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ANALYTIC ROBUSTNESS
OF PARAMETER-DEPENDENT PERTURBATIONS
OF DIFFERENCE EQUATIONS

Luis BARREIRA — CLAUDIA VALLS

ABSTRACT. We establish the robustness of nonuniform exponential di-
chotomies under sufficiently small analytic parameter-dependent pertur-
bations. We also show that the stable and unstable subspaces of the expo-
nential dichotomies depend analytically on the parameter.

1. Introduction
We consider nonautonomous linear difference equations
(1.1) Umt1 = AmUm + B (N vm

in a finite-dimensional space, where A — B,,(\) is analytic for each m € Z.
Assuming that the unperturbed dynamics

(12) Um+1 = Amvm

has a nonuniform exponential dichotomy, we establish the existence of non-
uniform exponential dichotomies for equation (1.1) provided that the the maps
By, ()\) are sufficiently small. Namely, we assume that there exists a constant
4 > 0 such that

IBm(A)|| < eI
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for every m € Z, for some appropriate constant ¢ > 0. The above property is
called the robustness of the dichotomy. Moreover, we show that the stable and
unstable subspaces associated to equation (1.1) are analytic in .

The notion of exponential dichotomy, introduced by Perron in [10], plays
a central role in a large part of the theory of dynamical systems, and the study
of robustness has a long history. In particular, the problem was discussed by
Massera and Schéffer [7] (building on earlier work of Perron [10]; see also [8]),
Coppel [5], and in the case of Banach spaces by Dalec’kii and Krein [6]. For more
recent works we refer to [4], [9], [11], [12] and the references therein. We note that
all these works consider only uniform exponential dichotomies. This is a very
stringent notion for the dynamics, and it is of interest to look for more general
types of hyperbolic behavior. In particular, when all Lyapunov exponents are
nonzero the linear dynamics in (1.2) has a nonuniform exponential dichotomy.
We refer to the books [1], [2] for detailed related discussions.

2. Setup

We describe in this section the standing assumptions in the paper. Given
a sequence (A, )mez of | x I matrices with real entries, we consider the difference
equation
Uma1 = AmUm, m € Z.
For each m,n € Z with m > n, we have v, = A(m,n)v,, where
Ap_1... A, ifm>n,
Id if m=n.

A(m,n) = {

We say that the sequence (A, )mez admits a nonuniform exponential dichotomy
if:
(a) there exist projections P,,:R! — R! for each m € Z satisfying

A(m,n)P, = P, A(m,n), m>n,

such that the map

A(m,n) := A(m,n)| ker P,:ker P,, — ker P,
is invertible for each m > n;
(b) there exist constants a, D,e > 0 such that
| A(m,n) Py, || < De~em=mtelnl =y >
1A (m, n)@nl| < Dem@=mFelnl - <,

where @Q,,, = Id — P,, for each m € Z, and where

(2.1)

A(m,n) = A(n,m) " ker P,, m <n.
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Given a nonuniform exponential dichotomy, for each n € Z we define the stable
and unstable subspaces by

E,=P,(RY) and F,=Q,(R").

Now let M; and J\A/[/l be respectively the sets of [ x| matrices with real and complex
entries. We denote by H the space of continuous functions L: A — M;, where

A={(A,..., Ap) eRP: )| <1fori=1,...,p},

admitting a continuous extension L:A — ]\A/[/l which is holomorphic in the interior
of the polydisk

A={(,... Ap) €ECP N <1lfori=1,...,p}
We equip the space JH with the norm
IL]|:= sup{[[L(A)[| : A € A}.

We also consider parameterized perturbations of a nonuniform exponential di-
chotomy. Namely, given a sequence (By,)mez C H, we assume that there is
a constant § > 0 such that

(2.2) 1B (A)]| < g2l

for every m € Z and A € int A. In particular, it follows from Cauchy’s integral
formula for the first derivative that

|B!,(A)|| < e3¢ for every m € Z and X € int A.
Given n € Z and v,, = (§,n) € E,, x F,,, we denote by
(@m, Ym) = (€m (1,00, A), Yo (1, 00, A))
the sequence obtained from the difference equation
(2.3) Um+1 = Amvm + Bin(M)vy, meZ

with vy, = (Zm, Ym ). One can easily verify that

(2.4) tn = Al )+ 3 PruA(m, L+ 1) BN ),
l=n
m—1

(2.5) Ym = Am,m)n+ Y QuA(m, 1+ 1)Bi(\) (w1, m),

l=n

for m > n, with analogous identities for m < n.
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3. Analytic robustness and strategy of the proof

We want to show that if the sequence (A, )mez admits a nonuniform expo-
nential dichotomy, then for each A the same happens with the sequence (A, v,, +
B,,(A\)mez, in fact with stable and unstable subspaces varying analytically
with A. The following is our main result.

THEOREM 3.1. If the sequence (Ap)mez admits a nonuniform exponential
dichotomy satisfying

(3.1) —a+ 2 <0,

and X\ — B,,,(\), form € Z, are analytic functions satisfying (2.2), then provided
that § is sufficiently small, the sequence (A + B (\))mez admits a nonuniform
exponential dichotomy for each \ € A, with the same constant a, and with the
constant ¢ replaced by 2e. Moreover, the stable and unstable subspaces E;\ and
F) of these dichotomies are analytic in \.

Now we describe the strategy of the proof. We note that some of the ar-
guments are inspired in our work [3], although now for analytic perturbations
and for exponential dichotomies on the whole line. For simplicity, we consider
only the stable subspaces E;, although the discussion for the unstable subspaces
would be entirely analogous. Being a vectorspace, F;) must be the graph of a lin-
ear operator. Moreover, one should expect that E is close to E,, provided that
the functions B,, are sufficiently small. This leads us to look for each space E;)
as a graph over F,. More precisely, we look for linear operators ®, x: E, — F),
such that

(3.2) E) = graph(Idg, + ®,.), ncZ.

The unstable subspaces F) are obtained in a similar manner. Namely, we look
for linear operators ¥,, x: F,, — E,, such that

(3.3) F) = graph(Idp, +¥,,,), ncZ.

We have

E, =A(m,n)E,, m>n.
A corresponding identity must hold for the spaces E), replacing A(m,n) by
Ch1...Cy, ifm>n,

Ax(m,n) =
Al ) {Id if m =n,

where Cy, = Ay, + Bg()) for each k € Z. Namely, we must have

(3.4) E) = Ax(m,n)E), m >n.
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This means that given (z,,,y,) € E;, the sequence (,,, ym) obtained from (2.4)
and (2.5) must satisfy (z,,,ym) € Ej for every m > n. On the other hand,
by (3.2), the point (2, ymm) can be written in the form

(xmv (I)m,/\xm) = (IdEm + (I)m,)\)xmv

and thus, the pair of equations (2.4)—(2.5) is equivalent to

m—1
(3.5) T = A(m, )z + Y PmA(m, 1+ 1)Bi(\)(Idg, + yx )i,
l=n
and
m—1
(3.6) Tyt = A(m,n)Pp Ty + Y QuA(m, 1+ 1)Bi(A\)(Idg, + ®;\)z,.
l=n

Given linear operators ®,, , for each n € Z, the first equation defines recursively
linear operators W* such that W,» = Idg, and x; = W} «,,. Substituting in (3.6),
we obtain
m—1
(3.7) Wi = A(m,n)@nx + > QmA(m, 1+ 1)By(N)(Idg, + By x) W™
l=n
The strategy of the proof of Theorem 3.1 is to show that equation (3.7) has
a unique solution ® = (®,, x)(m,r)ezxa in an appropriate space. The main
difficulties are the nonuniform exponential behavior of the original dichotomy,
and the dependence of the operators W;* on ®. A similar approach can be applied
to obtain unstable subspaces. On the other hand, one of the main advantages
of our approach is that we are able to show in a more or less direct manner
that the unique operators ¥,, » and @,  in (3.2) and (3.3) are analytic in A,
and thus, the same happens with the subspaces E) and F}. The proof requires
considering simultaneously additional equations related to the formal derivatives
of (3.7) and of the corresponding identity for the operators W, » with respect
to .

4. Proof of Theorem 3.1

We first describe the class of functions where we look for the operators ®,, ».
Given a constant x < 1, let X be the space of parameterized sequences ¢ =
(P2 )nez rea of linear operators ®,, x: E,, — F,, such that

@ := sup{||®nalle"™ : (n,\) € Z x A} < &,
Ona(®) = sup{[[ @5 — Pyl = (n, X) € Z} < w]|A —

for each A\, u € A. When equipped with the distance
d(®, W) = sup{||®, x — Py llef™ (0, 0) € Z x A},
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the space X becomes a complete metric space. Given ® € X and A € A, for each
n € Z we consider the vector space

E; = graph(Idg, + @) = {(§, ®n ) : £ € By}

Step 1. Construction of stable subspaces. Due to the required inva-
riance in (3.4), we must solve the system of equations (3.5)—(3.6). For that we
introduce two sequences of linear operators, one related to each equation, whose
fixed points are solutions of these equations.

We first introduce linear operators related to equation (3.5). Given ® € X,

m

n € Z and A € A, we consider the linear operators W?ZA = W”,¢,7A: E, — F,
determined recursively by the identities

m—1
(4.1) o= PmA(m,n) + Y PrpA(m, 1+ 1)Bi(\)(Idg, + @)W/

I=n
for m > n, setting W', = Idg,. We note that for z,, = { € E,, the sequence
Ty = Wi \x, = W] (& is the solution of equation (2.4) with y; = ®; \2; for
I > n. Equivalently, it is a solution of equation (3.5).
Now we rewrite equation (3.7) in an equivalent form.

LEMMA 4.1. For any sufficiently small §, given ® € X and A € A the
following properties are equivalent:
(a) for everyn € Z and m > n,
(4.2) D AWy =A(m,n) @,
m—1

+ ) QA+ 1,m) ' BI(A\)(Idg, + i)W/

l=n

(b) for everyn € Z,
(o)
(4.3) Opx == QuA(l+1,0) ' B\ (Idg, + 1) W)
l=n
PROOF. We first show that the series in (4.3) is well-defined. Setting D =
De ¢ by (2.1) and (2.2), we obtain

(4.4) D QuA+ 1,n)  Bi(A) (W) + @ia W) [l
l=n

< (1 + H)éﬁze—a(l—n)+5\l|—3e|l\+s\n|”Wln)\H

l=n

<20DS em(@met=m =iy,

l=n
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By (4.1), for each m > n, we have
N m—1
45) Wi\l < Demetrmmtenl (14 k) 5Dy - emalm D2y ).
l=n

Setting T = sup (e*™~™)||W" ,||), for each [ we obtain
m>n ’

m
Y < Defl™l 426D Y > e < Desll 4 26D Y I,

l=n

where

1+e ¢

. —c|l] _

o= el=1—rp
leZ

for each ¢ > 0. Taking § sufficiently small so that 26Dy, < 1 /2 (independently
of n), we obtain T < 2Decl"l and hence

(4.6) W || < 2De~(m=mtelnl,

By (4.4), this implies that

(4.7) D QA+ 1,0) T B (W] + SraWiy) ™

l=n

< 45D5 Z 672a(l7n)+5|n|76\l|

l=n

o0
< 45DEZ e~ (20=)=n) < 4§D DTy, < k,

l=n

provided that ¢ is sufficiently small. Now we assume that identity (4.2) holds.
It is equivalent to

(4.8) Dpx = QuA(m,n) @ AW |

m—1
= QuAl+ 1,n) ' Bi(N)(Idg, + 1)WY

l=n

By the second inequality in (2.1) and (4.6), for each positive m > n we have

||Qn.A(m, n)_l(bm,)\W:rLz,)\H < QDEKe—a(m—n)+s|m\e—e\m\e—a(m—n)+s|n|

< 2D5K6—2a(m—n)+e\n| )
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Since a > 0, letting m — oo in (4.8) we obtain identity (4.3). Conversely, let us
assume that identity (4.3) holds. Then

m—1
A(m,n) @ + Y QuA(l+1,m) " Bi(N\)(dg, + Bi0) W/

l=n

= — Z QmA(l + 1,m)71Bl()\)(IdEl + q)l,)\)WltLA
l=n

m—1

+ Y QuAl+1,m) T Bi(N)(1dg, + )Wy

l=n

== QmA(l+1,m)" ' Bi(\)(Idg, + ®, )W/

l=m

for each m > n. Since VVI”/\ = VVZ’;\W[;,/\, it follows from (4.3) with n replaced
by m that (4.2) holds for each m > n. O

For each A € A and m > n, we denote
Ux(m,n) = (Idg,, + @m )W, 5.

We claim that
m—1
(4.9) Un(m,n) =A(m,n)P, + > A(m,1+1)Py1Bi(A)Ux(1,n)

l=n
oo

= > A(m, L+ 1)Qua BINUA(L n).

l=m

Indeed, it follows from (3.4)—(3.6) that

(410) U)\(m, n) = (IdE’m + (DWL7A)W£LI7)\ = W’:}l,)\ + (b"hAW,;LL)\
m—1
=A(m,n)P, + Y A(m, 1+ 1) P BIAUA(L )

l=n

— A(m,n) > " A(n, 1+ 1)Qua Bi(MUA(I,n)
l=n
+ Z_: QumA(m, 1+ 1)B;(\Ux(I,n)
l=n
=A(m,n)P, + i A(m, 1+ 1) Py Bi(M\)Ux (I, n)

l=n

= DAL+ D)Qua BINUA(L 1)

l=n
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m—1
+ 3 QuA(m, 1+ 1)Bi(\Ux(I,n)
l=n
m—1
=A(m,n)P, + Y _ A(m, 1+ 1)P BIAUA(L n)

l=n
= > A(m, L+ 1)Qua BINUA(L n).
l=m

For each A € A, let I = {(m,n) € Z X Z : m > n} and consider the Banach
space C\ = {U)\:I — M, |U,| < —|—oo} with the norm

1UAIl = sup{[|Ux(m, n)||e*™ =<l (m, n) € 1},

LEMMA 4.2. For any sufficiently small §, there is a unique Uy € C) sa-
tisfying (4.9) for each (m,n) € I. Moreover, for each ¢ € R' the sequence

Tm = Ux(m,n)E, m > n is a solution of equation (2.3).

PROOF. Foreach A € A, we consider the operator L defined for each Uy € C)
by
m—1
(LUN)A(m,n) =A(m,n) Py + Y A(m, k + 1)Pe1 Be(NU (k,n)

k=n
0o

= > Al k + 1)Qrs1 Be(\Ua(k, n).

k=m

We have

ST A,k + 1)Qust BN U (k,n)|| < Dée=etm=mtelnljp | 7 ¢=2a (h=m)

k=m k=m
< D o0 (m—n)-&-alanUAH < +00.
1—e 2
Therefore, (LUx)x(m,n) is well defined, and we obtain

(4.11)  [[(LUN)A(m, n)|| < [[A(m, n) Py ||
+ > A,k + D P || - [ Be| - Uk, )|

k=n

+ > IMm k + D)Qust | IBeWI| - [UA(K, )|

k=m

m—1
< De™ @ (m—mn)+e|n| + ﬁ(se—a (m—n)+5\n|”U}\” Z e—2a\k|
k=n

+ 55670’ (mfn)+5\n|||U>\|| Z 672a(k7m)
k=m
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D6

< Dfe (m—n)+e|n| + o

] — € ( ) Eln‘”[AH
D —a (m—n)+e|n lr
+1726 ( ) El ‘” )\||~

This implies that

~ 1 1
(LU < D+D5(1 e + 1 _e—Qa)U)‘| < +00,

and hence, we have a well defined operator L: €y — €. Proceeding in a similar
manner to that in (4.11) we also obtain

~ 1 1
4.12 L — (L <D
@12 NEU I~ (V21 < DO +

)mr%u

for every U; x,Usz x € Cy. Therefore, for any sufficiently small § the operator L
is a contraction, and there exists a unique Uy, € €y such that LUy = U,. Finally,

Ux(m,n) — A(m,n)Ux(n,n) = A(m,n)P, — A(m,n)P,
m—1 m—1

+ Y A(m,k+ 1) Pea BeNUx (k) + > A(m, k + 1)Qps1 Br(\Ux (, n)

k=n k=n

= 3" A(m. b+ 1B\ U (k. )

k=n

for each m > n. This completes the proof of the lemma. O
LEMMA 4.3. For any sufficiently small §, we have

Ux(m,)Ux(I,n) = Ux(m,n) for every m >1>n.

ProoOF. We first note that
-1
Ux(m,)Ux(l,n) = A(m,n)P, + Z.A(m, k+ 1)Pry1Br(N)Ux(k,n)
k=n

m—1

+ > A(m, k + 1) Py B\ Ux(k, U (1, n)
k=l

[ee]
— > A(m, k + 1)Qur1 Br(MNUA (K, DUA(L n).
k=m
Givenn € Z and A € A, let I,, = {(m,l) € ZxZ:m > 1> n}, and consider the
Banach space C,, x = {Hx:I,, = M : |Hx|ln < 4+o0o} with the norm

1Al = sup{ || Hx(m, D)Je” ™+ (m, 1) € I,.}.

Writing
ha(m,1) = Ux(m,)Ux(l,n) — Ux(m,n)
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for m > 1 (with n fixed), we obtain Lihy = hy, where

m—1

(L H)\ A m k+1 PkJrlBk-()\)H)\(k,n)

k=l
00

= D Alm.k+ 1D)Qus1 Bu(N Ha(k,n).

k=m
for each Hy € €, and (m,!) € I,,. Now we observe that

m—1
[A(m, & + 1) Pegall - (| Bk - [1Hx(k,n)|
k=l

+ D A k4 1D)Qupal| - 1B - [HA(k,n)|

k=m

D6 5 14+e @
T+ == [ Hxlln = D5

<

— [[H |-

This shows that (L1 H)y)(m,l) is well defined, and that

~ 14+
HLlHAHn < Do 1

67(1
— HHXHTL < +o0.
e

Hence, we obtain an operator L;:C, » — €, . Moreover, one can show in
a similar manner that for each H; », Ha » € C,, » and m > [,

1+e @
|L1Hyx — LiHoz||n < D(S

—|[H1x — Hz x|

Therefore, for any sufficiently small § the operator L, is a contraction, and
hence there exists a unique Hy € €,  such that L1 Hy = H,. Since 0 € G, »
also satisfies this identity, we have Hy = 0. Now we show that hy € €, . Indeed,
it follows from Lemma 4.2 that

||U>\(m,l)U>\(l,n)H < |‘U)\(m7l)H . ||U>\(l,n)|| < ||U)\||2efa(m*”)+5(|l|+|n\)
< HU)\||26(26—a)(m—n)€25|m\ < ||U||2€26‘m‘,
U (m, n)|| < [|Ux[le=alm=m)+elnl

< HU}\He(e—a)(m—n)-i-ealml < ”U/\He%\ml

for m > [ > n. This shows that hy € G, x, and by the uniqueness of the fixed
point of Ly we conclude that hy = 0. O

Step 2. Construction of unstable subspaces. Now we describe the class
of functions where we look for the operators ¥,, 5 (see (3.3)). Let Y be the space of
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parameterized sequences U = (¥,, y\)nez rea of linear operators ¥, y: F,, — E,
such that

sup{[|[ W, 2[[e*" : (n,\) € Z x A} <k,
sup{[|[ W, x — ¥y fle™ in € Z} <k |X—pl],

for each A\, u € A. Given ¥ € Y and A € A, for each n € Z we consider the
vector spaces

F2) = graph (Idp, + 0, ).
Given ¥ € Y, n € Z and A € A, we consider the linear operators Yo\ =
Y vt Fn — E, determined recursively by the identities

n—1

72,)\ = Qm-A(m7 ’I’L) - Z Q7rL~A(m7 I+ I)Bl(A)(IdEl + \I/l,)\)Yl?)\

l=m
for m < n, setting Y\ = Idp,. We note that for y,, = v € F),, the sequence
Ym = Yo \Un = Yy \V
is the solution of equation (2.4) with z; = U, \y; for [ < n. Equivalently, it is
a solution of equation (3.5).

The following is a version of Lemma 4.1 for the operators ¥,, » and it can

be obtained in an analogous manner.

LEMMA 4.4. For any sufficiently small §, given ¥ € Y and X\ € A the fol-
lowing properties are equivalent:

(a) for everyn € Z and m <n,

n—1
Uy 2 Yoy = A(m,n) W, 5 — > P A(l+1,m) "' Bi(A)(Idg, + ¥;0) Y7

l=m

(b) for everyn € Z,

Uop =Y PuA(l+1,0) ' Bi(A)(Idg, + 10) Y/

Now set Vi(m,n) = (Idg,, + V)Y, \. Proceeding in a similar manner to
that in (4.10) we obtain

(4.13)  Via(m,n) = A(m,n)Qy, + Z_: A(m, k + 1) Poy1 Bp(N) Vi (k, n)
k=—o0
- 2 A(m, k +1)Qr+1Br(N)Va(k,n).

k=m
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For each A € A, let J = {(m,n) € Z x Z : m < n}, and consider the Banach
space Dy = {Vi:J — M; : ||Vi|| < 400} with the norm

IVAll = sup{[[Va(m, n) e~ "= =<1 (m, n) € J}.

LEMMA 4.5. For any sufficiently small 6, there is a unique V) € Dy sa-
tisfying (4.13) for each (m,n) € J. Moreover, for each ¢ € R! the sequence
T = Va(m,n)&, m < n is a solution of equation (2.3).

PRrROOF. For each A\ € A, we consider the operator M defined for each V) €
‘D)\ by

m—1

(MVA)(m,n) =A(m,n)Qn + > A(m,k+ 1)Pey1Be(\Va(k, n)
k=—o00
n—1
= > Alm b+ 1)Qus1 BuAVa(k, n).
k=m
We have:
m—1
(4.14)  [A(m,n)Qull + > A,k +1)Pesall - BNl - [[Va(k,n)]|
k=—o0
n—1
+ 3 A B+ 1)Qipa |l 1B - [Vak,n)
k=m
m—1
< Det(m—n)+eln| 4 f)(gea(m*n)ﬂ\anVH Z e—2a (m—Fk)
k=—oc0

n—1
+ 5§ea(mfn)+e\n| ||V)\|| Z e 26k

k=m
alm—n n 55 alm—n n

< De™ )Felnl 4 e ( el vy
55 alm—n n

Rl p— (m=myrelnl| vy .

This implies that (MVy)(m,n) is well defined, and that

~ 1 1
. < .
(4.15) IMVA D+6D<62a_1 + 1_6_25>||V|| < 4o

Hence, we obtain a well defined operator My: Dy — D). Proceeding in a similar
manner to that in (4.14) we also obtain

~ 1 1
MV~ Vil 6D (i + 1 ) I = Vool
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for every Vi x, Va,x € D). Therefore, for any sufficiently small § the operator M
is a contraction, and there is a unique V' € D, such that MV) = V). Moreover,

W(n,n) — A(n,m)Va(m,n) = Q, + Tf A(n,k 4+ 1)Pr11Br (M) Va(k,n)
k=—oc0
—A(n,m)A(m,n)Q, — A(n,m) mz_:l A(m,k + 1) P11 Bp(M\)Va(k, n)
k=—oc0
+ A(n,m) Tf A(m, k+ 1)Qrr1Br(N)Va(k,n)
k=m
:Qn + TS .A(TL, k+ 1)P]€+1Bk()\)v,\(k7n)
k=—o00
+ nil A(?’L, k + 1)Pk+1Bk()\)V/\(k7 ’I’L)
k=m
— Qn — mz_l .A(TL, k+ 1)Pk+1Bk()\)V)\(k,n)
k=—oc0
n—1

+ Z A(n, k4 1)Qry1Br(N)Va(k, n)

n—1 n—1

=Y Ak + 1) P Be(WValk,n) + Y A,k + 1)Qur1 Bu(A\)Va(k,n)

k=m k=m

n—1
=Y A,k +1)BiVa(k,n)

k=m

for each m < n. This completes the proof of the lemma. O

LEMMA 4.6. For any sufficiently small §, we have

Va(m,)Va(l,n) = Va(m,n) for every m <1 <mn.

Proor. We have

Va(m, DVa(l,n) = A(m,n)Qyn — X_:A(m k4 1)Qky1Br(A)Va(k,n)
k=l
m—1
+ Y A(m,k+ 1) P Be(\Va(k, DVa(l,n)
k=—o0
-1
= > Ak + DQu 1 BeWValk, VAL ).

k=m
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Givenn € Z and X € A, let J,, = {(m,l) € ZXZ : m <1 <n}, and consider the
Banach space D,, = {Hx: J,, — M, : ||[Hy||n < +00} with the norm

IH Al = sup{I[Hx(m, lle™V™! = (m,1) € J,.}.

Writing
B)\ (m7 Tl) = V)x (ma Z)V)\ (la n) - V)\ (ma ’/l)
for m <1 < n (with n fixed), we obtain M;hy = hy, where
m—1

(MyH ) (m, 1) = > A(m, k+ 1) Poyy Be(A\) Hx(k,n)

k=—o0
-1
— Y A(m, k4 1)Qiy1 Br(\) Ha(k, n)
k=m
for each Hy € D, x and (m,l) € J,. Proceeding in a similar manner to that in
the proof of Lemma 4.3, one can show that 0 is the unique fixed point of M;
in D,, 5, and since hy € D,, \ we conclude that hy = 0. O

Now we characterize the bounded solutions of equation (2.3).
Step 3. Characterization of bounded solutions.

LEMMA 4.7. Givenn € Z, if (Ym)m>n C R! is a bounded sequence satisfying
equation (2.3) with y, =&, then

m—1

(4.16) Ym =A(m,n)Puf + Y A(m, k + 1) Py Be (Vs
k=n

= A,k + 1)Qir1 Be(N) -
k=m
ProOOF. For each m > n, we have

m—1
(4.17) Prym = A(m,n)Pu+ Y A(m, k + 1) Pei1 Be(A)yi,

k=n

m—1

(4.18) QmYm = A(m,n)Qn§ + Z A(m, k +1)Qry 1 Br (M) k-

k=n
The identity (4.18) can be written in the form

m—1

(4.19) Qné& = A(n,m)Qumym — Y A,k + 1)Qrr1Br(A)yx.-

k=n

Since ¥, is bounded, we have

||.A(7’L7 m)mem || < CDe_a("L_n)J"‘ﬂm‘ )
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where C' = sup{||ym|| : m > n} < +oo. Therefore, taking limits on both sides
of (4.19) when m — +o00, we obtain

(4.20) Qné ==Y A,k + 1)Qrs1 Br(Nux.

k=n

Replacing (n, &) by (m,ym) in (4.20) and adding the resulting identity to (4.19)
we obtain (4.16). 0

LEMMA 4.8. Givenn € Z, if (Ym)m<n C R' is a bounded sequence satisfying
equation (2.3) with y, = &, then

Ym =A(m,n)Qné + Y A(m, k + 1) Pry1 Bi(Mus

k=—c0
n—1
— Z A(m, k + 1)Qr41Br(N)yr.
k=m

PRrROOF. For each m < n, we have

n—1
(4.21) Po& = A(n,m)Poym + Y A,k + 1) i1 Be(Nyi,

k=m

n—1

(4.22) Qné =AM, m)Qmym + > A(n,k + 1)Qp1Br(Nys.

k=m

Since the sequence (ym)mgn is bOlll’lded7 we have
[ A(n, M) Py || < CDe~on=m)+elml

where C' = sup{||ym|| : m < n} < 4+o00. Since a > € (see (3.1)), taking limits

in (4.21) when m — —oo, we obtain

P& = Z A(n, k + 1) Pyy1 Br(A)yr.-

k=—o0

Replacing (n,£) by (m, y,,) in this identity we finally obtain

(4.23) Prym = Y A(m,k+1)Pey1 Be(Nys.

k=—oc0
On the other hand, by (4.22),

n—1

(4.24) QumYm = A(m,n)Qn& — > A(m,k + 1)Qrr1Br(N)ys.

k=m

Adding (4.23) and (4.24) yields the desired dentity. O
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Step 4. Invariance of the stable and unstable subspaces

Now we set E), = ImUy(m,m) and F, = Im Vy(m,m).

LEMMA 4.9. For each m € Z and X\ € A, we have

E) = Ax(m,n)E> and F) = Ax(m,n)F).

PROOF. By Lemma 4.2, for each ¢ € R! the sequence m + Uy(m,n)E,
m > n is a solution of equation (2.4) with initial condition at time n equal
to Ux(n,n)é. Therefore, Uy(m,n) = Ax(m,n)Ux(n,n), where Ayx(m,n) is the
cocycle associated to equation (2.3). Hence, by Lemma 4.3,

Ax(m,n)E} =Im Uy (m,n)
=TIm (U (m, m)Ux(m,n)) = Ux(m, m) Im Uy (m,n) C E),

for each m > n. Similarly, by Lemma 4.5, the sequence m — Vy(m,n){, m <n
is a solution of equation (2.4), and hence,

(4.25) Va(n,n) = Ax(n,m)Vy(m,n).
This implies that

E) =Ax(n,m)Im Vy(m,n)
= Ax(n,m) Im (Vy(m,m)Vy(m,n)) C Ax(n,m)F

for each m < n. For the reverse inclusions we use the characterization of bounded
solutions in Lemmas 4.7 and 4.8. Take z € E), and y € Ax(m,n) 'z. Then
Ax(k,n)y = Ax(k,m)x for each k > m. Since x € E), = ImUy(m, m), we have
x € Uy(m,m)z for some z € R!, and hence,

Ax(k,n)y = Ax(k,m)Ux(m,m)z = Ux(k,m)z.

This shows that the sequence [n,+00) NZ > k +— Ax(k,n)y is bounded, and it
follows from Lemma 4.7 that Ay (k,n)y = Ux(k,n)w for some w € R!. In parti-
cular,

y = Ax(n,n)y =Ux(n,n)w € E;)
Therefore, x = Ax(m,n)y € Ax(m,n)E)

n’

and we obtain E), C Ax(m,n)E}.
This establishes the first identity in the lemma. For the second identity, take x €
Ax(n,m)F) and y € Ax(n,m)"tz. Then k — Vy(k,m)y, k < m is a bounded
sequence satisfying equation (2.3), and hence,

V)\(k7m)y) k S ma

(=o0,n|NZ 3 k+—
Ax(n,m)Va(m,m)y, m<k<n
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is also a bounded sequence satisfying the equation. Hence, it follows from
Lemma 4.8 that Vi (k,m)y = V\(k,n)z, k < m for some z € R.. In particu-
lar, by (4.25),

z = Ax(n,m)Vi(m,m)y = Ax(n,m)Vx(m,n)z = Vi(n,n)z.
Therefore, x € F, and hence Ay (n, m)F) C F). |

Now we show that the perturbed dynamics is invertible along the subspa-
ces F). Since Vy(n,n)? = Vi(n,n), restricting identity (4.25) to F yields

Idps = Va(n,n)|F) = Ax(n,m)Va(m,n)|F,.
Therefore, the operator Ay (n,m)|F) is invertible, with
(Ar(m, mIFA) ™" = Va(m, m)| F2.
It follows from Lemma 4.9 that
Ax(m,n)|E) =Ux(m,n)|Ep:Ey — En, m>n,
(Ax(n,m)|F2) ' = Va(m,n)|FE):F) — FX, m <n.
Therefore, since Uy € C,, we obtain
(4.26) [AN(m,n)|Ep|| < Kem® (m=mFelnl = >,
and since V) € Dy, we obtain
(4.27) 1A, m) [ Fpy) H| < Keme (mmFelel <,
for some constant K < 0.
Step 5. Construction of projections. Set S, » = Ux(n,n) + Vi(n,n).

LEMMA 4.10. For any sufficiently small §, the operator Sy, x is invertible for
everyn € Z and X € A.

Proor. We have

Sua =Po =Y A,k + 1)Qus1 Be(NUx (k, n)
k=n
n—1
+Qn+ Y A k+1)Pepa Be(A)Va(k,n),

k=—o0

and hence

Sy —Id= — Z A(n, k +1)Quyp1Br(\ = Ux(k,n)

k=n
n—1
+ Y A,k + 1) Py Br(A)Va(k,n).

k=—o0
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By Lemmas 4.2 and 4.5, we obtain

1S =1d < D7 A, k+ 1DQuiall - BN - [[Ux (K, n)|
k=n

n—1

+ Y Ak + 1) Pl B - [Va(k,n)l|

k=—o0
_ e’} " n—1
< Do 3 e o) 4 Doy Y el
k=n k=—o0

§l~?5< Ul n [Vl )

1—e 20  g20 1

Moreover, it follows from (4.12) and (4.15) that

~ 1 1
< —
”U)\”D/(]‘ D5<1_€—25+1_€—2a)>
~ 1 1
< — .
||V>\||—D/<1 D6<62a_1+1_e—25>>

This yields the desired statement. O

and

LEMMA 4.11. Provided that § is sufficiently small, we have E), & F) = R!
for each A € A and m € Z.
PROOF. Let £ € E) N F)\. By (4.27), for each m > n we have

1 a (m—n)—e|m —a (m—n n
e (m=m)=elml| e|| < ||Ax(m,n)é|| < Ke™@ (m=m+enl)g)|.

Since € < a (see (3.1)), this implies that £ = 0, and hence, E), N F = {0}. On
the other hand, since Sy,  is invertible, we have

R = S, AR = Tm Uy (m, m) + Im Vy(m,m) = E) + Fa.
This concludes the proof of the lemma. O

By Lemma 4.11, for each m € Z any vector x € R! can be written uniquely
in the form z = y,, + 2z, with y,,, € ET);L and z,, € Fﬁ‘l Hence, one can define
projections P} and Q) by Pz = v,, and Q) x = 2,,. The following statement
is an immediate consequence of Lemmas 4.9 and 4.11.

LEMMA 4.12. Provided that ¢ is sufficiently small, we have

Pg\qﬁ(m,n) = A(m,n)P)  for each m > n.

Step 6. Upper bounds for the projections. Set

ay, = inf{llz —yll sz € B, y e Fy, |zl = |lyll = 1}.
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LEMMA 4.13. Provided that § is sufficiently small, there exists a constant
¢ > 0 such that

(4.28) a) >ceEml m ez

PROOF. Given x € E), and y € F)\, there exist T € E,,, and § € F,, such
that

z=Ux(m,m)T=(Id+ Gpm)T and y="Vi(m,m)y=(Id+Grm)y,

where -
Gem=— Y Am,k+1)Qi1Br(NUx(k,m)
k=m
and
m—1
Grm= Y A(m,k+1)Pei1Be(N)Va(k,m).
k=—oc0
We have

IGEmlle™ < > Ak + DQurall - | BeW)|| - [Tk, m)|

k=m

o0
< Di||UL|| D e e akmm < iy,

k=m

where p = D§/(1 — e2=9) and hence ||Gg || < pl|Ux]le~¢I™!. Similarly,

m—1
G Emlle™ <> A,k + 1) Pl - | BV - [Va(k,m)|

k=0
m—1
< DS|[Va|| Y e 2otk <1
k=0

and hence |G r .|| < pl|Va]le~¢™I. Therefore,

(4.29) (1= pllUxlle™"™ Dzl < llzll < (1 + plUxlle==™ ]I,
(4.30) (1= [ Valle™™ )7l < llyll < (L + ulValle™D7ll.
On the other hand, setting n = m in (2.1), we obtain

[Pl < D™ and  [|Qu| < Desl™.

Now we recall that (see for example [2])

2 1 2
(4.31) —— < apy < and ——— <y < ——
1P| [P | 1Qml @l
for each m € Z, where am, = inf{[|z — y[| : @ € Ep,y € Fn, |lzf| = [lyll = 1}
Therefore

am > —e M mez.

ol =
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Since
‘ T 7| @ =yl +ydyll - =) _
Izl [l Izl - Il
it follows from (4.29) and (4.30) that

< ol
= T&l

lz =yl =17 =7+ Ge.mT — Grmill
=z - ?H - IIGE mll - [Z] = 1GEmll - 7]

B lel Hyll 1 — pd||Uyfle=<lml
_ HGF,m” || ||
1— M(SHV)\H@_E""L' Y
Ja “H
201+ op||Uxlle=smNy 11zl (17l
_op[|Ux][e< ]| - Spl|Valle<I™ Il
1—op|[Ux[|e~=lm! 1= oyl Valle==tml M1
Taking the infimum over all vectors z, y with ||z| = |ly|]| = 1, we obtain
! Gl e
mZ e|lm| Om _ clm] || H
2(1 + op||Uxlle<mT) Sul[Us e~
_ bpl[Vafle==m Il
L= bul[Vafle—=rm1 "
efe‘ﬂﬂ 5,LL||UH€7a|m‘ 5““‘/”676'7”"

> — - .
TAD(A 4 6pllUND) T =0plUA 1= dplVall

This yields inequality (4.28).
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]

Step 7. Exponential dichotomies for the perturbation. In a similar

manner to that in (4.31), we have
1 2 1 2
A and A<

<ap, < <ap, <
1PN~ ™ T P QM1 — ™ lIQuI

and hence it follows from Lemma 4.13 that

2 2 2 2
@32 IPM< < 2o and Q)€ o < et
a) ¢
for each m € Z. Since
[Ax(m,n) Py < [Ax(m, )| Ep| - (1P, m>n,

1A (m, )@l < I(Ax(r,m) )Ml - @all, m <,

the existence of a nonuniform exponential dichotomy follows readily from (4.32)

together with inequalities (4.26) and (4.27).
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Step 8. Construction of auxiliary operators. In order to show that the
stable and unstable subspaces E and F are analytic in A we first construct aux-
iliary operators. By Lemma 4.13, equation (3.7) is equivalent to equation (4.3).
This motivates the introduction of linear operators A(®), x: E, — F, for each
deX,neZand X\ € A by

(4.33) A@)py ==Y QuA(l+1,n) "' Bi(A)(Idg, + Byx) Wiy,

l=n

where W\ E,, — [ are the linear operators given by (4.1). We note that
solving equation (4.2) is equivalent to find a fixed point ® of the sequence of
linear operators ® — A(®),, . We first establish some auxiliary properties.

LEMMA 4.14. For any sufficiently small §, the operator A is well defined,
and A(X) C X.

PROOF. Repeating estimates in the proof of Lemma 4.13, one can show that
the operator A is well defined. Moreover, it follows from (4.7) that ||A(®)|| < k.
Moreover, writing W'y = W x and W, = W, ,,, by (4.6) we have

(4.34) by :=||Bi(N)(Idg, + @1 \)Wix — Bi(p)(Idg, + Pip) Wi |
<Bi(A) = Bi(w) | - [[Wiall(1 + ([ oA )
+ B Wiy = Wi+ @2l
B - Wl - 1Pex = ol
< 46De 2 M|\ — pfjert=mtelnl 49 5e=2¢l |17\ — W |
4+ 953l peati=m)teinl o<l y _
<69 Der el =3l X — )l + 252 U)W\ — W]l

Therefore

m—1
||Wl,>\ - Wl,u” S Z HPmA(mv l + 1)||bl
l=n
m—1
<68DDem=mEelnl |\ — | Z e~ 2l

l=n

m—1
+26D Z e*a(m*l)fze‘”HWz,)\ — Wil
l=n

<68DDy e~ m=mrelnl| x —
m—1
+ 255670,(771777,) Z ea(lfn)725\l| HWIJ\ o VVI,,u

l=n
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Setting Y; = e®=™)||W; x — Wy .|, it follows from this inequality that

m—1
Ty < 68DDToe™ A = | +26D Y Tpe I,

l=n
and hence
T < 66DDTg.e*™ [N — p|| +20DT5. Y,

where T = sup{Y,, : m > n}. Taking 4 sufficiently small, so that 26D, < 1/2,
we obtain

T < 126DDTye™ || — p,
which yields

[Wix — Wil < 128DDTg e atm=mtelnlx — ).
Hence, it follows from (4.34) that
b < 6Kefa(l7n)+s|n|673a\l| H>‘ N N”7

for some positive constant K. Proceeding as in (4.6), since —a+¢& < 0 we obtain

JA@)nn = A@)nyulle”™ <3 1QuAl +1,n) " el

l=n

0o
< 5K5||/\ _ M” Z e—a(l—n)+6\l|e—a(l—n)+5\n|—3s|l\+s\n|

l=n

<OKDIA = pl Y e GememmF=lom) = GK Doy ||A = pll,

l=n

and hence, C,(A(®)) < x provided that ¢ is sufficiently small. This shows that
A(X) C X. 0

Now we consider the space F of sequences U = (Up A)nez,rea of linear ope-
rators Uy, z: By, — F), such that

(4.35)

|U|| := sup{||Unl| : (n,A) € Z x A} < 1.

One can easily verify that F is a complete metric space with this norm. We also
define operators B(®,U), » for each (P,U) €e X x F, n € Z, and A € A by

(436) B((I), U)n,)\ = — Z Qnﬂ(l +1, 71)_1[3[()\)(2;})\ + (bl))\Zle)\ + Ul))\VVﬁ/\)

l=n

+ Bi(A)(Idg, + 1.0)W/h],
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where W'\: E\, — Ej are the linear operators given by (4.1), and where Ly =
Zy o v En — Ep, are linear operators determined recursively by the identities

m—1
(4.37)  Z7 =Y PuA(m, L+ D[BIA(Z] + PiaZly + UaWiy)
l=n

+ Bi(A)(Idg, + @1 )W,

for m > n, setting Z,; , = 0. We observe that by thecontinuity of the functions
@\ and Uy » on A, the functions A — W)\ and A — Z}', are also continuous.

LEMMA 4.15. For any sufficiently small 6, the operator B is well defined,
and B(X x F) C &.

PROOF. Set

(4.38) C=) QuAl+1,n) M| IBION(Z + i Zl)

l=n

+ BN UAW\ 4 Bi(\) (Idg, + @)W/
Tt follows from (4.3), (4.6) and (4.35) that

(4.39) C<(1+k)dD Y eelmmprelti=selly zp |

l=n

+ 2(2 + K) (SDEZe—a(l—n)+5\l|—3s|l\—a(l—n)+6\n|

l=n
<2 5D Z e—all—n)—2¢ll| HZ{})\” +6 SDD Z 67(2a76)(l—n),
l=n l=n

where in the last inequality we have used that —a + ¢ < 0. On the other hand,
by (4.35) and (4.37), we have

1Z5, Al < (1 + ) 6D Ze alm=b=2eltl |z

+ 2(2 + Ii) 6D5 Z e—a(m—l)—25\l|+a(l—n)+5|n|.

l=n

Setting Yy, = e*(™ =™ Z" ||, we obtain

m—1 m—1

T, <26D Y e T +66DD Y e+l
l=n l=n
m—1 m—1

<25 3" e %Y, 1+ 65DDe 3 eI,
I=n l=n
and hence
T <2605 T 4 65DDlyefl",
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where T = sup{Y,, : m > n}. Thus, taking ¢ sufficiently small so that 26 DTy, <
1/2, we obtain

Y < 126DDT g,

and hence,
(4.40) 122 \|| < 128D DTy e~ m=mF<lnl,
By (4.39) and (4.40), we obtain

(441> C <24 62D52F2€ Ze—2a(l—n)+e\n|—2‘€|l\ + 6(SDEZ e2(2(1—6)(l—n)

l=n l=n

< 2482DDT,, D e amalimm 46 §DDTs, .

l=n

< 2462°DD*T5.T9q_. +66DD 5, < 1,

provided that ¢ is sufficiently small. This shows that B(®,U), is well defined
for each n, and that | B(®,U)| < 1. Therefore B(X x F) C . O

Now we define a map S: X x F — X x F by
S(@,U) = (A(®), B(®,U)).
By Lemmas 4.14 and 4.15, the map S is well defined, and S(X x F) C X x .

LEMMA 4.16. For any sufficiently small §, the map S is a contraction.

PrOOF. Given ®,¥ € X, set W, o = Wis x and W ¢ = W'y »- We have

(442)  A(®)nx — AW e < DY " emallmmiteliiteinl
l=n
X | BiA) (Wie — Wiw) + BiA) (@1 aWie — U Wi o)l

<Dé Z e—a(l—n)—25\1|+e|n|

l=n

X ([Wie — Wil + [ @ aWie — Vi Wi o))

< D5 e M=l (14 — Wi |
l=n

+ 1Ll - [[Wie — Wiwll + [[Pix — Wi

<DsY emtemai-m=ell

l=n

| Wl

< (14 m)IWie — Wil + @ — ¥l [Wiglle™="].
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In an analogous manner to that in (4.5) and using (4.6), we obtain

m—1
[Wine — Winw|| <(1+#) 6D Z ematm=D)relll=3elll| W, o — Wy ||

l=n
m—1
+ ZCSDﬁ‘l(I) _ \I,H Z efa(mfl)+s|l\73s\l|ea(lfn)+s\n|fs\l|
l=n

m—1
< 2656—a(m—n) Z ea(l—n)—QemHWl’q) _ Wl,\IJH

l=n

49 [;Dﬁefa(mfn) ||(I) o \I/H Z 673€|l‘+6|n|
l=n
N m—1
_ 26De—a(m—n) Z ea(l—n)—QemHVVl,q> _ VVL\IJH

l=n
+28DDe(m=m) |1® — \IIHeEl"| Z e 3elll
l=n

Setting 1, = e“(m_")HWm,@ — Wi, yields

m—1
T < 20DDTseM @ — W[ +26D Y e M,

l=n
Therefore
T < 26DDDs.ef™||® — U + 26DI5. T,
where T = sup Y,,. Taking § sufficiently small so that 26Dl < 1 /2 (indepen-

m>n

dently of n) yields
T < 46D Ts.ef™||d — 0,
and thus,
(4.43) [Wine — Winw|| < 40DDLs. ||® — W|ealm=m)+eln],
Introducing the estimates (4.6) and (4.43) in (4.42) we obtain
(444)  JA@)n — AVl
< 5K’H‘I> _ \I/” Zef(afs)(lfn)fa(lfn)fsﬂ\+s\n|

l=n

<ORB = WY 62 < SR Ty @ - ¥,
l=n
for some constant K’ > 0, provided that § < 1. Moreover, given ®,¥ € X,
UV eF and A € A, set

n n
Ziou =Zigux and Ziwv =2y yx
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We have
(4.45) [B(®,U)nx — B(Y, V)l
<D i e~ =+ BN Ziow + ®iaZieu

l=n

+UWieo—Ziov —VinZioyv — ViaWi ol
+ BN Wio + @ aWie — Wi — U Wi o]l

<oD Y e 21 4 1) | Zioy — Ziwv |

l=n

+1Pix = Vil Zieull + [[Weall)
+ Uiy = Vil - Wi
+ (Wi — Wi wll(1+ [Viall + [1%alD]-

Using (4.6), (4.40) and (4.43), we obtain
(4.46) || Zm,0,u — Zmw,v|

<6DY e D=1+ k)| Zow — Ziwy
l=n

+ 1200 = iall(lZre,ull + [[Weall) + |Uix — Vi
+ Wie — Wi wl[(1+ [Viall + 1%l

| Wie

m—1
<6D Y e N1+ 8)|| Ziaw — Ziw v |

l=n

+ 2+ &) Wi = Wil + [ = Yinll(|Zie,0l + [Wiell)
[ Uix = Vil - (Wi a|]]

m—1
<6D 3" emam=0=2[(1 4 )| Zyo s — Ziw vl

l=n

+ D Koe *mFER (| — w| + U - V],
for some positive constant K, provided that § < 1. Setting

T, = ea(min)”Zm,‘I),U - Zm,\I/,VHa

we obtain
_ m—1 _ m—1
Yo < ODEK (| — ¥ + U = V[)es" >~ e M 426D Y~ e,
l=n l=n
Therefore

T < SDKoloce!"(|® — W[ + |U = V) + 26 DT5. Y,
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where T = sup Y,,. Taking ¢ sufficiently small so that 26DT5, < 1 /2 (indepen-

m>n
dently of n) we obtain

T < SK"e (1@ — || + |U - V)
for some constant K" > 0, and hence
(44T) | Zmar — Zmall < SK7(|® = W] + U — V])je-etm-meil
Proceeding as in (4.46), by (4.40) and (4.47) it follows from (4.45) that
(4.48)  [[B(®,U)nx — B(Y,V)nall

00
<SSK"D(|® = Y|+ U= V|) Y e Gomal
l=n

+ DK@ — W+ U = V)3 e~ a2t
l=n

SOL([|® — W[+ U = V),

for some positive constant L, provided that § < 1. By (4.44) and (4.48), for any
sufficiently small § the operator S is a contraction. O

Step 9. Analytic dependence of the stable and unstable subspaces.
We proceed with the proof of the theorem. We first observe that by Lemma 4.16
there exists a unique pair (®,U) € X x F such that S(®,U) = (®,U). Since the
operators ® — A(®),, \ are contractions (see (4.44)), ® is the unique sequence
in X such that

A(®)y ) =P, foreveryn€Z, \€A.
In other words, @ is the unique solution of equation (4.8), and thus, by Lem-
ma 4.13, also of equation (4.2). Together with (4.1) this implies that if £ € E,,,
then
mi— (Wvﬁ,xfﬁm,xW%é)

is a solution of the pair of equations (3.5) and (3.6). This means that (3.4) holds.
To establish the uniqueness, let ® be another sequence for which (3.4) holds. If
£ e E,, then

(€, ®,06) € E) and Ay(m,n)(€, ®,16) € ).

Therefore, if (z,,ym) is the solution of equation (2.3) with x,, = £ and y,, =
O, 2&, then y,, = Py xxp, for m > n. This shows that (3.5) and (3.6) hold.
We note that the sequence x,,, = Wy \§ satisfies (4.1) and that (3.7) holds.
Hence, ® = ®. It remains to obtain the last statement in the theorem, that
is, the analytic dependence of the maps A — ®,, . We first establish an aux-
iliary statement. We recall that A(®), » and B(®,U),  are given respectively
by (4.33) and (4.36).
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LEMMA 4.17. Given ® € X, if A — &, » is analytic and Uy, x = d®p »/dA
for each n € Z, then A — A(®), » is analytic for every n € Z and

(4.49) L A(B)n = BB, U)x

for everymn € Z and X € A.

PrOOF. If the map A — @, , is analytic and U, x = d®, »/d\ for each
n € Z, then clearly the linear operators Wy \ and Z), , in (4.1) and (4.37)
satisfy
d

n _ 7 n
m,A d)\ m,A

for each m > n and A\ € A. This implies that
- 0 -1 n n
(4.50) B(®,U),\ = — Z a[QnA(l +1,n) T Bi(A) (W) 4+ @AWY
l=n

for every n € Z and A € A. Now we observe that by (4.7) and (4.41) (see
also (4.38)) the series defining A(®),, » and B(®,U), » converge uniformly in A.
This allows one to interchange the series with the derivatives in (4.50) to ob-
tain (4.49). O

Now we consider the pair (&%, U') = (0,0) € X x F. Clearly,

d

U,b\ = E(I),lm for every n € Z and A € A.

We define recursively a sequence (@™, U™) € X x F by
(q)m-&-l’ UTYL-‘,—l) — S(CI)NL’ Um) — (A((I)m),B(cI)rn’ U”L)).
Given m € N, if A\ — 7\ 1s analytic for each n € Z, and

d

nx = gy Zna
for every n € Z and A € A, then it follows from Lemma 4.17 that A — @Z’Xl is
analytic for each n € J, and that

(4.51) % ot = % A(@™)px = B(@™,U™)px = U
for every n € Z and A € A. Furthermore, if (®,U) is the unique fixed point of
the contraction map S in X x F, then for each n € Z and A € A the sequences
(@7 )men and (U )men converge uniformly respectively to @, x and Up x.
Now we observe that if a sequence f,,, of analytic functions converges uniformly,
and the sequence of its derivatives f/, also converges uniformly, then the limit
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of f, is analytic, and its derivative is the limit of f/,. Thus, it follows from
(4.51) that each function A — ®,, , is analytic, and that

d — _
ECI)”,)\ =U,,, foreverynéeZand X € A.

The analytic dependence of the spaces F;L\ on A can be obtained in a similar

manner. This completes the proof of the theorem.
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