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ANALYTIC ROBUSTNESS
OF PARAMETER-DEPENDENT PERTURBATIONS

OF DIFFERENCE EQUATIONS

Luis Barreira — Claudia Valls

Abstract. We establish the robustness of nonuniform exponential di-

chotomies under sufficiently small analytic parameter-dependent pertur-
bations. We also show that the stable and unstable subspaces of the expo-

nential dichotomies depend analytically on the parameter.

1. Introduction

We consider nonautonomous linear difference equations

(1.1) vm+1 = Amvm + Bm(λ)vm

in a finite-dimensional space, where λ 7→ Bm(λ) is analytic for each m ∈ Z.
Assuming that the unperturbed dynamics

(1.2) vm+1 = Amvm

has a nonuniform exponential dichotomy, we establish the existence of non-
uniform exponential dichotomies for equation (1.1) provided that the the maps
Bm(λ) are sufficiently small. Namely, we assume that there exists a constant
δ > 0 such that

‖Bm(λ)‖ ≤ δe−3ε|m|
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for every m ∈ Z, for some appropriate constant ε > 0. The above property is
called the robustness of the dichotomy. Moreover, we show that the stable and
unstable subspaces associated to equation (1.1) are analytic in λ.

The notion of exponential dichotomy, introduced by Perron in [10], plays
a central role in a large part of the theory of dynamical systems, and the study
of robustness has a long history. In particular, the problem was discussed by
Massera and Schäffer [7] (building on earlier work of Perron [10]; see also [8]),
Coppel [5], and in the case of Banach spaces by Dalec’kĭı and Krĕın [6]. For more
recent works we refer to [4], [9], [11], [12] and the references therein. We note that
all these works consider only uniform exponential dichotomies. This is a very
stringent notion for the dynamics, and it is of interest to look for more general
types of hyperbolic behavior. In particular, when all Lyapunov exponents are
nonzero the linear dynamics in (1.2) has a nonuniform exponential dichotomy.
We refer to the books [1], [2] for detailed related discussions.

2. Setup

We describe in this section the standing assumptions in the paper. Given
a sequence (Am)m∈Z of l× l matrices with real entries, we consider the difference
equation

vm+1 = Amvm, m ∈ Z.

For each m,n ∈ Z with m ≥ n, we have vm = A(m,n)vn, where

A(m,n) =

{
Am−1 . . . An if m > n,

Id if m = n.

We say that the sequence (Am)m∈Z admits a nonuniform exponential dichotomy
if:

(a) there exist projections Pm: Rl → Rl for each m ∈ Z satisfying

A(m,n)Pn = PmA(m,n), m ≥ n,

such that the map

A(m,n) := A(m,n)| ker Pn: kerPn → ker Pm

is invertible for each m ≥ n;
(b) there exist constants a,D, ε > 0 such that

(2.1)
‖A(m,n)Pn‖ ≤ De−a(m−n)+ε|n|, m ≥ n,

‖A(m,n)Qn‖ ≤ De−a(n−m)+ε|n|, m ≤ n,

where Qm = Id− Pm for each m ∈ Z, and where

A(m,n) = A(n, m)−1| ker Pn, m ≤ n.
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Given a nonuniform exponential dichotomy, for each n ∈ Z we define the stable
and unstable subspaces by

En = Pn(Rl) and Fn = Qn(Rl).

Now let Ml and M̃l be respectively the sets of l×l matrices with real and complex
entries. We denote by H the space of continuous functions L:∆ → Ml, where

∆ = {(λ1, . . . , λp) ∈ Rp : |λi| ≤ 1 for i = 1, . . . , p},

admitting a continuous extension L̃: ∆̃ → M̃l which is holomorphic in the interior
of the polydisk

∆̃ = {(λ1, . . . , λp) ∈ Cp : |λi| ≤ 1 for i = 1, . . . , p}.

We equip the space H with the norm

‖L‖ := sup{‖L(λ)‖ : λ ∈ ∆}.

We also consider parameterized perturbations of a nonuniform exponential di-
chotomy. Namely, given a sequence (Bm)m∈Z ⊂ H, we assume that there is
a constant δ > 0 such that

(2.2) ‖Bm(λ)‖ ≤ δe−3ε|m|

for every m ∈ Z and λ ∈ int ∆. In particular, it follows from Cauchy’s integral
formula for the first derivative that

‖B′
m(λ)‖ ≤ δe−3ε|m| for every m ∈ Z and λ ∈ int∆.

Given n ∈ Z and vn = (ξ, η) ∈ En × Fn, we denote by

(xm, ym) = (xm(n, vn, λ), ym(n, vn, λ))

the sequence obtained from the difference equation

(2.3) vm+1 = Amvm + Bm(λ)vm, m ∈ Z

with vm = (xm, ym). One can easily verify that

xm = A(m,n)ξ +
m−1∑
l=n

PmA(m, l + 1)Bl(λ)(xl, yl),(2.4)

ym = A(m,n)η +
m−1∑
l=n

QmA(m, l + 1)Bl(λ)(xl, yl),(2.5)

for m ≥ n, with analogous identities for m ≤ n.
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3. Analytic robustness and strategy of the proof

We want to show that if the sequence (Am)m∈Z admits a nonuniform expo-
nential dichotomy, then for each λ the same happens with the sequence (Amvm+
Bm(λ))m∈Z, in fact with stable and unstable subspaces varying analytically
with λ. The following is our main result.

Theorem 3.1. If the sequence (Am)m∈Z admits a nonuniform exponential
dichotomy satisfying

(3.1) −a + 2ε < 0,

and λ 7→ Bm(λ), for m ∈ Z, are analytic functions satisfying (2.2), then provided
that δ is sufficiently small, the sequence (Am +Bm(λ))m∈Z admits a nonuniform
exponential dichotomy for each λ ∈ ∆, with the same constant a, and with the
constant ε replaced by 2ε. Moreover, the stable and unstable subspaces Eλ

n and
Fλ

n of these dichotomies are analytic in λ.

Now we describe the strategy of the proof. We note that some of the ar-
guments are inspired in our work [3], although now for analytic perturbations
and for exponential dichotomies on the whole line. For simplicity, we consider
only the stable subspaces Eλ

n , although the discussion for the unstable subspaces
would be entirely analogous. Being a vectorspace, Eλ

n must be the graph of a lin-
ear operator. Moreover, one should expect that Eλ

n is close to En provided that
the functions Bm are sufficiently small. This leads us to look for each space Eλ

n

as a graph over En. More precisely, we look for linear operators Φn,λ:En → Fn

such that

(3.2) Eλ
n = graph(IdEn + Φn,λ), n ∈ Z.

The unstable subspaces Fλ
n are obtained in a similar manner. Namely, we look

for linear operators Ψn,λ:Fn → En such that

(3.3) Fλ
n = graph(IdFn

+ Ψn,λ), n ∈ Z.

We have

Em = A(m,n)En, m ≥ n.

A corresponding identity must hold for the spaces Eλ
m, replacing A(m,n) by

Aλ(m,n) =

{
Cm−1 . . . Cn if m > n,

Id if m = n,

where Ck = Ak + Bk(λ) for each k ∈ Z. Namely, we must have

(3.4) Eλ
m = Aλ(m,n)Eλ

n , m ≥ n.
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This means that given (xn, yn) ∈ Eλ
n , the sequence (xm, ym) obtained from (2.4)

and (2.5) must satisfy (xm, ym) ∈ Eλ
m for every m ≥ n. On the other hand,

by (3.2), the point (xm, ym) can be written in the form

(xm,Φm,λxm) = (IdEm
+ Φm,λ)xm,

and thus, the pair of equations (2.4)–(2.5) is equivalent to

(3.5) xm = A(m,n)xn +
m−1∑
l=n

PmA(m, l + 1)Bl(λ)(IdEl
+ Φl,λ)xl,

and

(3.6) Φm,λxm = A(m,n)Φn,λxn +
m−1∑
l=n

QmA(m, l + 1)Bl(λ)(IdEl
+ Φl,λ)xl.

Given linear operators Φm,λ, for each n ∈ Z, the first equation defines recursively
linear operators Wn

l such that Wn
n = IdEn

and xl = Wn
l xn. Substituting in (3.6),

we obtain

(3.7) Φm,λWn
m = A(m,n)Φn,λ +

m−1∑
l=n

QmA(m, l + 1)Bl(λ)(IdEl
+ Φl,λ)Wm

l .

The strategy of the proof of Theorem 3.1 is to show that equation (3.7) has
a unique solution Φ = (Φm,λ)(m,λ)∈Z×∆ in an appropriate space. The main
difficulties are the nonuniform exponential behavior of the original dichotomy,
and the dependence of the operators Wn

l on Φ. A similar approach can be applied
to obtain unstable subspaces. On the other hand, one of the main advantages
of our approach is that we are able to show in a more or less direct manner
that the unique operators Ψm,λ and Φm,λ in (3.2) and (3.3) are analytic in λ,
and thus, the same happens with the subspaces Eλ

n and Fλ
n . The proof requires

considering simultaneously additional equations related to the formal derivatives
of (3.7) and of the corresponding identity for the operators Ψm,λ with respect
to λ.

4. Proof of Theorem 3.1

We first describe the class of functions where we look for the operators Φn,λ.
Given a constant κ < 1, let X be the space of parameterized sequences Φ =
(Φn,λ)n∈Z,λ∈∆ of linear operators Φn,λ:En → Fn such that

‖Φ‖ := sup{‖Φn,λ‖eε|n| : (n, λ) ∈ Z×∆} ≤ κ,

Cλµ(Φ) := sup{‖Φn,λ − Φn,µ‖eε|n| : (n, λ) ∈ Z} ≤ κ‖λ− µ‖

for each λ, µ ∈ ∆. When equipped with the distance

d(Φ,Ψ) = sup{‖Φn,λ − Φn,µ‖eε|n| : (n, λ) ∈ Z×∆},
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the space X becomes a complete metric space. Given Φ ∈ X and λ ∈ ∆, for each
n ∈ Z we consider the vector space

Eλ
n = graph(IdEn

+ Φn,λ) = {(ξ, Φn,λξ) : ξ ∈ En}.

Step 1. Construction of stable subspaces. Due to the required inva-
riance in (3.4), we must solve the system of equations (3.5)–(3.6). For that we
introduce two sequences of linear operators, one related to each equation, whose
fixed points are solutions of these equations.

We first introduce linear operators related to equation (3.5). Given Φ ∈ X,
n ∈ Z and λ ∈ ∆, we consider the linear operators Wn

m,λ = Wn
m,Φ,λ:En → Fn

determined recursively by the identities

(4.1) Wn
m,λ = PmA(m,n) +

m−1∑
l=n

PmA(m, l + 1)Bl(λ)(IdEl
+ Φl,λ)Wn

l,λ

for m ≥ n, setting Wn
n,λ = IdEn . We note that for xn = ξ ∈ En, the sequence

xm = Wn
m,λxn = Wn

m,λξ is the solution of equation (2.4) with yl = Φj,λxl for
l ≥ n. Equivalently, it is a solution of equation (3.5).

Now we rewrite equation (3.7) in an equivalent form.

Lemma 4.1. For any sufficiently small δ, given Φ ∈ X and λ ∈ ∆ the
following properties are equivalent:

(a) for every n ∈ Z and m ≥ n,

Φm,λWn
m,λ =A(m,n)Φn,λ(4.2)

+
m−1∑
l=n

QmA(l + 1,m)−1Bl(λ)(IdEl
+ Φl,λ)Wn

l,λ;

(b) for every n ∈ Z,

(4.3) Φn,λ = −
∞∑

l=n

QnA(l + 1, n)−1Bl(λ)(IdEl
+ Φl,λ)Wn

l,λ.

Proof. We first show that the series in (4.3) is well-defined. Setting D̃ =
Dea+ε, by (2.1) and (2.2), we obtain

∞∑
l=n

‖QnA(l + 1, n)−1Bl(λ)(Wn
l,λ + Φl,λWn

l,λ)‖eε|n|(4.4)

≤ (1 + κ)δD̃
∞∑

l=n

e−a(l−n)+ε|l|−3ε|l|+ε|n|‖Wn
l,λ‖

≤ 2 δD̃
∞∑

l=n

e−(a−ε)(l−n)−ε|l|‖Wn
l,λ‖.
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By (4.1), for each m ≥ n, we have

(4.5) ‖Wn
m,λ‖ ≤ De−a(m−n)+ε|n| + (1 + κ) δD̃

m−1∑
l=n

e−a(m−l)−2ε|l|‖Wn
l,λ‖.

Setting Υ = sup
m≥n

(ea(m−n)‖Wn
m,λ‖), for each l we obtain

Υ ≤ Deε|n| + 2δD̃ Υ
m∑

l=n

e−2ε|l| ≤ Deε|n| + 2δD̃ ΥΓ2ε,

where

Γc :=
∑
l∈Z

e−c|l| =
1 + e−c

1− e−c

for each c > 0. Taking δ sufficiently small so that 2δD̃Γ2ε < 1/2 (independently
of n), we obtain Υ ≤ 2Deε|n|, and hence

(4.6) ‖Wn
m,λ‖ ≤ 2De−a(m−n)+ε|n|.

By (4.4), this implies that

∞∑
l=n

‖QnA(l + 1, n)−1Bl(λ)(Wn
l,λ + Φl,λWn

l,λ)‖eε|n|(4.7)

≤ 4 δDD̃
∞∑

l=n

e−2a(l−n)+ε|n|−ε|l|

≤ 4 δDD̃
∞∑

l=n

e−(2a−ε)(l−n) ≤ 4 δDD̃Γ2a−ε ≤ κ,

provided that δ is sufficiently small. Now we assume that identity (4.2) holds.
It is equivalent to

Φn,λ =QnA(m,n)−1Φm,λWn
m,λ(4.8)

−
m−1∑
l=n

QnA(l + 1, n)−1Bl(λ)(IdEl
+ Φl,λ)Wn

l,λ.

By the second inequality in (2.1) and (4.6), for each positive m ≥ n we have

‖QnA(m,n)−1Φm,λWn
m,λ‖ ≤ 2DD̃κe−a(m−n)+ε|m|e−ε|m|e−a(m−n)+ε|n|

≤ 2DD̃κe−2a(m−n)+ε|n|.
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Since a > 0, letting m →∞ in (4.8) we obtain identity (4.3). Conversely, let us
assume that identity (4.3) holds. Then

A(m,n)Φn,λ +
m−1∑
l=n

QmA(l + 1,m)−1Bl(λ)(IdEl
+ Φl,λ)Wn

l,λ

= −
∞∑

l=n

QmA(l + 1,m)−1Bl(λ)(IdEl
+ Φl,λ)Wn

l,λ

+
m−1∑
l=n

QmA(l + 1,m)−1Bl(λ)(IdEl
+ Φl,λ)Wn

l,λ

= −
∞∑

l=m

QmA(l + 1,m)−1Bl(λ)(IdEl
+ Φl,λ)Wn

l,λ

for each m ≥ n. Since Wn
l,λ = Wm

l,λWn
m,λ, it follows from (4.3) with n replaced

by m that (4.2) holds for each m ≥ n. �

For each λ ∈ ∆ and m ≥ n, we denote

Uλ(m,n) = (IdEm
+ Φm,λ)Wn

m,λ.

We claim that

Uλ(m,n) =A(m,n)Pn +
m−1∑
l=n

A(m, l + 1)Pl+1Bl(λ)Uλ(l, n)(4.9)

−
∞∑

l=m

A(m, l + 1)Ql+1Bl(λ)Uλ(l, n).

Indeed, it follows from (3.4)–(3.6) that

Uλ(m,n) = (IdEm + Φm,λ)Wn
m,λ = Wn

m,λ + Φm,λWn
m,λ(4.10)

=A(m,n)Pn +
m−1∑
l=n

A(m, l + 1)Pl+1Bl(λ)Uλ(l, n)

−A(m,n)
∞∑

l=n

A(n, l + 1)Ql+1Bl(λ)Uλ(l, n)

+
m−1∑
l=n

QmA(m, l + 1)Bl(λ)Uλ(l, n)

=A(m,n)Pn +
m−1∑
l=n

A(m, l + 1)Pl+1Bl(λ)Uλ(l, n)

−
∞∑

l=n

A(m, l + 1)Ql+1Bl(λ)Uλ(l, n)
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+
m−1∑
l=n

QmA(m, l + 1)Bl(λ)Uλ(l, n)

=A(m,n)Pn +
m−1∑
l=n

A(m, l + 1)Pl+1Bl(λ)Uλ(l, n)

−
∞∑

l=m

A(m, l + 1)Ql+1Bl(λ)Uλ(l, n).

For each λ ∈ ∆, let I = {(m,n) ∈ Z × Z : m ≥ n} and consider the Banach
space Cλ =

{
Uλ: I → Ml : ‖Uλ‖ < +∞

}
with the norm

‖Uλ‖ = sup{‖Uλ(m,n)‖ea(m,n)−ε|n| : (m,n) ∈ I}.

Lemma 4.2. For any sufficiently small δ, there is a unique Uλ ∈ Cλ sa-
tisfying (4.9) for each (m,n) ∈ I. Moreover, for each ξ ∈ Rl the sequence
xm = Uλ(m,n)ξ, m ≥ n is a solution of equation (2.3).

Proof. For each λ ∈ ∆, we consider the operator L defined for each Uλ ∈ Cλ

by

(LUλ)λ(m,n) =A(m,n)Pn +
m−1∑
k=n

A(m, k + 1)Pk+1Bk(λ)U(k, n)

−
∞∑

k=m

A(m, k + 1)Qk+1Bk(λ)Uλ(k, n).

We have
∞∑

k=m

‖A(m, k + 1)Qk+1Bk(λ)Uλ(k, n)‖ ≤ D̃δe−a(m−n)+ε|n|‖Uλ‖
∞∑

k=m

e−2a (k−m)

≤ D̃δ

1− e−2a
e−a (m−n)+ε|n|‖Uλ‖ < +∞.

Therefore, (LUλ)λ(m,n) is well defined, and we obtain

(4.11) ‖(LUλ)λ(m,n)‖ ≤ ‖A(m,n)Pn‖

+
m−1∑
k=n

‖A(m, k + 1)Pk+1‖ · ‖Bk(λ)‖ · ‖Uλ(k, n)‖

+
∞∑

k=m

‖A(m, k + 1)Qk+1‖ · ‖Bk(λ)‖ · ‖Uλ(k, n)‖

≤De−a (m−n)+ε|n| + D̃δe−a (m−n)+ε|n|‖Uλ‖
m−1∑
k=n

e−2ε|k|

+ D̃δe−a (m−n)+ε|n|‖Uλ‖
∞∑

k=m

e−2a(k−m)
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≤Dδe−a (m−n)+ε|n| +
D̃δ

1− e−2ε
e−a(m−n)+ε|n|‖Uλ‖

+
D̃δ

1− e−2a
e−a (m−n)+ε|n|‖Uλ‖.

This implies that

‖(LUλ)λ‖ ≤ D + D̃δ

(
1

1− e−2ε
+

1
1− e−2a

)
‖Uλ‖ < +∞,

and hence, we have a well defined operator L:Cλ → Cλ. Proceeding in a similar
manner to that in (4.11) we also obtain

(4.12) ‖(LU1,λ)λ − (LU2,λ)λ‖ ≤ D̃δ

(
1

1− e−2ε
+

1
1− e−2a

)
‖U1,λ − U2,λ‖

for every U1,λ, U2,λ ∈ Cλ. Therefore, for any sufficiently small δ the operator L

is a contraction, and there exists a unique Uλ ∈ Cλ such that LUλ = Uλ. Finally,

Uλ(m,n)−A(m,n)Uλ(n, n) = A(m,n)Pn −A(m,n)Pn

+
m−1∑
k=n

A(m, k + 1)Pk+1Bk(λ)Uλ(k, n) +
m−1∑
k=n

A(m, k + 1)Qk+1Bk(λ)Uλ(k, n)

=
m−1∑
k=n

A(m, k + 1)Bk(λ)Uλ(k, n)

for each m ≥ n. This completes the proof of the lemma. �

Lemma 4.3. For any sufficiently small δ, we have

Uλ(m, l)Uλ(l, n) = Uλ(m,n) for every m ≥ l ≥ n.

Proof. We first note that

Uλ(m, l)Uλ(l, n) =A(m,n)Pn +
l−1∑
k=n

A(m, k + 1)Pk+1Bk(λ)Uλ(k, n)

+
m−1∑
k=l

A(m, k + 1)Pk+1Bk(λ)Uλ(k, l)Uλ(l, n)

−
∞∑

k=m

A(m, k + 1)Qk+1Bk(λ)Uλ(k, l)Uλ(l, n).

Given n ∈ Z and λ ∈ ∆, let In = {(m, l) ∈ Z×Z : m ≥ l ≥ n}, and consider the
Banach space Cn,λ = {Hλ: In → Ml : ‖Hλ‖n < +∞} with the norm

‖Hλ‖n = sup{‖Hλ(m, l)‖e−2ε|m| : (m, l) ∈ In}.

Writing
hλ(m, l) = Uλ(m, l)Uλ(l, n)− Uλ(m,n)
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for m ≥ l (with n fixed), we obtain L1hλ = hλ, where

(L1Hλ)(m, l) =
m−1∑
k=l

A(m, k + 1)Pk+1Bk(λ)Hλ(k, n)

−
∞∑

k=m

A(m, k + 1)Qk+1Bk(λ)Hλ(k, n).

for each Hλ ∈ Cn,λ and (m, l) ∈ In. Now we observe that

m−1∑
k=l

‖A(m, k + 1)Pk+1‖ · ‖Bk(λ)‖ · ‖Hλ(k, n)‖

+
∞∑

k=m

‖A(m, k + 1)Qk+1‖ · ‖Bk(λ)‖ · ‖Hλ(k, n)‖

≤ D̃δ

ea − 1
‖Hλ‖n +

D̃δ

1− e−a
‖Hλ‖n = D̃δ

1 + e−a

1− e−a
‖Hλ‖n.

This shows that (L1Hλ)(m, l) is well defined, and that

‖L1Hλ‖n ≤ D̃δ
1 + e−a

1− e−a
‖Hλ‖n < +∞.

Hence, we obtain an operator L1:Cn,λ → Cn,λ. Moreover, one can show in
a similar manner that for each H1,λ,H2,λ ∈ Cn,λ and m ≥ l,

‖L1H1,λ − L1H2,λ‖n ≤ D̃δ
1 + e−a

1− e−a
‖H1,λ −H2,λ‖n.

Therefore, for any sufficiently small δ the operator L1 is a contraction, and
hence there exists a unique Hλ ∈ Cn,λ such that L1Hλ = Hλ. Since 0 ∈ Cn,λ

also satisfies this identity, we have Hλ = 0. Now we show that hλ ∈ Cn,λ. Indeed,
it follows from Lemma 4.2 that

‖Uλ(m, l)Uλ(l, n)‖ ≤ ‖Uλ(m, l)‖ · ‖Uλ(l, n)‖ ≤ ‖Uλ‖2e−a(m−n)+ε(|l|+|n|)

≤ ‖Uλ‖2e(2ε−a)(m−n)e2ε|m| ≤ ‖U‖2e2ε|m|,

‖Uλ(m,n)‖ ≤ ‖Uλ‖e−a(m−n)+ε|n|

≤ ‖Uλ‖e(ε−a)(m−n)+eε|m| ≤ ‖Uλ‖e2ε|m|

for m ≥ l ≥ n. This shows that hλ ∈ Cn,λ, and by the uniqueness of the fixed
point of L1 we conclude that hλ = 0. �

Step 2. Construction of unstable subspaces. Now we describe the class
of functions where we look for the operators Ψn,λ (see (3.3)). Let Y be the space of
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parameterized sequences Ψ = (Ψn,λ)n∈Z,λ∈∆ of linear operators Ψn,λ:Fn → En

such that

sup{‖Ψn,λ‖eε|n| : (n, λ) ∈ Z×∆} ≤ κ,

sup{‖Ψn,λ −Ψn,µ‖eε|n| : n ∈ Z} ≤ κ ‖λ− µ‖,

for each λ, µ ∈ ∆. Given Ψ ∈ Y and λ ∈ ∆, for each n ∈ Z we consider the
vector spaces

Fλ
n = graph (IdFn

+ Ψn,λ).

Given Ψ ∈ Y, n ∈ Z and λ ∈ ∆, we consider the linear operators Y n
m,λ =

Y n
m,Ψ,λ:Fn → En determined recursively by the identities

Y n
m,λ = QmA(m,n)−

n−1∑
l=m

QmA(m, l + 1)Bl(λ)(IdEl
+ Ψl,λ)Y n

l,λ

for m ≤ n, setting Y n
n,λ = IdFn . We note that for yn = ν ∈ Fn, the sequence

ym = Y n
m,λyn = Y n

m,λν

is the solution of equation (2.4) with xl = Ψj,λyl for l ≤ n. Equivalently, it is
a solution of equation (3.5).

The following is a version of Lemma 4.1 for the operators Ψm,λ and it can
be obtained in an analogous manner.

Lemma 4.4. For any sufficiently small δ, given Ψ ∈ Y and λ ∈ ∆ the fol-
lowing properties are equivalent:

(a) for every n ∈ Z and m ≤ n,

Ψm,λY n
m,λ = A(m,n)Ψn,λ −

n−1∑
l=m

PmA(l + 1,m)−1Bl(λ)(IdEl
+ Ψl,λ)Y n

l,λ;

(b) for every n ∈ Z,

Ψn,λ =
n∑
−∞

PnA(l + 1, n)−1Bl(λ)(IdEl
+ Ψl,λ)Y n

l,λ.

Now set Vλ(m,n) = (IdEm + Ψm,λ)Y n
m,λ. Proceeding in a similar manner to

that in (4.10) we obtain

(4.13) Vλ(m,n) = A(m,n)Qn +
m−1∑

k=−∞

A(m, k + 1)Pk+1Bk(λ)Vλ(k, n)

−
n−1∑
k=m

A(m, k + 1)Qk+1Bk(λ)Vλ(k, n).
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For each λ ∈ ∆, let J = {(m,n) ∈ Z × Z : m ≤ n}, and consider the Banach
space Dλ = {Vλ: J → Ml : ‖Vλ‖ < +∞} with the norm

‖Vλ‖ = sup{‖Vλ(m,n)‖e−a(m−n)−ε|n| : (m,n) ∈ J}.

Lemma 4.5. For any sufficiently small δ, there is a unique Vλ ∈ Dλ sa-
tisfying (4.13) for each (m,n) ∈ J . Moreover, for each ξ ∈ Rl the sequence
xm = Vλ(m,n)ξ, m ≤ n is a solution of equation (2.3).

Proof. For each λ ∈ ∆, we consider the operator M defined for each Vλ ∈
Dλ by

(MVλ)(m,n) =A(m,n)Qn +
m−1∑

k=−∞

A(m, k + 1)Pk+1Bk(λ)Vλ(k, n)

−
n−1∑
k=m

A(m, k + 1)Qk+1Bk(λ)Vλ(k, n).

We have:

(4.14) ‖A(m,n)Qn‖ +
m−1∑

k=−∞

‖A(m, k + 1)Pk+1‖ · ‖Bk(λ)‖ · ‖Vλ(k, n)‖

+
n−1∑
k=m

‖A(m, k + 1)Qk+1‖ · ‖Bk(λ)‖ · ‖Vλ(k, n)‖

≤Dea(m−n)+ε|n| + D̃δea(m−n)+ε|n|‖V ‖
m−1∑

k=−∞

e−2a (m−k)

+ D̃δea(m−n)+ε|n|‖Vλ‖
n−1∑
k=m

e−2εk

≤Dea(m−n)+ε|n| +
D̃δ

e2a − 1
ea(m−n)+ε|n|‖Vλ‖

+
D̃δ

1− e−2ε
ea(m−n)+ε|n|‖Vλ‖.

This implies that (MVλ)(m,n) is well defined, and that

(4.15) ‖MVλ‖ ≤ D + δD̃

(
1

e2a − 1
+

1
1− e−2ε

)
‖V ‖ < +∞.

Hence, we obtain a well defined operator Mλ:Dλ → Dλ. Proceeding in a similar
manner to that in (4.14) we also obtain

‖MV1,λ −MV2,λ‖ ≤ δD̃

(
1

e2a − 1
+

1
1− e−2ε

)
‖V1,λ − V2,λ‖
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for every V1,λ, V2,λ ∈ Dλ. Therefore, for any sufficiently small δ the operator M

is a contraction, and there is a unique V ∈ Dλ such that MVλ = Vλ. Moreover,

Vλ(n, n)−A(n, m)Vλ(m,n) = Qn +
n−1∑

k=−∞

A(n, k + 1)Pk+1Bk(λ)Vλ(k, n)

−A(n, m)A(m,n)Qn −A(n, m)
m−1∑

k=−∞

A(m, k + 1)Pk+1Bk(λ)Vλ(k, n)

+ A(n, m)
n−1∑
k=m

A(m, k + 1)Qk+1Bk(λ)Vλ(k, n)

=Qn +
m−1∑

k=−∞

A(n, k + 1)Pk+1Bk(λ)Vλ(k, n)

+
n−1∑
k=m

A(n, k + 1)Pk+1Bk(λ)Vλ(k, n)

−Qn −
m−1∑

k=−∞

A(n, k + 1)Pk+1Bk(λ)Vλ(k, n)

+
n−1∑
k=m

A(n, k + 1)Qk+1Bk(λ)Vλ(k, n)

=
n−1∑
k=m

A(n, k + 1)Pk+1Bk(λ)Vλ(k, n) +
n−1∑
k=m

A(n, k + 1)Qk+1Bk(λ)Vλ(k, n)

=
n−1∑
k=m

A(n, k + 1)BkVλ(k, n)

for each m ≤ n. This completes the proof of the lemma. �

Lemma 4.6. For any sufficiently small δ, we have

Vλ(m, l)Vλ(l, n) = Vλ(m,n) for every m ≤ l ≤ n.

Proof. We have

Vλ(m, l)Vλ(l, n) =A(m,n)Qn −
n−1∑
k=l

A(m, k + 1)Qk+1Bk(λ)Vλ(k, n)

+
m−1∑

k=−∞

A(m, k + 1)Pk+1Bk(λ)Vλ(k, l)Vλ(l, n)

−
l−1∑

k=m

A(m, k + 1)Qk+1Bk(λ)Vλ(k, l)Vλ(l, n).
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Given n ∈ Z and λ ∈ ∆, let Jn = {(m, l) ∈ Z×Z : m ≤ l ≤ n}, and consider the
Banach space Dn,λ = {Hλ: Jn → Ml : ‖Hλ‖n < +∞} with the norm

‖Hλ‖n = sup{‖Hλ(m, l)‖e−2ε|m| : (m, l) ∈ Jn}.

Writing
hλ(m,n) = Vλ(m, l)Vλ(l, n)− Vλ(m,n)

for m ≤ l ≤ n (with n fixed), we obtain M1hλ = hλ, where

(M1Hλ)(m, l) =
m−1∑

k=−∞

A(m, k + 1)Pk+1Bk(λ)Hλ(k, n)

−
l−1∑

k=m

A(m, k + 1)Qk+1Bk(λ)Hλ(k, n)

for each Hλ ∈ Dn,λ and (m, l) ∈ Jn. Proceeding in a similar manner to that in
the proof of Lemma 4.3, one can show that 0 is the unique fixed point of M1

in Dn,λ, and since hλ ∈ Dn,λ we conclude that hλ = 0. �

Now we characterize the bounded solutions of equation (2.3).

Step 3. Characterization of bounded solutions.

Lemma 4.7. Given n ∈ Z, if (ym)m≥n ⊂ Rl is a bounded sequence satisfying
equation (2.3) with yn = ξ, then

ym =A(m,n)Pnξ +
m−1∑
k=n

A(m, k + 1)Pk+1Bk(λ)yk(4.16)

−
∞∑

k=m

A(m, k + 1)Qk+1Bk(λ)yk.

Proof. For each m ≥ n, we have

Pmym = A(m,n)Pnξ +
m−1∑
k=n

A(m, k + 1)Pk+1Bk(λ)yk,(4.17)

Qmym = A(m,n)Qnξ +
m−1∑
k=n

A(m, k + 1)Qk+1Bk(λ)yk.(4.18)

The identity (4.18) can be written in the form

(4.19) Qnξ = A(n, m)Qmym −
m−1∑
k=n

A(n, k + 1)Qk+1Bk(λ)yk.

Since ym is bounded, we have

‖A(n, m)Qmym‖ ≤ CDe−a(m−n)+ε|m|,
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where C = sup{‖ym‖ : m ≥ n} < +∞. Therefore, taking limits on both sides
of (4.19) when m → +∞, we obtain

(4.20) Qnξ = −
∞∑

k=n

A(n, k + 1)Qk+1Bk(λ)yk.

Replacing (n, ξ) by (m, ym) in (4.20) and adding the resulting identity to (4.19)
we obtain (4.16). �

Lemma 4.8. Given n ∈ Z, if (ym)m≤n ⊂ Rl is a bounded sequence satisfying
equation (2.3) with yn = ξ, then

ym =A(m,n)Qnξ +
m∑

k=−∞

A(m, k + 1)Pk+1Bk(λ)yk

−
n−1∑
k=m

A(m, k + 1)Qk+1Bk(λ)yk.

Proof. For each m ≤ n, we have

Pnξ = A(n, m)Pmym +
n−1∑
k=m

A(n, k + 1)Pk+1Bk(λ)yk,(4.21)

Qnξ = A(n, m)Qmym +
n−1∑
k=m

A(n, k + 1)Qk+1Bk(λ)yk.(4.22)

Since the sequence (ym)m≤n is bounded, we have

‖A(n, m)Pmym‖ ≤ CD̃e−a(n−m)+ε|m|,

where C = sup{‖ym‖ : m ≤ n} < +∞. Since a > ε (see (3.1)), taking limits
in (4.21) when m → −∞, we obtain

Pnξ =
n∑

k=−∞

A(n, k + 1)Pk+1Bk(λ)yk.

Replacing (n, ξ) by (m, ym) in this identity we finally obtain

(4.23) Pmym =
m∑

k=−∞

A(m, k + 1)Pk+1Bk(λ)yk.

On the other hand, by (4.22),

(4.24) Qmym = A(m,n)Qnξ −
n−1∑
k=m

A(m, k + 1)Qk+1Bk(λ)yk.

Adding (4.23) and (4.24) yields the desired dentity. �
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Step 4. Invariance of the stable and unstable subspaces

Now we set Eλ
m = Im Uλ(m,m) and Fλ

m = Im Vλ(m,m).

Lemma 4.9. For each m ∈ Z and λ ∈ ∆, we have

Eλ
m = Aλ(m,n)Eλ

n and Fλ
m = Aλ(m,n)Fλ

n .

Proof. By Lemma 4.2, for each ξ ∈ Rl the sequence m 7→ Uλ(m,n)ξ,
m ≥ n is a solution of equation (2.4) with initial condition at time n equal
to Uλ(n, n)ξ. Therefore, Uλ(m,n) = Aλ(m,n)Uλ(n, n), where Aλ(m,n) is the
cocycle associated to equation (2.3). Hence, by Lemma 4.3,

Aλ(m,n)Eλ
n =ImUλ(m,n)

= Im (Uλ(m,m)Uλ(m,n)) = Uλ(m,m) Im Uλ(m,n) ⊂ Eλ
m

for each m ≥ n. Similarly, by Lemma 4.5, the sequence m 7→ Vλ(m,n)ξ, m ≤ n

is a solution of equation (2.4), and hence,

(4.25) Vλ(n, n) = Aλ(n, m)Vλ(m,n).

This implies that

Fλ
n =Aλ(n, m) Im Vλ(m,n)

=Aλ(n, m) Im (Vλ(m,m)Vλ(m,n)) ⊂ Aλ(n, m)Fλ
m

for each m ≤ n. For the reverse inclusions we use the characterization of bounded
solutions in Lemmas 4.7 and 4.8. Take x ∈ Eλ

m and y ∈ Aλ(m,n)−1x. Then
Aλ(k, n)y = Aλ(k,m)x for each k ≥ m. Since x ∈ Eλ

m = Im Uλ(m,m), we have
x ∈ Uλ(m,m)z for some z ∈ Rl, and hence,

Aλ(k, n)y = Aλ(k, m)Uλ(m,m)z = Uλ(k,m)z.

This shows that the sequence [n, +∞) ∩ Z 3 k 7→ Aλ(k, n)y is bounded, and it
follows from Lemma 4.7 that Aλ(k, n)y = Uλ(k, n)w for some w ∈ Rl. In parti-
cular,

y = Aλ(n, n)y = Uλ(n, n)w ∈ Eλ
n .

Therefore, x = Aλ(m,n)y ∈ Aλ(m,n)Eλ
n , and we obtain Eλ

m ⊂ Aλ(m,n)Eλ
n .

This establishes the first identity in the lemma. For the second identity, take x ∈
Aλ(n, m)Fλ

m and y ∈ Aλ(n, m)−1x. Then k 7→ Vλ(k, m)y, k ≤ m is a bounded
sequence satisfying equation (2.3), and hence,

(−∞, n] ∩ Z 3 k 7→

{
Vλ(k, m)y, k ≤ m,

Aλ(n, m)Vλ(m,m)y, m ≤ k ≤ n
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is also a bounded sequence satisfying the equation. Hence, it follows from
Lemma 4.8 that Vλ(k, m)y = Vλ(k, n)z, k ≤ m for some z ∈ Rl. In particu-
lar, by (4.25),

x = Aλ(n, m)Vλ(m,m)y = Aλ(n, m)Vλ(m,n)z = Vλ(n, n)z.

Therefore, x ∈ Fλ
n , and hence Aλ(n, m)Fλ

m ⊂ Fλ
n . �

Now we show that the perturbed dynamics is invertible along the subspa-
ces Fλ

m. Since Vλ(n, n)2 = Vλ(n, n), restricting identity (4.25) to Fλ
n yields

IdF λ
n

= Vλ(n, n)|Fλ
n = Aλ(n, m)Vλ(m,n)|Fλ

n .

Therefore, the operator Aλ(n, m)|Fλ
m is invertible, with

(Aλ(n, m)|Fλ
m)−1 = Vλ(m,n)|Fλ

n .

It follows from Lemma 4.9 that

Aλ(m,n)|Eλ
n = Uλ(m,n)|Eλ

n :Eλ
n → Eλ

m, m ≥ n,

(Aλ(n, m)|Fλ
m)−1∗ = Vλ(m,n)|Fλ

n :Fλ
n → Fλ

m, m ≤ n.

Therefore, since Uλ ∈ Cλ, we obtain

(4.26) ‖Aλ(m,n)|Eλ
n‖ ≤ Ke−a (m−n)+ε|n|, m ≥ n,

and since Vλ ∈ Dλ, we obtain

(4.27) ‖(Aλ(n, m)|Fλ
m)−1‖ ≤ Ke−a (n−m)+ε|n|, m ≤ n,

for some constant K < 0.

Step 5. Construction of projections. Set Sn,λ = Uλ(n, n) + Vλ(n, n).

Lemma 4.10. For any sufficiently small δ, the operator Sn,λ is invertible for
every n ∈ Z and λ ∈ ∆.

Proof. We have

Sn,λ =Pn −
∞∑

k=n

A(n, k + 1)Qk+1Bk(λ)Uλ(k, n)

+ Qn +
n−1∑

k=−∞

A(n, k + 1)Pk+1Bk(λ)Vλ(k, n),

and hence

Sn,λ − Id = −
∞∑

k=n

A(n, k + 1)Qk+1Bk(λ = Uλ(k, n)

+
n−1∑

k=−∞

A(n, k + 1)Pk+1Bk(λ)Vλ(k, n).
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By Lemmas 4.2 and 4.5, we obtain

‖Sn,λ − Id‖ ≤
∞∑

k=n

‖A(n, k + 1)Qk+1‖ · ‖Bk(λ)‖ · ‖Uλ(k, n)‖

+
n−1∑

k=−∞

‖A(n, k + 1)Pk+1‖ · ‖Bk(λ)‖ · ‖Vλ(k, n)‖

≤ D̃δ‖Uλ‖
∞∑

k=n

e−2a (k−n) + D̃δ‖Vλ‖
n−1∑

k=−∞

e−2a(k−n)

≤ D̃δ

(
‖Uλ‖

1− e−2a
+

‖Vλ‖
e2a − 1

)
.

Moreover, it follows from (4.12) and (4.15) that

‖Uλ‖ ≤ D

/(
1− D̃δ

(
1

1− e−2ε
+

1
1− e−2a

))
and

‖Vλ‖ ≤ D

/(
1− D̃δ

(
1

e2a − 1
+

1
1− e−2ε

))
.

This yields the desired statement. �

Lemma 4.11. Provided that δ is sufficiently small, we have Eλ
m ⊕ Fλ

m = Rl

for each λ ∈ ∆ and m ∈ Z.

Proof. Let ξ ∈ Eλ
m ∩ Fλ

m. By (4.27), for each m ≥ n we have

1
K

ea (m−n)−ε|m|‖ξ‖ ≤ ‖Aλ(m,n)ξ‖ ≤ Ke−a (m−n)+ε|n|‖ξ‖.

Since ε < a (see (3.1)), this implies that ξ = 0, and hence, Eλ
m ∩ Fλ

m = {0}. On
the other hand, since Sm,λ is invertible, we have

Rl = Sm,λRl = Im Uλ(m,m) + Im Vλ(m,m) = Eλ
m + Fλ

m.

This concludes the proof of the lemma. �

By Lemma 4.11, for each m ∈ Z any vector x ∈ Rl can be written uniquely
in the form x = ym + zm with ym ∈ Eλ

m and zm ∈ Fλ
m. Hence, one can define

projections Pλ
m and Qλ

m by Pλ
mx = ym and Qλ

mx = zm. The following statement
is an immediate consequence of Lemmas 4.9 and 4.11.

Lemma 4.12. Provided that δ is sufficiently small, we have

Pλ
mÂ(m,n) = A(m,n)Pλ

n for each m ≥ n.

Step 6. Upper bounds for the projections. Set

αλ
m = inf{‖x− y‖ : x ∈ Eλ

m, y ∈ Fλ
m, ‖x‖ = ‖y‖ = 1}.
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Lemma 4.13. Provided that δ is sufficiently small, there exists a constant
c > 0 such that

(4.28) αλ
m ≥ ce−ε|m|, m ∈ Z.

Proof. Given x ∈ Eλ
m and y ∈ Fλ

m, there exist x ∈ Em and y ∈ Fm such
that

x = Uλ(m,m)x = (Id + GE,m)x and y = Vλ(m,m)y = (Id + GF,m)y,

where

GE,m = −
∞∑

k=m

A(m, k + 1)Qk+1Bk(λ)Uλ(k,m)

and

GF,m =
m−1∑

k=−∞

A(m, k + 1)Pk+1Bk(λ)Vλ(k,m).

We have

‖GE,m‖eε|m| ≤
∞∑

k=m

‖A(m, k + 1)Qk+1‖ · ‖Bk(λ)‖ · ‖Uλ(k,m)‖

≤ Dδ‖Uλ‖
∞∑

k=m

e−2(ε−a)(k+1−m) ≤ µ‖Uλ‖,

where µ = Dδ/(1− e−2(ε−a)), and hence ‖GE,m‖ ≤ µ‖Uλ‖e−ε|m|. Similarly,

‖GF,m‖eε|m| ≤
m−1∑
k=0

‖A(m, k + 1)Pk+1‖ · ‖Bk(λ)‖ · ‖Vλ(k,m)‖

≤ Dδ‖Vλ‖
m−1∑
k=0

e−2(ε−a)(m−k−1) ≤ µ‖Vλ‖,

and hence ‖GF,m‖ ≤ µ‖Vλ‖e−ε|m|. Therefore,

(1− µ‖Uλ‖e−ε|m|)‖x‖ ≤ ‖x‖ ≤ (1 + µ‖Uλ‖e−ε|m|)‖x‖,(4.29)

(1− µ‖Vλ‖e−ε|m|)‖y‖ ≤ ‖y‖ ≤ (1 + µ‖Vλ‖e−ε|m|)‖y‖.(4.30)

On the other hand, setting n = m in (2.1), we obtain

‖Pm‖ ≤ Deε|m| and ‖Qm‖ ≤ Deε|m|.

Now we recall that (see for example [2])

(4.31)
1

‖Pm‖
≤ αm ≤ 2

‖Pm‖
and

1
‖Qm‖

≤ αm ≤ 2
‖Qm‖

for each m ∈ Z, where αm = inf{‖x − y‖ : x ∈ Em, y ∈ Fm, ‖x‖ = ‖y‖ = 1}.
Therefore

αm ≥ 1
D

e−ε|m|, m ∈ Z.
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Since ∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥ ≤ ‖(x− y)‖y‖+ y(‖y‖ − ‖x‖)
‖x‖ · ‖y‖

≤ 2
‖x‖

‖x− y‖,

it follows from (4.29) and (4.30) that

‖x− y‖ = ‖x− y + GE,mx−GF,my‖
≥‖x− y‖ − ‖GE,m‖ · ‖x‖ − ‖GF,m‖ · ‖y‖

≥ ‖x‖
2

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥− ‖GE,m‖
1− µδ‖Uλ‖e−ε|m| ‖x‖

− ‖GF,m‖
1− µδ‖Vλ‖e−ε|m| ‖y‖

≥ ‖x‖
2(1 + δµ‖Uλ‖e−ε|m|)

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥
− δµ‖Uλ‖e−ε|m|

1− δµ‖Uλ‖e−ε|m| ‖x‖ −
δµ‖Vλ‖e−ε|m|

1− δµ‖Vλ‖e−ε|m| ‖y‖.

Taking the infimum over all vectors x, y with ‖x‖ = ‖y‖ = 1, we obtain

αλ
m ≥ 1

2(1 + δµ‖Uλ‖e−ε|m|)
αm − δµ‖Uλ‖e−ε|m|

1− δµ‖Uλ‖e−ε|m| ‖x‖

− δµ‖Vλ‖e−ε|m|

1− δµ‖Vλ‖e−ε|m| ‖y‖

≥ e−ε|m|

4D(1 + δµ‖Uλ‖)
− δµ‖U‖e−a|m|

1− δµ‖Uλ‖
− δµ‖V ‖e−ε|m|

1− δµ‖Vλ‖
.

This yields inequality (4.28). �

Step 7. Exponential dichotomies for the perturbation. In a similar
manner to that in (4.31), we have

1
‖Pλ

m‖
≤ αλ

m ≤ 2
‖Pλ

m‖
and

1
‖Qλ

m‖
≤ αλ

m ≤ 2
‖Qλ

m‖
,

and hence it follows from Lemma 4.13 that

(4.32) ‖Pλ
m‖ ≤

2
αλ

m

≤ 2
c

eε|m| and ‖Qλ
m‖ ≤

2
αλ

m

≤ 2
c

eε|m|

for each m ∈ Z. Since

‖Aλ(m,n)Pλ
n ‖ ≤ ‖Aλ(m,n)|Êλ

n‖ · ‖Pλ
n ‖, m ≥ n,

‖Aλ(m,n)Qλ
n‖ ≤ ‖(Aλ(n, m)|Fλ

m)−1‖ · ‖Qλ
n‖, m ≤ n,

the existence of a nonuniform exponential dichotomy follows readily from (4.32)
together with inequalities (4.26) and (4.27).
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Step 8. Construction of auxiliary operators. In order to show that the
stable and unstable subspaces Eλ

n and Fλ
n are analytic in λ we first construct aux-

iliary operators. By Lemma 4.13, equation (3.7) is equivalent to equation (4.3).
This motivates the introduction of linear operators A(Φ)n,λ:En → Fn for each
Φ ∈ X, n ∈ Z and λ ∈ ∆ by

(4.33) A(Φ)n,λ = −
∞∑

l=n

QnA(l + 1, n)−1Bl(λ)(IdEl
+ Φl,λ)Wn

l,λ,

where Wn
l,λ:En → El are the linear operators given by (4.1). We note that

solving equation (4.2) is equivalent to find a fixed point Φ of the sequence of
linear operators Φ 7→ A(Φ)n,λ. We first establish some auxiliary properties.

Lemma 4.14. For any sufficiently small δ, the operator A is well defined,
and A(X) ⊂ X.

Proof. Repeating estimates in the proof of Lemma 4.13, one can show that
the operator A is well defined. Moreover, it follows from (4.7) that ‖A(Φ)‖ ≤ κ.
Moreover, writing Wn

l,λ = Wl,λ and Wn
l,µ = Wl,µ, by (4.6) we have

(4.34) bl := ‖Bl(λ)(IdEl
+ Φl,λ)Wl,λ −Bl(µ)(IdEl

+ Φl,µ)Wl,µ‖
≤‖Bl(λ)−Bl(µ)‖ · ‖Wl,λ‖(1 + ‖Φl,λ‖)

+ ‖Bl(λ)‖ · ‖Wl,λ −Wl,µ‖(1 + ‖Φ̃l,λ‖)
+ ‖Bl(µ)‖ · ‖Wl,µ‖ · ‖Φl,λ − Φl,µ‖

≤ 4 δDe−2ε|l|‖λ− µ‖ea(l−n)+ε|n| + 2 δe−2ε|l|‖Wl,λ −Wl,µ‖
+ 2δe−3ε|l|Dea(l−n)+ε|n|κe−ε|l|‖λ− µ‖

≤ 6 δDea(l−n)+ε|n|−3ε|l|‖λ− µ‖+ 2 δe−3ε|l|‖Wl,λ −Wl,µ‖.

Therefore

‖Wl,λ −Wl,µ‖ ≤
m−1∑
l=n

‖PmA(m, l + 1)‖bl

≤ 6 δDD̃e−a(m−n)+ε|n|‖λ− µ‖
m−1∑
l=n

e−2ε|l|

+ 2 δD̃
m−1∑
l=n

e−a(m−l)−2ε|l|‖Wl,λ −Wl,µ‖

≤ 6 δDD̃Γ2εe
−a(m−n)+ε|n|‖λ− µ‖

+ 2 δD̃e−a(m−n)
m−1∑
l=n

ea(l−n)−2ε|l|‖Wl,λ −Wl,µ‖.
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Setting Υl = ea(l−n)‖Wl,λ −Wl,µ‖, it follows from this inequality that

Υm ≤ 6 δDD̃Γ2εe
ε|n|‖λ− µ‖+ 2 δD̃

m−1∑
l=n

Υle
−2ε|l|,

and hence

Υ ≤ 6 δDD̃Γ2εe
ε|n|‖λ− µ‖+ 2 δD̃Γ2εΥ,

where Υ = sup{Υm : m ≥ n}. Taking δ sufficiently small, so that 2 δD̃Γ2ε < 1/2,
we obtain

Υ ≤ 12 δDD̃Γ2εe
ε|n|‖λ− µ‖,

which yields

‖Wl,λ −Wl,µ‖ ≤ 12 δDD̃Γ2εe
−a(m−n)+ε|n|‖λ− µ‖.

Hence, it follows from (4.34) that

bl ≤ δKe−a(l−n)+ε|n|e−3ε|l|‖λ− µ‖,

for some positive constant K. Proceeding as in (4.6), since −a+ε < 0 we obtain

‖A(Φ)n,λ −A(Φ)n,µ‖eε|n| ≤
∞∑

l=n

‖QnA(l + 1, n)−1‖ ble
ε|n|

≤ δKD̃‖λ− µ‖
∞∑

l=n

e−a(l−n)+ε|l|e−a(l−n)+ε|n|−3ε|l|+ε|n|

≤ δKD‖λ− µ‖
∞∑

l=n

e−(2a−ε)(l−n)+ε(l−n) = δKDΓ2a−ε‖λ− µ‖,

and hence, Cλµ(A(Φ)) ≤ κ provided that δ is sufficiently small. This shows that
A(X) ⊂ X. �

Now we consider the space F of sequences U = (Un,λ)n∈Z,λ∈∆ of linear ope-
rators Un,λ:En → Fn such that

(4.35) ‖U‖ := sup{‖Un,λ‖ : (n, λ) ∈ Z×∆} ≤ 1.

One can easily verify that F is a complete metric space with this norm. We also
define operators B(Φ, U)n,λ for each (Φ, U) ∈ X× F, n ∈ Z, and λ ∈ ∆ by

(4.36) B(Φ, U)n,λ = −
∞∑

l=n

QnA(l + 1, n)−1[Bl(λ)(Zn
l,λ + Φl,λZn

l,λ + Ul,λWn
l,λ)

+ B′
l(λ)(IdEl

+ Φl,λ)Wn
l,λ],
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where Wn
l,λ:En → El are the linear operators given by (4.1), and where Zn

m,λ =
Zn

m,Φ,U,λ:En → Em are linear operators determined recursively by the identities

(4.37) Zm
n,λ =

m−1∑
l=n

PmA(m, l + 1)[Bl(λ)(Zn
l,λ + Φl,λZn

l,λ + Ul,λWn
l,λ)

+ B′
l(λ)(IdEl

+ Φl,λ)Wn
l,λ],

for m > n, setting Zn
n,λ = 0. We observe that by thecontinuity of the functions

Φl,λ and Ul,λ on λ, the functions λ 7→ Wn
l,λ and λ 7→ Zn

l,λ are also continuous.

Lemma 4.15. For any sufficiently small δ, the operator B is well defined,
and B(X× F) ⊂ F.

Proof. Set

(4.38) C =
∞∑

l=n

‖QnA(l + 1, n)−1‖ · ‖Bl(λ)(Zn
l,λ + Φl,λZn

l,λ)

+ Bl(λ)Ul,λWn
l,λ + B′

l(λ)(IdEl
+ Φl,λ)Wn

l,λ‖.

It follows from (4.3), (4.6) and (4.35) that

C ≤ (1 + κ) δD̃
∞∑

l=n

e−a(l−n))+ε|l|−3ε|l|‖Zn
l,λ‖(4.39)

+ 2(2 + κ) δDD̃
∞∑

l=n

e−a(l−n)+ε|l|−3ε|l|−a(l−n)+ε|n|

≤ 2 δD̃
∞∑

l=n

e−a(l−n)−2ε|l|‖Zn
l,λ‖+ 6 δDD̃

∞∑
l=n

e−(2a−ε)(l−n),

where in the last inequality we have used that −a + ε < 0. On the other hand,
by (4.35) and (4.37), we have

‖Zn
m,λ‖ ≤ (1 + κ) δD̃

m−1∑
l=n

e−a(m−l)−2ε|l|‖Zn
l,λ‖

+ 2(2 + κ) δDD̃
m−1∑
l=n

e−a(m−l)−2ε|l|+a(l−n)+ε|n|.

Setting Υm = ea(m−n)‖Zn
m,λ‖, we obtain

Υm ≤ 2 δD̃
m−1∑
l=n

e−2ε|l|Υl + 6 δDD̃
m−1∑
l=n

e−2ε|l|+ε|n|

≤ 2 δD̃
m−1∑
l=n

e−2ε|l|Υl + 6 δDD̃eε|n|
m−1∑
l=n

e−2ε|l|,

and hence
Υ ≤ 2 δ Γ2εΥ + 6 δDD̃Γ2εe

ε|n|,
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where Υ = sup{Υm : m ≥ n}. Thus, taking δ sufficiently small so that 2δ D̃Γ2ε ≤
1/2, we obtain

Υ ≤ 12 δDD̃Γ2εe
ε|n|,

and hence,

(4.40) ‖Zn
m,λ‖ ≤ 12 δDD̃Γ2εe

−a(m−n)+ε|n|.

By (4.39) and (4.40), we obtain

C ≤ 24 δ2DD̃2Γ2ε

∞∑
l=n

e−2a(l−n)+ε|n|−2ε|l| + 6 δDD̃
∞∑

l=n

e2(2a−ε)(l−n)(4.41)

≤ 24 δ2DD̃2Γ2ε

∞∑
l=n

e−(2a−ε)(l−n) + 6 δDD̃Γ2a−ε

≤ 24 δ2DD̃2Γ2εΓ2a−ε + 6 δDD̃Γ2a−ε ≤ 1,

provided that δ is sufficiently small. This shows that B(Φ, U)n is well defined
for each n, and that ‖B(Φ, U)‖ ≤ 1. Therefore B(X× F) ⊂ F. �

Now we define a map S:X× F → X× F by

S(Φ, U) = (A(Φ), B(Φ, U)).

By Lemmas 4.14 and 4.15, the map S is well defined, and S(X× F) ⊂ X× F.

Lemma 4.16. For any sufficiently small δ, the map S is a contraction.

Proof. Given Φ,Ψ ∈ X, set Wl,Φ = Wn
l,Φ,λ and Wl,Ψ = Wn

l,Ψ,λ. We have

(4.42) ‖A(Φ)n,λ −A(Ψ)n,λ‖ eε|ρ(n)| ≤ D
∞∑

l=n

e−a(l−n)+ε|l|+ε|n|

× ‖Bl(λ)(Wl,Φ −Wl,Ψ) + Bl(λ)(Φl,λWl,Φ −Ψl,λWl,Ψ)‖

≤Dδ
∞∑

l=n

e−a(l−n)−2ε|l|+ε|n|

× (‖Wl,Φ −Wl,Ψ‖+ ‖Φl,λWl,Φ −Ψl,λWl,Ψ‖)

≤ Dδ
∞∑

l=n

e−(a−ε)(l−n)−ε|l|(‖Wl,Φ −Wl,Ψ‖

+ ‖Φl,λ‖ · ‖Wl,Φ −Wl,Ψ‖+ ‖Φl,λ −Ψl,λ‖ · ‖Wl,Ψ‖
)

≤Dδ
∞∑

l=n

e−(a−ε)(l−n)−ε|l|

× [(1 + κ)‖Wl,Φ −Wl,Ψ‖+ ‖Φ−Ψ‖ · ‖Wl,Ψ‖e−ε|l|].
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In an analogous manner to that in (4.5) and using (4.6), we obtain

‖Wm,Φ −Wm,Ψ‖ ≤ (1 + κ) δD̃
m−1∑
l=n

e−a(m−l))+ε|l|−3ε|l|‖Wl,Φ −Wl,Ψ‖

+ 2 δDD̃‖Φ−Ψ‖
m−1∑
l=n

e−a(m−l)+ε|l|−3ε|l|ea(l−n)+ε|n|−ε|l|

≤ 2 δD̃e−a(m−n)
m−1∑
l=n

ea(l−n)−2ε|l|‖Wl,Φ −Wl,Ψ‖

+ 2 δDD̃e−a(m−n)‖Φ−Ψ‖
∞∑

l=n

e−3ε|l|+ε|n|

=2 δD̃e−a(m−n)
m−1∑
l=n

ea(l−n)−2ε|l|‖Wl,Φ −Wl,Ψ‖

+ 2 δDD̃e−a(m−n)‖Φ−Ψ‖eε|n|
∞∑

l=n

e−3ε|l|.

Setting Υm = ea(m−n)‖Wm,Φ −Wm,Ψ‖, yields

Υm ≤ 2 δDD̃Γ3εe
ε|n|‖Φ−Ψ‖+ 2 δD̃

m−1∑
l=n

e−2ε|l|Υl.

Therefore
Υ ≤ 2δDD̃Γ3εe

ε|n|‖Φ−Ψ‖+ 2δDΓ2εΥ,

where Υ = sup
m≥n

Υm. Taking δ sufficiently small so that 2 δD̃Γ2ε < 1/2 (indepen-

dently of n) yields
Υ ≤ 4 δD2Γ3εe

ε|n|‖Φ−Ψ‖,
and thus,

(4.43) ‖Wm,Φ −Wm,Ψ‖ ≤ 4 δDD̃Γ3ε‖Φ−Ψ‖e−a(m−n)+ε|n|.

Introducing the estimates (4.6) and (4.43) in (4.42) we obtain

‖A(Φ)n,λ −A(Ψ)n,λ‖eε|n|(4.44)

≤ δK ′‖Φ−Ψ‖
∞∑

l=n

e−(a−ε)(l−n)−a(l−n)−ε|l|+ε|n|

≤ δK ′‖Φ−Ψ‖
∞∑

l=n

e−2(a−ε)(l−n) = δK ′Γ2(a−ε)‖Φ−Ψ‖,

for some constant K ′ > 0, provided that δ ≤ 1. Moreover, given Φ,Ψ ∈ X,
U, V ∈ F, and λ ∈ ∆, set

Zl,Φ,U = Zn
l,Φ,U,λ and Zl,Ψ,V = Zn

l,Ψ,V,λ.
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We have

‖B(Φ, U)n,λ −B(Ψ, V )n,λ‖(4.45)

≤D
∞∑

l=n

e−a(l−n)+ε|l|‖Bl(λ)[Zl,Φ,U + Φl,λZl,Φ,U

+ Ul,λWl,Φ − Zl,Ψ,V −Ψl,λZl,Ψ,V − Vl,λWl,Ψ]

+ B′
l(λ)[Wl,Φ + Φl,λWl,Φ −Wl,Ψ −Ψl,λWl,Ψ]‖

≤ δD
∞∑

l=n

e−a(l−n)−2ε|l|[(1 + κ)‖Zl,Φ,U − Zl,Ψ,V ‖

+ ‖Φl,λ −Ψl,λ‖(‖Zl,Φ,U‖+ ‖Wl,Φ‖)
+ ‖Ul,λ − Vl,λ‖ · ‖Wl,Φ‖
+ ‖Wl,Φ −Wl,Ψ‖(1 + ‖Vl,λ‖+ ‖Ψl,λ‖)].

Using (4.6), (4.40) and (4.43), we obtain

(4.46) ‖Zm,Φ,U − Zm,Ψ,V ‖

≤ δD̃
∞∑

l=n

e−a(m−l)−2ε|l|[(1 + κ)‖Zl,Φ,U − Zl,Ψ,V ‖

+ ‖Φl,λ −Ψl,λ‖(‖Zl,Φ,U‖+ ‖Wl,Φ‖) + ‖Ul,λ − Vl,λ‖ · ‖Wl,Φ‖
+ ‖Wl,Φ −Wl,Ψ‖(1 + ‖Vl,λ‖+ ‖Ψl,λ‖)]

≤ δD̃
m−1∑
l=n

e−a(m−l)−2ε|l|[(1 + κ)‖Zl,Φ,U − Zl,Ψ,V ‖

+ (2 + κ)‖Wl,Φ −Wl,Ψ‖+ ‖Φl,λ −Ψl,λ‖(‖Zl,Φ,U‖+ ‖Wl,Φ‖)
+ ‖Ul,λ − Vl,λ‖ · ‖Wl,Φ‖]

≤ δD̃

m−1∑
l=n

e−a(m−l)−2ε|l|[(1 + κ)‖Zl,Φ,U − Zl,Ψ,V ‖

+ δD̃K0e
−a(l−n)+ε|n|(‖Φ−Ψ‖+ ‖U − V ‖],

for some positive constant K0, provided that δ ≤ 1. Setting

Υm = ea(m−n)‖Zm,Φ,U − Zm,Ψ,V ‖,

we obtain

Υm ≤ δD̃K0(‖Φ−Ψ‖+ ‖U − V ‖)eε|n|
m−1∑
l=n

e−2ε|l| + 2 δD̃
m−1∑
l=n

e−2ε|l|Υl.

Therefore

Υ ≤ δD̃K0Γ2εe
ε|n|(‖Φ−Ψ‖+ ‖U − V ‖) + 2 δD̃Γ2εΥ,



362 L. Barreira — C. Valls

where Υ = sup
m≥n

Υm. Taking δ sufficiently small so that 2δD̃Γ2ε < 1/2 (indepen-

dently of n) we obtain

Υ ≤ δK ′′eε|n|(‖Φ−Ψ‖+ ‖U − V ‖)

for some constant K ′′ > 0, and hence

(4.47) ‖Zm,Φ,U − Zm,Ψ,V ‖ ≤ δK ′′(‖Φ−Ψ‖+ ‖U − V ‖)e−a(m−n)+ε|n|.

Proceeding as in (4.46), by (4.40) and (4.47) it follows from (4.45) that

‖B(Φ, U)n,λ −B(Ψ, V )n,λ‖(4.48)

≤ δK ′′D(‖Φ−Ψ‖+ ‖U − V ‖)
∞∑

l=n

e−(2a−ε)(l−n)

+ δD̃K0(‖Φ−Ψ‖+ ‖U − V ‖)
∞∑

l=n

e−(2a−ε)(l−n)

≤ δL(‖Φ−Ψ‖+ ‖U − V ‖),

for some positive constant L, provided that δ ≤ 1. By (4.44) and (4.48), for any
sufficiently small δ the operator S is a contraction. �

Step 9. Analytic dependence of the stable and unstable subspaces.
We proceed with the proof of the theorem. We first observe that by Lemma 4.16
there exists a unique pair (Φ, U) ∈ X× F such that S(Φ, U) = (Φ, U). Since the
operators Φ 7→ A(Φ)n,λ are contractions (see (4.44)), Φ is the unique sequence
in X such that

A(Φ)n,λ = Φn,λ for every n ∈ Z, λ ∈ ∆.

In other words, Φ is the unique solution of equation (4.8), and thus, by Lem-
ma 4.13, also of equation (4.2). Together with (4.1) this implies that if ξ ∈ En,
then

m 7→ (Wn
m,λξ, Φm,λWn

m,λξ)

is a solution of the pair of equations (3.5) and (3.6). This means that (3.4) holds.
To establish the uniqueness, let Φ be another sequence for which (3.4) holds. If
ξ ∈ En, then

(ξ, Φn,λξ) ∈ Eλ
n and Aλ(m,n)(ξ, Φn,λξ) ∈ Eλ

m.

Therefore, if (xm, ym) is the solution of equation (2.3) with xn = ξ and yn =
Φn,λξ, then ym = Φm,λxm for m ≥ n. This shows that (3.5) and (3.6) hold.
We note that the sequence xm = Wn

m,λξ satisfies (4.1) and that (3.7) holds.
Hence, Φ = Φ. It remains to obtain the last statement in the theorem, that
is, the analytic dependence of the maps λ 7→ Φn,λ. We first establish an aux-
iliary statement. We recall that A(Φ)n,λ and B(Φ, U)n,λ are given respectively
by (4.33) and (4.36).
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Lemma 4.17. Given Φ ∈ X, if λ 7→ Φn,λ is analytic and Un,λ = dΦn,λ/dλ

for each n ∈ Z, then λ 7→ A(Φ)n,λ is analytic for every n ∈ Z and

(4.49)
d

dλ
A(Φ)n,λ = B(Φ, U)n,λ

for every n ∈ Z and λ ∈ ∆.

Proof. If the map λ 7→ Φn,λ is analytic and Un,λ = dΦn,λ/dλ for each
n ∈ Z, then clearly the linear operators Wn

m,λ and Zn
m,λ in (4.1) and (4.37)

satisfy

Zn
m,λ =

d

dλ
Wn

m,λ

for each m ≥ n and λ ∈ ∆. This implies that

(4.50) B(Φ, U)n,λ = −
∞∑

l=n

∂

∂λ
[QnA(l + 1, n)−1Bl(λ)(Wn

l,λ + Φl,λWn
l,λ)]

for every n ∈ Z and λ ∈ ∆. Now we observe that by (4.7) and (4.41) (see
also (4.38)) the series defining A(Φ)n,λ and B(Φ, U)n,λ converge uniformly in λ.
This allows one to interchange the series with the derivatives in (4.50) to ob-
tain (4.49). �

Now we consider the pair (Φ1, U1) = (0, 0) ∈ X× F. Clearly,

U1
n,λ =

d

dλ
Φ1

n,λ for every n ∈ Z and λ ∈ ∆.

We define recursively a sequence (Φm, Um) ∈ X× F by

(Φm+1, Um+1) = S(Φm, Um) = (A(Φm), B(Φm, Um)).

Given m ∈ N, if λ 7→ Φm
n,λ is analytic for each n ∈ Z, and

Um
n,λ =

d

dλ
Φm

n,λ

for every n ∈ Z and λ ∈ ∆, then it follows from Lemma 4.17 that λ 7→ Φm+1
n,λ is

analytic for each n ∈ J , and that

(4.51)
d

dλ
Φm+1

n,λ =
d

dλ
A(Φm)n,λ = B(Φm, Um)n,λ = Um+1

n,λ

for every n ∈ Z and λ ∈ ∆. Furthermore, if (Φ, U) is the unique fixed point of
the contraction map S in X × F, then for each n ∈ Z and λ ∈ ∆ the sequences
(Φm

n,λ)m∈N and (Um
n,λ)m∈N converge uniformly respectively to Φn,λ and Un,λ.

Now we observe that if a sequence fm of analytic functions converges uniformly,
and the sequence of its derivatives f ′m also converges uniformly, then the limit
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of fm is analytic, and its derivative is the limit of f ′m. Thus, it follows from
(4.51) that each function λ 7→ Φn,λ is analytic, and that

d

dλ
Φn,λ = Un,λ for every n ∈ Z and λ ∈ ∆.

The analytic dependence of the spaces Fλ
n on λ can be obtained in a similar

manner. This completes the proof of the theorem.
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[10] O. Perron, Die Stabilitätsfrage bei Differentialgleichungen, Math. Z. 32 (1930), 703–

728.

[11] V. Pliss and G. Sell, Robustness of exponential dichotomies ininfinite-dimensional
dynamical systems, J. Dynam. Differential Equations 11 (1999), 471–513.

[12] L. Popescu, Exponential dichotomy roughness on Banach spaces, J. Math. Anal. Appl.
314 (2006), 436–454.

Manuscript received December 30, 2011

Luis Barreira and Claudia Valls
Departamento de Matemática
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