})

r dθ.

Moreover, because g1 is the identity over S1 × {b} we have∫
S1×{b}

r dθ =
∫

g1(S1×{b})
r dθ

so that ∫
∂B+

r dθ =
∫

∂B+
r1 dθ1.

Notice that θ1 = θ1(θ, r) and r1 = r1(θ, r) so that

dθ1 =
∂θ1
∂θ

dθ +
∂θ1
∂r

dr.

Finally, by Green’s formula,∫
B+

dθ dr =
∫

B+
det g′1(θ, r) dθ dr

that implies our claim.

Step 2. Define Ω(θ, r) = 1 − det g′1(θ, r). Then there exist two C1 functions
α(θ, r) and β(θ, r) 2π-periodic in θ that vanish on ∂B and such that

Ω =
∂β

∂r
− ∂α

∂θ
.

Consider the two functions:

α(θ, r) = −
∫ θ

0

[Ω(Θ, r)− Ω(r)] dΘ and β(θ, r) =
∫ r

a0

Ω(ρ)dρ

with

Ω(r) =
1
2π

∫ 2π

0

Ω(θ, r) dθ.

First of all they are of class C1 because g1 is of class C2.
Notice that from Step 1 we have that

(2.2)
∫ b

a0

∫ 2π

0

Ω(θ, r) dθ dr = 0,

and, remembering that g1 is the identity on a neighbourhood of ∂B, it results

(2.3) Ω(θ, b) = 0.
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Moreover, an exact symplectic map is also area preserving so the determinant of
the Jacobian is 1. It follows that

(2.4) Ω(θ, r) = 0 on S1 × [a0, a].

By computation we get

Ω =
∂β

∂r
− ∂α

∂θ

on B+. The fact that α and β are 2π-periodic with respect to θ is trivial for β,
while comes from (2.2) for α. Moreover, remembering (2.3) we have

α(θ, b) = −
∫ θ

0

[Ω(Θ, b)− Ω(b)] dΘ = 0

and by (2.2)

β(θ, b) =
1
2π

∫ b

a0

∫ 2π

0

Ω(θ, r) dθ = 0

and, by (2.4), α and β vanish on S1 × [a0, a]. We can do the same on S1 ×
[−b0,−a0] and find α(θ, r) and β(θ, r) with the same property. Finally we can
extend these functions to all B setting α(θ, r) = 0 and β(θ, r) = 0 on A0 and the
properties on S1 × [a0, a] guarantee the regularity.

Step 3. Consider the function, for t ∈ [0, 1], Ωt(θ, r) = (1− t) + tdet g′1(θ, r)
and define the vector field

X1(t, θ, r) =
1

Ωt(θ, r)
α(θ, r), X2(t, θ, r) = − 1

Ωt(θ, r)
β(θ, r)

and the associated differential equation

θ̇ = X1(t, θ, r), ṙ = X2(t, θ, r)

with solution φt = (Θt, Rt) passing through (θ, r) at time t = 0. The solution
is unique because X1 and X2 are of class C1 (this justifies the hypothesis of S
being C2). We claim that

Ωt(Θt, Rt) det
(
∂(Θt, Rt)
∂(θ, r)

)
= 1, t ∈ [0, 1].

Remember that a map isotopic to the identity is also orientation preserving,
while the converse is false in the cylinder (as a counterexample take the map
(θ, r) 7→ (−θ,−r)). Hence we have that det g′1 > 0 so that the vector field is
well defined. Notice that if (θ, r) ∈ B the solution does not leave B because the
boundary circles of B are continua of fixed points: it implies that φt(B) = B.
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Using Liouville formula for the linearized equation we have, for every t ∈ [0, 1]

Ωt(Θt, Rt) det
(
∂(Θt, Rt)
∂(θ, r)

)
= Ωt(Θt, Rt) exp

{ ∫ t

0

tr

(
∂X1

∂θ
+
∂X2

∂r

)
(s,Θs, Rs) ds

}
= Ωt(Θt, Rt) exp

{ ∫ t

0

(
− 1

Ω2
t

α
∂Ωt

∂θ
+

1
Ω2

t

β
∂Ωt

∂r
− 1

Ωt

∂Ωt

∂t

)
ds

}
where in the last equality we used the properties of Ω and the fact that ∂Ωt

∂t = −Ω.
So, we have to prove that

Ωt(Θt, Rt) exp
{ ∫ t

0

(
− 1

Ω2
t

α
∂Ωt

∂θ
+

1
Ω2

t

β
∂Ωt

∂r
− 1

Ωt

∂Ωt

∂t

)
ds

}
= 1.

Passing to the logarithm and differentiating with respect to t this equality is true
if and only if

− 1
Ω2

t

α
∂Ωt

∂θ
+

1
Ω2

t

β
∂Ωt

∂r
− 1

Ωt

∂Ωt

∂t
= − 1

Ωt

[
∂Ωt

∂θ
Θ̇t +

∂Ωt

∂r
Ṙt +

∂Ωt

∂t

]
that is the case remembering the definition of Θt and Rt.

Step 4. The function g2 = g1◦φ1 satisfies the lemma. Indeed, by the previous
step

det g′2 = det(g′1 ◦ φ1) detφ′1 = Ω1(Θ1, R1) det
(
∂(Θ1, R1)
∂(θ, r)

)
= 1

that means that is area preserving. Moreover, by the definition of the vector
field (X1, X2) we have φ1|∂B = id and φ1|A0 = id that imply g2|∂B = id and
g2|A0 = S. �

With the same notation let us conclude with the proof of Lemma 2.5. This
part does not involve differential forms so we report the version by Franks.

Proof of Lemma 2.5. Let g̃2: B̃ → B̃ be the lift (fixed by the boundary
twist condition) of g2 that extends f̃ : Ã→ B̃. Now consider

M0 := sup
x∈ eB

d(g̃2(x), x)

where d is the distance in R2 and fix M > M0. So we have that M is greater
than the distance that a point in B̃ could be moved by g̃2. Now consider the
strip Ã+ = R× [a0, a0 + ε] ⊂ Ã such that by the boundary twist condition and
continuity we have that for all x ∈ Ã+

(2.5) P (g̃2(x))− P (x) > δ

where P (x1, x2) = x1 is the projection on the first component.
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Define h̃: B̃ → B̃ by

h̃(θ, r) = (θ +Mρ(r), r)

where ρ(r) is smooth, monotone such that ρ(r) = 0 for r < a0 and ρ(r) = 1 for
r > a0 + ε. Notice that h̃ is area preserving, it is the identity for r < a0, it is
a translation by M if r > a0 +ε, if x ∈ Ã+ then h̃(x) ∈ Ã+ and P (h̃(x)) > P (x).

Finally consider
g̃3 = g̃2 ◦ h̃.

For x ∈ Ã+, using (2.5), we have:

P (g̃3(x))− P (x) = P (g̃2(h̃(x)))− P (x) > δ + P (h̃(x))− P (x) > δ > 0

which means that we do not have fixed points in Ã+. Moreover, if we take
x = (θ, r) ∈ R× [a0 +ε, b] then g̃3(x) = g̃2(h̃(x)) = g̃2(θ+M, r) and by definition
of M that means that we do not have fixed points in R × [a0 + ε, b] and the
boundary twist condition is satisfied on R× {b}.

To conclude we consider Ã− = R × [−a0 − ε,−a0] and define analogously
h̃′(θ, r) = (θ−Mρ(r), r) with similar properties of h̃. Defining g̃ = g̃3 ◦ h̃′ we get
also the complete boundary twist condition. �

Let us conclude with a remark on the stability of such fixed points. Remem-
ber that a fixed point p of a one-to-one continuous map S:U ⊂ RN → RN is said
to be stable in the sense of Liapunov if for every neighbourhood V of p there
exists another neighbourhood W ⊂ V such that, for each n > 0, Sn(W ) is well
defined and Sn(W ) ⊂ V . We have:

Corollary 2.6. If S is analytic, at least one of the fixed points coming
from Theorem 2.2 is unstable.

Proof. For the special case of dimension two, there exists a relation between
the stability of a fixed point and its fixed point index. In fact it was proved
in [20] that if a continuous one-to-one map S which is also orientation and area
preserving has a stable fixed point p then either S = id in some neighbourhood
of p or there exists a sequence of Jordan curves {Γn} converging to p such that,
for each n,

Γn ∩ Fix(S) = ∅, i(S, Γ̂n) = 1

where Γ̂n is the bounded component of R2 \ Γn.
The set of fixed points can be described by the equation

(F (θ, r)− θ)2 + (G(θ, r)− r)2 = 0.

This is an analytic subset of the plane, indeed is the set of the zeros of an
analytic function. The local structure of these sets is described in [12]: they
can contain arcs, isolated points and points with a finite number of branches
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emanating from them. In the cases of a non isolated fixed point we can not find
a sequence of Jordan curves converging to the point and not crossing the set, so
we have instability. In the case of isolated fixed points, remember that the Euler
characteristic of the strip is null, so, using the Poincaré–Hopf index formula for
manifolds with boundary [8, Theorem 3.1, p. 447 and Proposition 4.5, p. 233],
at least one fixed point does not have positive index and so it is unstable. �

2.2. The twist condition. In this section we will consider the case in which
the map S satisfies a twist condition. More precisely, using the same notation
of the previous section, consider a map S: Ω → R where Ω = {(θ, r) ∈ R2 :
a < r < ψ(θ)}, a is a fixed constant and ψ: R → ]a,+∞] is a 2π-periodic, lower
semi-continuous function.

Definition 2.7. The defined above map S satisfies the twist condition if
∂θ1/∂r > 0. If the map is defined from an annulus into itself, we say that
satisfies the twist condition if the lift satisfies the same condition.

Note that the just introduced twist condition and the boundary twist condi-
tion used in Theorems 2.2 and 2.3 are independent. Indeed, consider the annulus
A = BbbS1 × [−1, 1]: the map {

θ1 = θ + er,

r1 = r,

satisfies the twist condition but not the boundary twist one; the map{
θ1 = θ + r2 +

3
2
r,

r1 = r,

satisfies the boundary twist condition but not the twist one. Moreover, the two
conditions coexist in the map {

θ1 = θ + r,

r1 = r.

The twist condition is important in itself because it is fundamental for the ap-
plication of the Aubry–Mather theory. In our case it will lead us to more results
on the equation of the forced relativistic pendulum.

It can be proved that (see [21]):

Theorem 2.8. Assume that S is exact symplectic and satisfies the twist
condition. Fix an integer N and assume that for each θ ∈ R there exists rθ ∈
]a, ψ(θ)[ with

(2.8) F (θ, a) < θ + 2Nπ < F (θ, rθ).
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Then the system

(2.9)

{
F (θ, r) = θ + 2Nπ,

G(θ, r) = r,

with θ ∈ [0, 2π[, (θ, r) ∈ Ω, has at least two solutions.

We will explore some consequences of this theorem but let us first point out
some remarks on the concept of intersection property.

Consider the cylinder C = S1×R with the usual covering map Π(θ, r) = (θ, r);
by the periodicity of S, we can define a new map, also denoted by S, mapping
Π(Ω) into C. Consider also a non contractible Jordan curve Γ in C with positive
orientation. The curve Γ divides C in two connected components and let us call
R−(Γ) the lower one and R+(Γ) the other one; similarly the curve Γ1 = S(Γ)
divides C in two connected components and let us call R−(Γ1) and R+(Γ1). We
can give the following

Ddefinition 2.9. Using the notations given above, we say that a map
S:C → C has the intersection property if for every non-contractible Jordan
curve Γ ⊂ C that is the graph of a function,

Γ ∩ S(Γ) 6= ∅.

A map S:C → C has the strong intersection property if it has the intersection
property and for every non-contractible Jordan curve Γ ⊂ C that is the graph
of a function, either Γ = S(Γ) or

S(Γ) ∩R+(Γ) 6= ∅ and S(Γ) ∩R−(Γ) 6= ∅.

In the proof of Theorem 2.8 it was proved that if a map S:C → C is exact
symplectic and preserves the orientation, then it has the strong intersection
property. Note that the strong intersection property implies the intersection
property, while the converse is false. As a counterexample consider the following
map of the cylinder in itself: {

θ1 = θ,

r1 = r + ψ(θ),

where ψ(θ) is a non-negative continuous function such that exists θ∗ such that
ψ(θ∗) = 0. Moreover, we have that

Lemma 2.10. If a map S:C → C has the strong intersection property, then
for every non-contractible Jordan curve Γ ⊂ C that is the graph of a function we
have that the set Γ ∩ S(Γ) contains at least two points.

Proof. The case Γ = S(Γ) is trivial. In the other case the strong intersec-
tion property implies that there exist two points p+ ∈ R+(Γ) and p− ∈ R−(Γ)
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that are connected by an arc γ ⊂ S(Γ). But S(Γ) is a Jordan curve so there
must exists another arc γ∗ ⊂ S(Γ) connecting p− to p+ and crossing Γ in a point
p∗ 6= p. �

Now we are ready to prove two corollaries of Theorem 2.8

Corollary 2.11. If in Theorem 2.8 we require also that S(θ, r) is analytic
then the set of the solutions of system (2.9) is either finite or the graph of an
analytic 2π-periodic function.

Proof. By (2.8) and the twist condition, we get that for each θ the equation

(2.10) F (θ, r) = θ + 2Nπ

has a unique solution r := φ(θ). By the uniqueness we have that φ is 2π-periodic.
Moreover, because of the twist condition we can apply, for a fixed θ, the analytic
version of the implicit function theorem and get an open neighbourhood Uθ and
an analytic function φ̃:Uθ → R such that F (θ, φ̃(θ)) = θ + 2Nπ on Uθ. But,
by uniqueness, φ(θ) = φ̃(θ) on Uθ. Repeating the argument for each θ, we get
that φ is also analytic. So, S(θ, φ(θ)) is the graph of an analytic function in the
cylinder: let us call it φ1(θ). This comes from the analyticity and the periodicity
of S and the fact that φ(θ) satisfies equation (2.10). So, by Lemma 2.10, φ and
φ1 must intersect in at least two points of the cylinder that are the solutions
of system (2.9) when elevated. Moreover, from the theory of analytic functions,
we know that either the set {θ ∈ [0, 2π] : φ(θ) = φ1(θ)} is finite or φ(θ) = φ1(θ)
for all θ. �

Corollary 2.12. Suppose that in Theorem 2.8, condition (2.8) is satisfied
for some N ∈ Z. Let (θ̂, r̂) be an isolated solution of system (2.9) and define the
map T (θ, r) = (θ + 2π, r). Then i(T−NS, (θ̂, r̂)) is either −1 or 0 or 1.

Proof. First of all notice that i(T−NS, (θ̂, r̂)) is well defined because (θ̂, r̂)
is an isolated fixed point of T−NS. To compute the index remember that

i(T−NS, (θ̂, r̂)) = deg(T−NS − id, Bδ(θ̂, r̂))

where deg indicates the Brouwer degree and δ could be chosen small enough by
the excision property. So we will deal with the degree of the map

(T−NS − id)(θ, r) = (F (θ, r)− 2Nπ − θ,G(θ, r)− r)

:= (F̃ (θ, r), G̃(θ, r)) := S̃(θ, r)

and to compute it we will use a technique by Krasnosel’skĭı [13] that allows to
reduce the dimension.

By the hypothesis, the point (θ̂, r̂) is an isolated zero of F̃ (θ, r) and by the
twist condition ∂ eF

∂r = ∂F
∂r > 0. So we can apply the implicit function theorem to
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the equation F̃ (θ, r) = 0 and find a C1 function φ(θ) defined on a neighbourhood
of θ̂ such that F̃ (θ, φ(θ)) = 0 and φ(θ̂) = r̂. Hence it is well defined the function

Φ(θ) = G̃(θ, φ(θ))

which has θ̂ as an isolated zero. Now consider the homotopy

H((θ, r), λ) =

{
λF̃ (θ, r) + (1− λ)(r − φ(θ)),

λG̃(θ, r) + (1− λ)Φ(θ).

We claim that it is admissible i.e. (θ̂, r̂) is an isolated zero for every λ. Indeed
consider the system

(2.11)

{
λF̃ (θ, r) + (1− λ)(r − φ(θ)) = 0,

λG̃(θ, r) + (1− λ)Φ(θ) = 0.

Because of the twist condition, if we define F(θ, r, λ) = λF̃ (θ, r)+(1−λ)(r−φ(θ)),
we have

∂F
∂r

(θ̂, r̂, λ) = λ
∂F̃

∂r
(θ̂, r̂) + (1− λ) > 0

and so we can apply the implicit function theorem to solve the first equation
in a neighbourhood of θ̂ and by the uniqueness the only solution is r = φ(θ).
Substituting it in the second equation we get, because of the definition of Φ(θ),

λG̃(θ, φ(θ)) + (1− λ)Φ(θ) = 0 ⇒ λΦ(θ) + (1− λ)Φ(θ) = 0 ⇒ Φ(θ) = 0

that, remember, has θ̂ as an isolated solution. So (θ̂, r̂) is an isolated solution
of system (2.11) and we can choose δ small enough such that (θ̂, r̂) is the only
solution in Bδ(θ̂, r̂). So we are led to the computation of the degree of the map

(θ, r) 7→ (r − φ(θ),Φ(θ))

that, if Φ′(θ̂) 6= 0, can be easily computed by linearization.
However it could happen that Φ′(θ̂) = 0. So consider the other homotopy

H((θ, r)λ) =

{
λF̃ (θ̂, r) + (1− λ)(r − φ(θ)),

Φ(θ),

where θ̂ is fixed. To prove that it is admissible, consider the system{
λF̃ (θ̂, r) + (1− λ)(r − φ(θ)) = 0,

Φ(θ) = 0.

By the definition of Φ(θ) we have that θ̂ is an isolated solution of the second
equation that, substituted in the first one, gives λF̃ (θ̂, r) + (1 − λ)(r − r̂) = 0.
We have that r̂ is a solution and is also the only one, because by the twist
condition we have

∂

∂r
[λF̃ (θ̂, r) + (1− λ)(r − r̂)] > 0.
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So (θ̂, r̂) is an isolated solution of the system, the homotopy is admissible and
we can compute the degree of the function

W (θ, r) = (F̃ (θ̂, r),Φ(θ)).

To use the factorization property of the degree consider the function L(x, y) =
(y, x). We have

deg(L ◦W,Bδ(θ̂, r̂)) = deg(L,Bδ(0, 0)) deg(W,Bδ(θ̂, r̂)) = −deg(W,Bδ(θ̂, r̂)).

Now, by the factorization property

deg(W,Bδ(θ̂, r̂)) = − deg(F̃ , I
br) deg(Φ, I

bθ)

= − sign
{
∂F

∂r
(θ̂, r̂)

}
deg(Φ, I

bθ) = −deg(Φ, I
bθ).

The function Φ is defined in dimension 1 so its degree can be either 0 or 1 or −1.
Finally i(T−NS, (θ̂, r̂)) can be either 0 or 1 or −1. �

(a) i = +1, Φ′(θ̂) 6= 0 (b) i = +1, Φ′(θ̂) = 0

(c) i = 0, Φ′(θ̂) = 0 (d) i = −1, Φ′(θ̂) = 0

(e) i = −1, Φ′(θ̂) 6= 0

Figure 1. Possibilities of intersections
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Remark 2.13. An intuitive idea of when these cases could occur is given by
Figure 1.

3. Applications to the Poincaré map
induced by a forced relativistic pendulum

3.1. Proof of Theorem 1.1. We are looking for T -periodic solutions with
winding number N of the equation

(3.1)
d

dt

(
ẋ√

1− ẋ2

)
+ a sinx = f(t),

under the hypothesis previously stated in the introduction.
First of all notice that physical intuition suggests that it should not be pos-

sible to have such solutions for every N and T , because of the bound given by
the speed of light. This is a necessary condition that holds for a larger class of
equations, namely:

Proposition 3.1.Let x(t) be a T -periodic solution with winding number N
of

(3.2)
d

dt

(
ẋ√

1− ẋ2

)
= F (t, x)

where F (t, x) is continuous and T -periodic in t. Then

(3.3)
∣∣∣∣2NπT

∣∣∣∣ < 1.

Proof. By Lagrange theorem we get

|2Nπ| = |x(t+ T )− x(t)| = |ẋ(c)T | for some c ∈ (t, t+ T ).

But the domain of equation (3.2) is |ẋ(t)| < 1 for all t, so |2Nπ| < T . �

In this section we will see why the relativistic condition (3.3) is also sufficient
to have T -periodic solutions with winding number N . The proof will be an
application of Theorem 2.2 considering S̃ the Poincaré map.

First of all, let us perform the change of variables

(3.4) y(t) = x(t)− 2Nπ
T

t.

Notice that in this way y(t + T ) = y(t) and T -periodic solutions with winding
number N of (3.1) correspond to classical T -periodic solutions of

(3.5)
d

dt

(
ẏ + 2Nπ/T√

1− (ẏ + 2Nπ/T )2

)
+ a sin

(
y +

2Nπ
T

t

)
= f(t).

We will find T -periodic solutions of equation (3.5) as fixed points of the Poincaré
map.
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Equation (3.5) can be seen as the Euler–Lagrange equation coming from the
Lagrangian

L(y, ẏ, t) = −

√
1−

(
ẏ +

2Nπ
T

)2

+ a cos
(
y +

2Nπ
T

t

)
+ f(t)y

and presents singularities. On the other hand, if we perform the change of
variables given by the Legendre Transform

(3.6)


q = y,

p =
∂L

∂ẏ
=

ẏ + 2Nπ/T√
1− (ẏ + 2Nπ/T )2

,

we get the Hamiltonian

H(q, p, t) = [pẏ−L(q, ẋ, t)]ẏ=ẏ(p) =
√
p2 + 1− 2Nπ

T
p−a cos

(
q+

2Nπ
T

t

)
−f(t)q

and the new Hamiltonian system

(3.7)


q̇ =

p√
1 + p2

− 2Nπ
T

,

ṗ = −a sin
(
q +

2Nπ
T

t

)
+ f(t).

that has no singularities and has solutions globally defined.
Now let S(q0, p0) = (Q(q0, p0), P (q0, p0)) = (q(T, q0, p0), p(T, q0, p0)) be the

Poincaré map associated to system (3.7) that is well defined because of the
boundedness of the second term. First of all notice that the Poincaré map is
isotopic to the inclusion. The isotopy is simply given by the flow φ, in fact we
have the isotopy

φ(tT, q0, p0) t ∈ [0, 1].

Notice that this isotopy is valid also in the cylinder because by periodicity we
have

φ(t, q0 + 2π, p0) = φ(t, q0, p0) + (2π, 0).

Moreover, inspired by [14] we can prove:

Lemma 3.2. The Poincaré map S is exact symplectic in the cylinder.

Proof. Let us call θ = q0, r = p0 and K = 2Nπ/T . Consider the function

V (θ, r) =
∫ T

0

[
p

(
p√

1 + p2
−K

)
−H(q, p, t)

]
dt

=
∫ T

0

[
−

√
1

1 + p2(t, θ, r)
+ a cos(q(t, θ, r) +Kt) + f(t)q(t, θ, r)

]
dt.
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First of all, it follows from the periodicity of (3.5) and the change of variables
(3.6) that q(t, θ+2π, r) = q(t, θ, r)+ 2π and p(t, θ+2π, r) = p(t, θ, r). Hence we
have

V (θ + 2π, r) = V (θ, r)

using the hypothesis of the null mean value of f .
Now let us compute the differential dV . We have

Vθ =
∫ T

0

[
p

(1 + p2)3/2

∂p

∂θ
+ (−a sin(q +Kt) + f(t))

∂q

∂θ

]
dt(3.8)

=
∫ T

0

[
p

(1 + p2)3/2

∂p

∂θ
+ ṗ

∂q

∂θ

]
dt

using the second equation in (3.7). Now, integrating by parts and using the first
equation in (3.7) we get∫ T

0

ṗ
∂q

∂θ
dt =

[
p
∂q

∂θ

]T

0

−
∫ T

0

p
∂q̇

∂θ
dt =

[
p
∂q

∂θ

]T

0

−
∫ T

0

p

(1 + p2)3/2

∂p

∂θ

that, substituted in (3.8) gives

Vθ = p(T )
∂q

∂θ
(T )− p(0)

∂q

∂θ
(0).

Analogously we can get

Vr = p(T )
∂q

∂r
(T )− p(0)

∂q

∂r
(0).

Hence dV = p1 dq1−p dq, that means that the function V will satisfy the thesis.�

Finally, the relativistic effect will give also the boundary twist condition:

Lemma 3.3. If |2Nπ/T | < 1 then there exists p̃ > 0 and r > 0 such that

Q(q,−p̃)− q < −δ and Q(q, p̃)− q > δ.

Proof. Let us prove the first inequality, being the second similar. Let us
call K := 2Nπ/T , |K| < 1 and consider the function, coming from system (3.7),

A(p) =
p√
p2 + 1

.

We have that A(p) is an odd increasing function such that A(0) = 0 and
lim

p→±∞
A(p) = ±1. Since |K| < 1, by continuity, we can find p̂ > 0 such that{

A(p) > K for p > p̂,

A(p) < K for p < −p̂.

Now, integrating the second equation of (3.7) we get, for t ∈ [0, T ],

p(t) = p0 −
∫ t

0

a sin(q(s) +K) ds+
∫ t

0

f(s) ds ≤ p0 + t(a+ ‖f‖∞)
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and so we can find p̃ > 0 large enough so that if p0 < −p̃ then p(t) < −p̂ for
t ∈ [0, T ]. It means

q̇(t) =
p(t)√

1 + p2(t)
− 2Nπ

T
< 0, t ∈ [0, T ],

that is q(t) is decreasing if t ∈ [0, T ] so,

Q(q0,−p̃) = q(T, q0,−p̃) < q(0, q0,−p̃) = q0.

Now a standard compactness argument concludes the proof. �

Now it is straightforward the application of Theorem 2.2 choosing the strip
Ã = R × [−p̃, p̃] and the fact that solutions of system (3.7) are globally defined
implies that we can find a larger strip B̃ such that S(Ã) ⊂ int B̃. Finally we have
that the right-hand side of (3.7) is analytic in (q, p) then, by analytic dependence
on initial conditions, also the Poincaré map is analytic. Notice that we do not
need the analyticity of f [15, p. 44]. So, using Corollary 2.6 we get the instability
of one solution. Then theorem 1.1 is proved.

Remark 3.4. Similar results on the classical pendulum have been obtained
by Franks in [7, Proposition 5.1]. He proved the existence of fixed points for the
Poincaré map using his version of the Poincaré–Birkhoff theorem and affirmed
that they should have positive or negative index. This result needs some clarifi-
cation. In fact there is another possibility: there could be only a continuum of
fixed points and the fixed point index could not be defined. Consider the equa-
tion of the classical pendulum: the existence or not of forcing terms f of null
mean value such that the periodic solutions are represented only by a continuum
in still an open problem. Anyway, as a related example consider the equation

ÿ + a sin
(
y +

2π
T
t

)
= 0

where the potential depends on time. Its T -periodic solutions correspond, via
the change of variables x = y + 2πt/T to solutions x(t) of

ẍ+ a sinx = 0

such that x(t+T ) = x(t) + 2π. These solutions forms the graph of a function in
the phase space, so it is impossible to define the index.

3.2. Proof of Theorem 1.2 and consequences. We will prove the result
for the Poincaré map of system (3.7). In the case a = π2/T 2 we will have to
prevent the function f from being the trigonometric function a sin(2Nπt/T ).

According to the previous section let us call

S(q0, p0) = (Q(q0, p0), P (q0, p0)) = (q(T, q0, p0), p(T, q0, p0))
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the Poincaré map associated to system (3.7) in which we suppose a ≤ π2/T 2.
We have to prove that ∂q

∂p0
(T, q0, p0) > 0. If we call

x(t) =
∂q

∂p0
(t, q0, p0), y(t) =

∂p

∂p0
(t, q0, p0),

we know from the elementary theory of ODEs that the vector (x(t), y(t)) satisfies
the variational equation

ẋ =
1

(1 + p2(t, q0, p0))3/2
y,

ẏ = −a cos
(
q(t, q0, p0) +

2Nπ
T

t

)
x,

x(0) = 0,

y(0) = 1,

that is equivalent to the problem

(3.9)



d

dt

(
ẋ(1 + p2(t, q0, p0))3/2) + a cos(q(t, q0, p0) +

2Nπ
T

t

)
x = 0,

x(0) = 0,

ẋ(0) =
(

1
p2
0 + 1

)3/2

.

Now consider the equation

(3.10) z̈ +
π2

T 2
z = 0

and first suppose that a < π2/T 2. In this case we have that

(1 + p(t)2)3/2 ≥ 1 and a cos
(
q +

2Nπ
T

t

)
≤ a <

π2

T 2

then (3.10) is a strict Sturm majorant of (3.9). So the Sturm theory and the fact
that the function z(t) = sin(tπ/T ) is a solution of (3.10), prove that x(T ) > 0
and the thesis will follow.

Now consider the case a = π2/T 2. First of all the hypothesis f(t) 6=
a sin(2Nπt/T ) prevents q = 2kπ from being a solution. This means that there
exists an open subset of positive measure of [0, T ] on which q 6= 2kπ and so∫ T

0

π2

T 2
cos q(t) dt <

∫ T

0

π2

T 2
dt.

In this case we can use a generalization of the classical Sturm separation theo-
rem. It can be achieved adapting the classical proof (cf. [10]) to our framework.
Consider the argumentum θ1 and θ2 respectively of (3.9) and (3.10) coming from
the Prufer change of variables; then we can conclude that θ1(T ) > θ2(T ). Re-
membering that in this framework we have that x(t̃) = 0 if and only if θ(t̃) = kπ
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for some k ∈ Z and we are rotating in the clockwise sense, we can conclude us-
ing the same argumentation of the previous case translated into the phase-space
(x, pẋ). The proof of Theorem 1.2 is complete.

Remark 3.5. The condition a ≤ π2/T 2 is optimal. Indeed suppose a >

π2/T 2 and consider the autonomous system
q̇ =

p√
1 + p2

− 2Nπ
T

,

ṗ = −a sin
(
q +

2Nπ
T

t

)
.

Notice that (p = 0, q = −2Nπt/T ) is an obvious solution. As before consider
the variational equation

d

dt
(ẋ(1 + p2(t, q0, p0))3/2) + a cos

(
q(t, q0, p0) +

2Nπ
T

t

)
x = 0.

Notice that evaluated in the above solution it is nothing but

ẍ+ ax = 0.

Using Sturm comparison with ÿ+ (π2/T 2)y = 0 we can conclude analogously as
before that x(T ) < 0: it means that we do not have the twist condition. Finally
note that in the case a = π2/T 2 we have x(T ) = 0 and again the twist condition
fails.

The fact that the Poincaré map satisfies the twist condition allows us to enter
in the huge chapter of twist maps. In particular we will get some more results
on equation (1.1). To state it remember that a T -periodic solution with winding
number N is said to be isolated if there exists δ > 0 such that every solution
(q(t), p(t)) satisfying

0 < |q(0)− q̂(0)|+ |p(0)− p̂(0)| < δ

is not T -periodic with winding number N . We have:

Theorem 3.6. If 0 < a < π2/T 2 either the number of isolated T -periodic
solutions with winding number N is finite or we are in the degenerate case and
every degenerate solution is unstable. Moreover, in the first situation, the index
of such solution is either −1 or 0 or 1. If we consider the case a = π2/T 2 and
we add the hypothesis that f(t) is not the trigonometric function a sin(2Nπt/T ),
we get the same results.

Proof. By the twist condition we can apply the results of Section 2.2.
In particular Theorem 2.8 runs with Ω = {(q, p) ∈ R2 : −p̃ < p < p̃} where
p̃ comes from Lemma 3.3. Indeed, if we take rθ = p̃− ε with ε sufficiently small,
condition (2.8) holds with N = 0 by continuous dependence, and from the previ-
ous section we have that the Poincaré map is exact symplectic. This is another
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way to find two periodic solutions. Notice that it is a weaker result because we
need the restriction on the parameter a.

Anyway the Poincaré map is analytic, so, by Corollary 2.11, we have that
fixed points either are isolated or form the graph of an analytic 2π-periodic
function. Moreover, by Corollary 2.12 we have the informations on the degree.

The translation of these results from the Poincaré map to the differential
equation gives informations on the periodic solutions of system (3.7) and, by the
change of variables (3.4) we get analogous results on the T -periodic solutions
with winding number N of system (3.7). �

4. The autonomous case

Finally, consider the case f = 0, i.e. the autonomous equation

(4.1)
d

dt

(
ẋ√

1− ẋ2

)
+ a sinx = 0

with a ≤ π2/T 2, that can be treated with a phase portrait analysis. Let us
consider the case T = 2π, so that a ≤ 1/4.

Figure 2. Phase portrait

First of all it is easily seen that the points (kπ, 0), k ∈ Z are constant solutions
in the phase space (x, ẋ). This analysis is quite simple because the energy

(4.2) E(x, ẋ) =
1√

1− ẋ2
− a cosx+ a

is a first integral and we suddenly reach the conditions

(4.3) E ≥ 1 and − 1 < ẋ < 1.

Remembering that a ≤ 1/4 we get the phase portrait in Figure 2 where we have
the constant solution (0, 0) for E = 1, periodic orbits for 1 < E < 1 + 2a, the
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heteroclinic orbits for E = 1 + 2a and the unbounded solutions for E > 1 + 2a.
Moreover, from the first integral (4.2) we can see the velocity as a function of
the time and energy and ẋ→ ±1 as E → +∞ depending on the sign of ẋ(0).

Now we turn to the study of the period of the periodic orbits, in particular,
in order to complete Theorem 1.1 we will study the number of 2π-periodic orbits.

Proposition 4.1. The only 2π-periodic solutions of equation (4.1) are the
constant ones (kπ, 0) with k ∈ Z.

Proof. We will prove that the period of every orbit (except for the constants
one) is strictly greater than 2π. To do so, by the symmetries of the phase portrait,
it is enough to prove that for every non-constant periodic orbit, ẋ(π, x0, 0) > 0
with x0 < 0.

Let us write the solution x(t, E) such that x(0, E) = arccos(1 − E/a) and
ẋ(0, E) = 0 and compute ∂ẋ

∂E (π,E). Remembering (4.3) and a ≤ 1/4 we have

∂ẋ

∂E
> 0 for E > 1.

Notice that the point (0, 0) is a strict minimum of E(x0, ẋ0) an so

ẋ(π,E(0, 0)) < ẋ(π,E(x0, ẋ0)) for all (x0, ẋ0) 6= (0, 0).

Now, remembering that E is constant on the solutions, we have that for every
initial condition (x0, ẋ0) such that 1 < E(x0, ẋ0) < 1 + 2a there exists x̂ < 0
such that E(x0, ẋ0) = E(x̂, 0) and ẋ(π,E(x̂, 0)) > ẋ(π,E(0, 0)) = 0. �

Looking for T -periodic solutions with winding number N we can do the
following. By the phase portrait analysis we got that for E > 1+2a the solution
is unbounded and the orbit in the phase plane is the graph of a function. In this
case we will show

Proposition 4.2. Fix |N | ≥ 1 and T ≥ 2π such that 2Nπ/T < 1. Then
there exists exactly one value of the energy E > 1 + 2a such that

x(T + t, E) = x(t, E) + 2Nπ.

Proof. Let us prove in the case t = 0, x(0) = 0 and N > 0.
Remembering the energy (4.2) we can define a function TN (E) such that

x(TN (E)) = 2Nπ (i.e. TN (E) is the time needed by a solution starting from 0
at t = 0 to reach 2Nπ), namely

TN (E) =
∫ 2Nπ

0

dx√
1− 1/(E + a cosx− a)2

.

Notice that it is continuous, monotone decreasing in E and

lim
E→1+2a

TN (E) = +∞, lim
E→+∞

TN (E) = 2Nπ.
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The proposition is proved if we can find E > 1 + 2a such that TN (E) = T . It is
automatic using the properties just mentioned and the fact that by hypothesis
T > 2Nπ. �
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Vector Fields, Academic Press, 1966.

[14] M. Kunze and R. Ortega, Twist mappings with non-periodic angles, Stability and Bi-

furcation for Non-autonomous Differential Equations, LNM, vol. 2065, Springer, Berlin,
2013, pp. 265–300.

[15] S. Lefschetz, Differential Equations: Geometric Theory, Dover, New York, 1977.

[16] J. Mawhin, Resonance problems for some non-autonomous ordinary differential equa-

tions, Stability and Bifurcation for Non-autonomous Differential Equations, LNM,
vol. 2065, Springer, Berlin, 2013, pp. 103–184.

[17] J. Mawhin and M. Willem, Multiple solutions of the periodic boundary value problem

for some forced pendulum-type equation, J. Differential Equations 52 (1984), 264–287.

[18] J. Milnor, Lectures on the h-Cobordism Theorem, Princeton Univ. Press, 1965.

[19] J. Moser, On the volume elements on a manifonld, Trans. Amer. Math. Soc. 120 (1965),
286–294.

[20] R. Ortega, Retracts, fixed point index and differential equations, Rev. R. Acad. Cienc.
Extras Fis. Nat. Ser. A. Mat. RACSAM 102 (2008), 89–100.

[21] , Linear motions in a periodically forced Kepler problem, Portugal. Math. 68
(2011), 149–176.



Periodic Solutions of a Forced Relativistic Pendulum 75

[22] R. Ortega and M. Tarallo, Degenerate equations of pendulum-type, Commun. Con-

temp. Math. 2 (2000), 127–149.

[23] M. Willem, Oscillations forcées de l’équation du pendule, Pub. IRMA Lille 3 (1981),

V-1–V-3.

Manuscript received October 4, 2011

Stefano Marò
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