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A HARTMAN–NAGUMO TYPE CONDITION
FOR A CLASS OF CONTRACTIBLE DOMAINS

Pablo Amster — Julián Haddad

Abstract. We generalize an existence result on second order systems with

a nonlinear term satisfying the so-called Hartman–Nagumo condition. The
generalization is based on the use of Gauss second fundamental form and

continuation techniques.

1. Introduction

In 1960, Hartman [5] showed that the second order system in Rn for a vector
function x: I = [0, 1] → Rn satisfying

(1.1)


x′′ = f(t, x, x′),

x(0) = x0,

x(1) = x1,

with f : I ×Rn ×Rn → Rn continuous, has at least one solution when f satisfies
the following conditions:

(1.2) 〈f(t, x, y), x〉+ |y|2 > 0 for all (t, x, y) ∈ I × Rn × Rn,

with |x| = R, 〈x, y〉 = 0 for some R ≥ |x0|, |x1|.

(1.3) |f(t, x, y)| ≤ φ(|y|) where φ: [0,∞) → R+ and
∫ ∞

0

x

φ(x)
dx = ∞,
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(1.4) |f(t, x, y)| ≤ α(〈f(t, x, y), x〉+ |y|2) + C, where α,C > 0.

A stronger version of (1.2) is easier to understand:

(1.5) 〈f(t, x, y), x〉 > 0 for all (t, x, y) ∈ I × Rn × Rn,

with |x| = R, 〈x, y〉 = 0.
Indeed, this condition means that whenever x ∈ ∂B(0, R), the vector field f

points outwards the ball B(0, R). Condition (1.2) allows f to point inwards, but
not too much if the velocity is small.

The proof basically uses the Schauder fixed point theorem. It can also be
proved using Leray–Schauder continuation theorem [9] in the open set of curves
lying inside B(0, R).

The key argument is that a solution u cannot be tangent to the ball of radius
R from inside because (from (1.2)) the second derivative of |u|2 is positive when
|u| is close to R. Conditions (1.3) and (1.4) guarantee that the C1 norm of the
solutions remains bounded during the continuation.

Hartman’s result has been extended in several ways, for different boundary
conditions (see [7] for a first result of this type under periodic conditions) and
for more general second order operators (see e.g. [10], [13] and the references
therein). However, less generalizations are known if one replaces the ball B(0, R)
by an arbitrary domain D.

In view of the geometrical interpretation of (1.5), it is not difficult to prove
existence of solutions using (1.3)–(1.5) when D is convex. Condition (1.5) takes,
in consequence, the following form:

〈f(t, x, y), nx〉 > 0 for all (t, x, y) ∈ I × Rn × Rn, with x ∈ ∂D, 〈nx, y〉 = 0

where nx is an outer normal of ∂D at the point x. For periodic conditions,
this result has been obtained by Bebernes and Schmitt in [1] assuming, instead
of (1.4) and (1.5), that f has some specific subquadratic growth on y. In this
work, we extend the result for a more general (not necessarily convex) domain
D ⊂ Rn.

Some results in this direction have been given in [12] and [3] (see also [4] and
the survey [11]), where the concept of curvature bound set is introduced in order
to ensure that solutions starting inside an appropriate domain remain there all
the time, thus allowing the use of the continuation method. Roughly speaking,
at any point of the boundary of such a set D there exists a smooth surface that
is tangent from outside and measures the curvature of the solutions touching ∂D
from inside.

In this work we shall show that, in some sense, if D has C2 boundary and the
role of the surfaces in the previous definition is assumed by ∂D itself, then a pre-
cise geometric condition involving its second fundamental form yields. In this
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context, our version of (1.2) reads as follows:

(1.6) 〈f(t, x, y), nx〉 > Ix(y) for all (t, x, y) ∈ I × T∂D

where T∂D is the tangent vector bundle identified, as usual, with a subset of
Rn × Rn, Ix(y) is the second fundamental form of the hypersurface and nx is
the outer-pointing normal unit vector field. This condition requires f to point
outside D as much as ∂D is “bended outside” in the direction of the velocity.
In particular, when D = B(0, R) its curvature is constantly 1/Rn−1; moreover,
Ix(y) = −|y|2/R and nx = x/R, so our new Hartman condition takes the form
of the original one.

The paper is organized as follows. In the next section, we recall the basic
facts about Gaussian curvature and state some preliminary results concerning
the generalized Hartman condition (1.6). In Section 3, we introduce some growth
conditions that extend (1.3) and (1.4) on the one hand, and the growth condition
in [1] (used also in [4]), on the other hand. In Section 4 we establish and prove
our main results on existence of solutions under Dirichlet and periodic conditions
using the Leray–Schauder continuation method. Finally, in Section 5 we prove
that the growth conditions force the domainD to be contractible, thus restricting
the class of examples to which the main theorems are applicable.

2. Curvature

Let D be an open subset of Rn such that M := ∂D is a C2 oriented manifold
and let nx be the outer unit normal vector at x ∈ M . The application x 7→ nx

defines a smooth function n:M → Sn−1 and its differential defines a linear map
TxM → Tnx

Sn−1. Since both linear spaces are orthogonal to nx, they may
be identified and we obtain a linear endomorphism known as the Gauss map
gx:TxM → TxM . This map is easily seen to be self-adjoint with respect to
the inner product inherited from Rn. The associated quadratic form Ix(v) =
−〈gx(v), v〉 is called the second fundamental form of the hypersurface. It is
important to remark that Ix is independent -up to a sign- of the orientation
given by n.

The next lemma is essentially proved in do Carmo’s book [2]:

Lemma 2.1. Let α: R → D be a C2 curve such that α(0) = p ∈ M . Let np

be the outer unit normal vector at p. Then 〈α′′(0), np〉 ≤ Ip(α′(0)).

Proof. As a direct application of the inverse function theorem, we obtain
near p a coordinate system of the form (m,λ) ∈ M × R given by x = m(x) +
λ(x)nm(x). The curve α may be written as α(t) = γ(t) + λ(t)nγ(t) for some C1

functions γ, λ. Let n(t) = nγ(t) so n′(t) = gγ(t)(γ′(t)) and compute

〈n(t), α′(t)〉 = 〈n(t), γ′(t)〉+ λ′(t) + λ(t)〈n(t), n′(t)〉 = λ′(t),
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since γ′(t) and n′(t) are orthogonal to n(t). In particular, λ is a C2 function.
Moreover, as the image of α is contained in D, its λ-coordinate is always

non-positive. But λ(0) = 0, and hence λ′′(0) ≤ 0. We deduce that

d

dt
〈n(t), α′(t)〉

∣∣∣∣
t=0

≤ 0.

Now 〈n(t), α′′(t)〉 = 〈n(t), α′(t)〉′ − 〈n′(t), α′(t)〉; thus,

〈n(0), α′′(0)〉 ≤ −〈gα(0)(α′(0)), α′(0)〉 = Ip(α′(0)). �

Corollary 2.2. Let f : R × Rn × Rn → Rn be such that (1.6) holds. Then
there are no solutions of the differential equation x′′ = f(t, x, x′) inside D touch-
ing the boundary.

The following definition will be useful.

Definition 2.3. We define curv(D,x) = λ1, where λ1 ≤ . . . ≤ λn−1 are the
eigenvalues of the self-adjoint operator gx.

Remark 2.4. (a) It is clear from the definition that−|y|2curv(D,x) ≥ Ix(y),
and equality holds when y is an eigenvector of gx associated with the eigen-
value λ1.

(b) If x is a point of convexity of the surface, then curv(D,x) ≥ 0.
(c) It may be deduced, as in the proof of Lemma 2.1, that:

• If curv(D,x) < 0 then −curv(D,x)−1 is the radius of the largest ball
which is tangent from outside to D at the point x.

• If curv(D,x) > 0 then curv(D,x)−1 is the radius of the smallest ball B
such that D is tangent from inside to ∂B at x.

3. Growth conditions

In order to apply the Leray–Schauder method [9], it is necessary to find
a priori bounds of the solutions during the continuation. As the nonlinear term
depends on u and u′, we will need estimates for the C1 norm.

To this end, following [5], we shall impose some growth conditions on f .
These conditions must be compatible with the deformations used in the main
theorems.

We shall make use of the next two lemmas, proved in [5] (Lemmas 2 and 3,
respectively), conveniently adapted to our situation. Without loss of generality,
we may assume that D = η−1(−∞, 0) where η: Rn → R is a C2 function and 0
is a regular value of η, then M = ∂D = η−1(0). We can use the function η itself
to replace r in Lemma 3 of [5].
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Lemma 3.1. Let R, C be non-negative constants and φ: [0,∞) → (0,∞)
a continuous function such that

(3.1)
∫ ∞

0

s

φ(s)
ds = ∞.

Then there exists a constant N = N(R,C, ‖η‖∞, φ) such that if x ∈ C2(I,Rn)
satisfies

|x| ≤ R, |x′′| ≤ η(x(t))′′ + C and |x′′| ≤ φ(|x′|)
then |x′| ≤ N.

Now η(x(t))′′ may be easily calculated as

d2
x(t)η(x

′(t), x′(t)) + dx(t)η(x′′(t)),

where d2
xη stands for the quadratic form induced by the Hessian. The condition

thus obtained is

(3.2)
|f(t, x, y)| ≤ d2

xη(y, y) + dxη(f(t, x, y)) + C,

|f(t, x, y)| ≤ φ(|y|).

This condition obviously generalizes the original assumptions (1.3) and (1.4)
given in [5], setting η(x) = |x|2 −R2 and D = B(0, R).

Remark 3.2. (a) The function η might also depend on the time t, although
the expression for η(x(t))′′ in this case would become more complicated.

(b) As d2
xη(y, y) + dxη(f(t, x, y)) = (−Ix(y) + 〈f(t, x, y), nx〉).|∇xη| for x ∈

∂D, the fact that the expression 〈f(t, x, y), x〉 + |y|2 appears both in (1.2) and
(1.4) is not a coincidence.

From the discussion in [5, Corollary 1], we get a simpler (but somewhat more
restrictive) growth condition on f . Let us firstly recall the following

Lemma 3.3. Let R, γ, C be non-negative constants where Rγ < 1. Then
there exist N = N(R, γ,C) such that if x ∈ C2(I,Rn) satisfies

|x| ≤ R and |x′′| ≤ γ|x′|2 + C

then |x′| ≤ N.

With this last result in mind, we may impose, instead of (3.2), the condition:

(3.3) |f(t, x, y)| ≤ γ|y|2 + C

for every x ∈ D, where C and γ are constants with γRD < 1. Here, RD is the
radius of D, defined as the radius of the smallest ball containing D (notice that
diam(D) ≤ 2RD). In particular, (3.3) generalizes the growth condition imposed
in [1].

Unfortunately our version of the Hartman condition combined with (3.3)
requires that R−1

D |y|2 + C > Ix(y) for all y, so the theorem is not applicable for
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arbitrary domains. For instance, taking y as an eigenvector of gx such that |y| �
0, it is easy to see that (3.3) together with (1.6) implies that RDcurv(D,x) > −1.
Thus, our results cannot be applied if for example D = B(0, R)\B(0, r) for some
r < R.

In Section 5 we shall prove that, furthermore, the domain D must be con-
tractible. The same happens with condition (3.2), independently of (1.6).

Remark 3.4. It is worth observing that as far as an a priori bound N

is obtained for the derivative of the solutions, condition (1.6) can be relaxed
to consider only those points (x, y) ∈ T∂D such that |y| ≤ N . This shows
that, in fact, condition (3.3) is not necessarily incompatible with (1.6) when
the domain is non-contractible. We shall not pursue this direction here; some
interesting consequences of this fact will take part in a forthcoming paper.

The following result is a refinement of Lemma 3.3 that shall be needed for
the proof of Theorem 4.2.

Lemma 3.5. Let R, γ, C be non-negative constants where Rγ < 1, and
0 < T ≤ 1. Then there exist N = N(R, γ,C) (independent of T ) such that if
x ∈ C2([0, T ],Rn) satisfies:

|x| ≤ R, |x′′| ≤ γ|x′|2 + C and x(0) = x(T ) = x0

then |x′| ≤ N.

Proof. Following the remarks of [5, Lemma 3] and the proof of [5, Lem-
ma 2], let ρ: [0, T ] → R be defined by

ρ(t) = α|x|2 +
K

2
t2 where α =

γ

2(1− γR)
, K =

C

1− γR
.

Then ‖ρ‖∞ ≤M1(C, γ,R), and |x′′| ≤ ρ, since

ρ′′(t) = 2α(〈x′′, x〉+ |x′|2) +K

≥ 2α(|x′|2 −R(γ|x′|2 + C)) +K = |x′|22α(1− γR)− 2αRC +K

≥ |x′′| − C

γ
2α(1− γR)− 2αRC +K = |x′′| − C − 2αRC +K = |x′′|.

From the discussion in [5, sections 3–5], we obtain the formula:

|Φ(|x′(t)|)− Φ(|x′(T/2)|)| ≤
∫ T/2

t

M2(C, γ,R)/T ± ρ′(s) ds

for all t ∈ [0, T ] (the ± sign depends on whether t < T/2 or t > T/2 ). Hence,

(3.4) |Φ(|x′(t)|)− Φ(|x′(T/2)|)| ≤M2(C, γ,R) + 2‖ρ‖∞.
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Unless x is constant, as x(0) = x(T ) there must exist a tangent ball B ⊇ Im (x)
of radius R to x, at a point x(t0) 6= x0. Now, let n be the outer unit normal
vector of B at x(t0). Then

γ|x′(t0)|2 + C ≥ |x′′(t0)| ≥ −〈x′′(t0), n〉 ≥
1
R
|x′(t0)|2,

|x′(t0)| ≤

√
C

1/R− γ
.

Using inequality (3.4) twice, for t = t0 and for arbitrary t, we get

|Φ(|x′(t0)|)− Φ(|x′(t)|)| ≤ 2M2(C, γ,R) + 4‖ρ‖∞

and hence

|Φ(|x′(t)|)| ≤ |Φ(|x′(t0)|)|+ 2M2(C, γ,R) + 4‖ρ‖∞ ≤M3(C, γ,R). �

Next we show an example where the main theorems are applicable for a func-
tion on a non-convex set in the plane D ⊂ R2. In this situation the boundary
may be described locally by C2 curves b: (−ε, ε) → R2. The second fundamen-
tal form is simply Ix(y) = −k(x)|y|2 where k is the curvature of b. When b is
parametrized by arc-length, |k| is the norm of the vector b′′.

Example 3.6. Let

η(x) = (|x|2 − 1)
(
|x+ (δ, 0)|2 − 1

γ2

)
,

where γ ∈ (0, 1), δ ∈ (1/γ − 1, 1/γ + 1) are fixed constants. Take Dε to be the
connected component of η−1(−∞,−ε) on the right side, where ε > 0 is small
enough.

Observe that D0 = B(0, 1)\B((−δ, 0), 1/γ)). The singular points of η are the
intersections of ∂B(0, 1) with ∂B((−δ, 0), 1/γ)) and the centers of these circles.

Define

f(t, x, y) = |y|2 ∇η
|∇η|

+ p(t, x, y)

where p is bounded.
We have always Dε ⊆ D0 ⊆ B(0, 1), so RDε

< 1 and (3.3) is satisfied since
γ < 1. Next, we need to check condition (1.6).

Let k(x) be the curvature of the curve ∂Dη(x) in the point x. It is obvious
that k is a continuous function of x for the regular points of η.

From the choice of f , we only need to show that k(x) > −1. This is true for
all regular points of ∂D0 because of Remark 2.4(c). The differential d2η can be
explicitely calculated to show that k(x) > 0 for points of ∂Dε near the singular
points of D0.



294 P. Amster — J. Haddad

Condition (1.6) takes the form

〈nx, p(t, x, y)〉 > −|y|2(k(x) + 1)

Moreover, k+1 is strictly positive, so if for example 〈nx, p(t, x, y)〉 ≥ 0, then the
periodic and Dirichlet problems admit at least one solution.

Now we give a counter-example showing that the growth conditions cannot
be easily dropped.

Let x0, x1 ∈ Rn and ε, r > 0 such that x1 6∈ B(x0, r+ 2ε). Let η: Rn → R be
a C∞, bounded function such that

η(x) =

{
1 if ||x| − r| ≤ ε,

0 if ||x| − r| ≥ 2ε.

Let f0(t, x, y) = −Ky(|y|2 + 1)η(x) where K > 2π/ε. Finally, let g(t, x, y) be
any function equal to 0 for x ∈ B(x0, r + 2ε).

Claim 3.7. There is no solution of the problem
x′′ = (f0 + g)(t, x, x′),

x(0) = x0,

x(1) = x1.
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Proof. Let x be a solution and t0 ∈ I such that |x(t0)− x0| = r. For all t
such that |x(t)− x(t0)| ≤ ε we have

x′′ = −Kx′(|x′|2 + 1).

Let w(t) = |x′|. We compute:

2ww′ = (w2)′ = 2〈x′, x′′〉 = −2K|x′|2(|x′|2 + 1) = −2Kw2(w2 + 1),

w′ = −w(w2 + 1).

The unique solution of this differential equation is

w(t)2 = ((1 + w−2(t0))e2Kt − 1)−1

which satisfies∫ t

t0

w(s) ds =
1
K

ArcTan
(√

(1 + w−2(t0))e2Kt − 1
)∣∣∣∣t

t0

≤ π

K
.

Since K > 2π/ε we have

|x(t)− x(t0)| =
∣∣∣∣ ∫ t

t0

w(s) ds
∣∣∣∣ ≤ ε

2
.

Then we know that x lies in B(x(t0), ε/2) whenever x lies in B(x(t0), ε). This
means that x lies in B(x(t0), ε/2) for all t ≥ t0, a contradiction. �

For any domain D and points x0, x1 ∈ D we may choose ε, r, g for which the
counter-example applies and f0 +g satisfies condition (1.6). For example, for r, ε
small and g = 0 we have a counter-example to the original Hartman condition
when D = B(0, R).

Other counter-examples for scalar equations (also with cubic growth in |x′|)
can be found in [8].

A more delicate question is whether if condition γRD < 1 in (3.3) may be
relaxed or dropped.

Let us use complex notation for R2. Define

f(t, x, y) = − x

|x|2
|y|2 + 2ix.

Claim 3.8. The system x′′ = f(t, x, x′) has no classical periodic solutions.

Proof. Let x be a periodic solution. Notice that

d2

dt2
|x|2 = 2(〈f(t, x, x′), x〉+ |x′|2) = 0

so by periodicity, |x| = r is constant. Writing x(t) = reiθ(t) it follows that θ ≡ 2,
and hence x′(t) cannot be equal to x′(0) for any t > 0, a contradiction. �
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It is seen that 〈
f(t, x, y),

x

|x|

〉
= −|y|

2

|x|
,

so if

D = {x ∈ R2 : r1 < |x| < r2} for r2 > r1 > 0,

then (1.6) is satisfied for suitable perturbations of f . Condition (3.3) is not
satisfied because of the requirement γRD < 1.

The general theory of compact perturbations of the identity in Banach spaces
implies that there are no periodic solutions in D of the equations x′′ = g(t, x, x′)
for g in a neighbourhood of f .

For example, one may take g: Rn → Rn continuous such that

〈g(u), u〉 > 0 if |u| = r2,

〈g(u), u〉 < 0 if |u| = r1,

then (1.6) holds for fn := f + g/n. If xn is a periodic solution of the problem
x′′ = fn(t, x, x′) such that xn(t) ∈ D for all t, then xn = xn +K(fn(xn)) where
x denotes the average of the function x and K is the right inverse of the operator
Lx := x′′ satisfying Kϕ = 0 for ϕ ∈ C([0, 1]) with ϕ = 0. As {xn} is bounded,
passing to a subsequence we may assume that xn +K(fn(xn)) converges to some
function x, so xn → x, and x is a solution of the problem, a contradiction.

We conclude that condition (3.3) is sharp.

4. Main theorems

4.1. Dirichlet conditions. Throughout this section, we shall use the fol-
lowing notations:

T = C(I × Rn × Rn,Rn), equipped with the usual compact open topology.

Ci = Ci(I,Rn) as Banach spaces with the standard norms.

X0 = {x ∈ X : x(0) = x(1) = 0} for X = C,C1, . . .

It is well-known that the map L:C2
0 → C,Lu = u′′ is a Banach space iso-

morphism; let K:C → C2
0 be its inverse and ι:C2 → C1 the compact inclusion.

Moreover, let N : T × C1 → C be the nonlinear operator

N (f, x)(t) = f(t, x(t), x′(t)),

which is clearly continuous. Finally, let B: Rn × Rn → C1 be the segment
B(x, y)(t) = ty + (1− t)x and F :T × C1 × Rn × Rn → C1 the operator defined
by F (f, u, x, y) = u− ιKN (f, u)−B(x, y).
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Lemma 4.1. F (f, u, x, y) = 0 if and only if u is a solution of the nonlinear
problem: 

u′′ = f(t, u, u′),

u(0) = x,

u(1) = y.

Thus, our main theorem for Dirichlet conditions reads as follows:

Theorem 4.2. Let D be a bounded domain in Rn with C2 boundary, x0, x1 ∈
D and f : R × Rn × Rn → Rn such that (1.6) and (3.3) hold. Then there exists
a solution of x′′ = f(t, x, x′) satisfying the Dirichlet conditions x(i) = xi.

Proof. Let N be the bound provided by (3.3) (see Lemma 3.5 in previous
section) and define

D = {x ∈ C1 : Im(x) ⊂ D and ‖x′‖∞ < N + 1}.

We shall construct a homotopy starting from the functional u 7→ F (f, u, x0, x1),
so we may calculate its degree in the open set D, provided that it does not vanish
on ∂D along the homotopy.

The homotopy shall be constructed in three steps:

Step 1. Let F 1
λ(u) := F (f, u, x0, γ(λ)) where γ: [0, 1] → D is a path joining

x0, x1. It is obvious from Corollary 2.2 and from the choice of N that F 1
λ has

no zeros on the boundary of D. The problem is now homotopic to the same
problem with boundary conditions x(0) = x(1) = x0.

Step 2. Let λ0 > 0 be such that B(x0, λ0N) ⊂ D and set

f2
λ(t, x, y) := λ2f(t, x, λ−1y).

The function R → T , defined by λ 7→ f2
λ is continuous for λ ∈ [λ0, 1].

Next, define F 2
λ(u) := F (f2

λ, u, x0, x0) so F 2
1 = F 1

0 .

Remark 4.3. The function f2
λ satisfies (1.6), because Ix(y) is quadratic in y.

This means (from Corollary 2.2) that there are no solutions tangent to ∂D from
inside. Also, as x0 ∈ D we know that solutions do not touch the boundary at
t = 0, 1.

Now we have to estimate the derivative of the solutions xλ of the equation
F 2

λ(x) = 0 satisfying xλ(t) ∈ D.
Let y(t) = xλ(λ−1t) for t ∈ [0, λ], then

y′′(t) = λ−2x′′λ(λ−1t) = λ−2f2
λ(λ−1t, xλ(λ−1t), x′λ(λ−1t))

= f(λ−1t, xλ(λ−1t), λ−1x′λ(λ−1t)) = f(λ−1t, y(t), y′(t)).
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So y is a solution of y′′(t) = f(λ−1t, y(t), y′(t)) for t ∈ [0, λ] and (3.3) applies
(here we use the fact that N in Lemma 3.5 does not depend on the interval of
definition of y). Then we get

N > |y′(t)| = |λ−1x(λ−1t)| for t ∈ [0, λ],

which implies

(4.1) ‖x′λ‖∞ < λN.

Step 3. For λ ∈ [0, λ0], let us define

f3
λ(t, x, y) := λ2f(t, x, yλ−1

0 ), F 3
λ(u) := F (f3

λ, u, x0, x0).

Let xλ ∈ D be a solution of F 3
λ(x) = 0. If λ > 0 it is clear that |f3

λ| ≤ |f2
λ0
|

so |x′λ| ≤ λ0N still holds. Hence xλ ∈ B(x0, λ0N) ⊂⊂ D so xλ 6∈ ∂D.
Finally, F 3

0 (u) = F (0, u, x0, x0) = u− x0 so deg(F 3
0 ,D, 0) = 1 and the proof

is complete. �

4.2. Periodic conditions. In order to state our existence result for periodic
conditions, now we shall consider:

T = {f ∈ C(I × Rn × Rn,Rn) : f(0, x, y) = f(1, x, y)},
Ci

per = {x ∈ Ci : x(j)(0) = x(j)(1), j < i},

C̃i = {x ∈ Ci : x = 0}.

The map L:C2
per ∩ C̃ → C̃ given by Lx = x′′ is an isomorphism, denote by

K: C̃ → C2
per ∩ C̃ its inverse and ι:C2 → C1 the compact inclusion.

Let P :C1 → C̃1 be the projection associated with the decomposition C1 =
Rn⊕ C̃1 and let N :T ×C1 → C as before. Following [9], define F :T ×C1 → C1

as the operator given by

F (f, u) = u− u−N (f, u) + ιKPNu

and G:T × C1 × R → C1 by

G(f, u, µ) = u− u−N (f, u) + µιKPlNu.

The following result is easily verified as in [9]:

Lemma 4.4. F (f, u) = 0 if and only if u is a solution of the nonlinear
problem: 

u′′ = f(t, u, u′),

u(0) = u(1),

u′(0) = u′(1).

Hence we may establish our main result for periodic conditions:
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Theorem 4.5. Let f : R×Rn×Rn → Rn be such that (1.6) holds, and either
(3.2) or (3.3) is satisfied. Then there exists a periodic solution of x′′ = f(t, x, x′).

Proof. The proof follows the same outline of Theorem 4.2, conveniently
modified for this situation. In first place, it is obvious that we do not need to
move the boundary conditions.

Let us set again D = {x ∈ C1 : Im(x) ⊂ D and ‖x′‖∞ < N + 1} with
N = N(C + 1, 2φ) where C and φ are as in (3.2) or (3.3),

The problem of adapting the previous proof to this new context relies in the
fact that, due to the resonance of the operator u′′, the bound for x′λ does not
force solutions to be far from the boundary. To overcome this difficulty we need
f to point outwards the open set D, for every t and y.

Step 1. As M is a C1 manifold, we may suppose nx is a continuous and
bounded function defined in Rn. Furthermore, we may suppose that |nx| ≤ 1
(for example using Dugundji’s extension theorem). In fact, as we are assuming
that D = η−1(−∞, 0) for some smooth η, we may choose the vector field ∇η(x),
properly normalized in a neighbourhood of M .

For λ ∈ [0, 2], set

f1
λ(t, x, y) = f(t, x, y) + nxλ

(
max{0,−〈f(t, x, y), nx〉}+

1
2

min{1, φ(y)}
)

where, when (3.3) is assumed, φ(y) := γ|y|2 + C, and

F 1(λ, u) = F (f1
λ, u)

so that F 1(0, u) = F (f, u).
By Lemma 4.6 below, we know that |f1

λ| ≤ |f | + min{1, φ}. Thus, in both
cases (3.2) and (3.3) it is easy to see that fλ also satisfies it as well, with Ĉ = C+1
and φ̂ = 2φ. Indeed, for condition (3.2)

|f1
λ| ≤ |f |+ min{1, φ}
≤ d2

xη(y, y) + dxη(f(t, x, y)) + C + 1

≤ d2
xη(y, y) + dxη(f1

λ(t, x, y)) + Ĉ,

|f1
λ| ≤ |f |+ φ ≤ 2φ = φ̂

and, for condition (3.3),

|f1
λ| ≤ |f |+ 1 ≤ γ|y|2 + C + 1.

Moreover, condition (1.6) is trivially satisfied and it is easy to prove that there
are no solutions of x′′ = f1

λ(t, x, x′) on the boundary of D, for any λ ∈ [0, 2].
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Furthermore,

〈f1
λ(t, x, y), nx〉

=

 〈f(t, x, y), nx〉(1− λ) +
λ

2
min{1, φ(y)} if 〈f(t, x, y), nx〉 < 0,

〈f(t, x, y), nx〉+
λ

2
min{1, φ(y)} otherwise,

and hence

(4.2) 〈f1
2 (t, x, y), nx〉 > 0

for all t, y and x ∈M . Thus,

deg(f1
2 (t, x, 0), D, 0) = deg(nx, D, 0).

Now the problem is homotopic to x′′(t) = f1
2 (t, x, x′), where f1

2 points out-
wards over the boundary (namely, it satisfies (4.2)).

Step 2. Following the idea from Step 2 in Theorem 4.2, let

f2
λ(t, x, y) = λ2f1

2 (t, x, λ−1y), F 2(λ, u) = F (f2
λ, u).

Both Remark 4.3 and the bound obtained in (4.1) apply here (in contrast with
the Dirichlet case, Lemma 3.5 is not needed here since now we may extend
solutions periodically) so we deduce that solutions of x′′λ = f2

λ(t, xλ, x
′
λ) are not

on ∂D.
Now we claim there exists λ0 > 0 such that there are no solutions of x′′(t) =

µf2
λ0

(t, x, y) in ∂D for µ ∈ (0, 1]. Suppose again, by contradiction, that there
exists a sequence xλ ∈ ∂D of solutions of x′′λ(t) = µλf

2
λ(t, x, y) with µλ ∈ (0, 1]

and λ → 0. By (4.1), from Theorem 4.2 we know that |x′λ| ≤ λN and by
compactness we can suppose that xλ → p uniformly for some p ∈ ∂D. By
periodicity,

∫ T

0
x′′λ = 0, so

0 =
∫ T

0

〈µ−1
λ λ−2x′′λ, np〉 =

∫ T

0

〈f1
2 (t, xλ, λ

−1x′λ), np)〉 dt.

Passing to a subsequence, we may assume that

f1
2 (t, xλ, λ

−1x′λ)− f1
2 (t, p, λ−1x′λ) → 0

uniformly, and we deduce:∫ T

0

〈f1
2 (t, p, λ−1x′λ), np)〉 dt→ 0.

This is a contradiction, because (4.2) implies that 〈f1
2 (t, p, y), np〉 has a positive

minimum over the compact set I × {p} × B(0, N), which contains (t, p, λ−1x′λ)
for all t.
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Step 3. Now we set

F 3
µ(u) = G(f2

λ0
, u, µ)

where G is defined as before, and observe that a zero of F 3
µ with µ ∈ (0, 1] is a

solution of the equation x′′(t) = µλ2
0f

1
2 (t, x, λ−1

0 y), so it does not belong to ∂D.
Finally F 3

0 (u) = u−u−N (f2
λ0
, u) and its Leray–Schauder degree is equal to

the Brouwer degree on D of the function −ψ, where ψ:D −→ Rn is given by

ψ(p) :=
∫ T

0

f1
2 (t, p, 0) dt.

Using (4.2), we deduce that
∫ T

0
〈f1

2 (t, x, 0), nx〉 dt > 0 when x ∈ ∂D, so the
function ψ is linearly homotopic to the normal unit vector field n. Due to
a theorem by Hopf [6], the degree of n is equal to χ(D), where χ denotes the Euler
characteristic. In Section 5 we shall prove that D is contractible, so χ(D) = 1
and the proof is complete. �

Lemma 4.6. Let v, n ∈ Rd with |n| ≤ 1. Then for λ ∈ [0, 2] we have:

|v − λn〈v, n〉| ≤ |v|.

Proof. We compute

|v − λn〈v, n〉|2 = |v|2 − 2λ〈v, n〉2 + λ2〈v, n〉2|n|2

≤ |v|2 − 2λ〈v, n〉2 + λ2〈v, n〉2 = |v|2 + (λ2 − 2λ)〈v, n〉2 ≤ |v|2

for λ ∈ [0, 2]. �

5. Topology of the domain

In this section we will show that the conditions in the preceding results imply
that D must be contractible. This is proved in Theorems 5.4 and 5.6 using two
preliminary lemmas. Our main tool shall be Morse theory for manifolds with
boundary.

Definition 5.1. Let M,N ⊆ Rn be oriented C2 manifolds with normal unit
vector fields nN and nM . We shall say that M and N are outside tangent at
p ∈ N ∩M if TpM = TpN and nN (p) = −nM (p).

Lemma 5.2. Let η: Rn → R be C2 and suppose S = {η = η0} is a C2

manifold oriented in the direction of ∇η. Then d2
xη(y, y) = −|∇η|.IS

x (y).

Proof. Let x be a curve such that x(0) = x and x′(0) = y. As〈
d

dt
(∇η(x(t))), x′(t)

〉
= d2

xη(x
′, x′),
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and writing ∇x(t)η = δ(t).nS(x(t)) where δ = |∇η|, we obtain:

d

dt
(∇η(x(t))) = δ′(t)nS + δ.g(x′)

and hence
d2

xη(x
′, x′) = δ〈g(x′), x′〉 = −|∇η|Ix(x′). �

Lemma 5.3. Let x be a curve in M , S as before and suppose M and N are
outside tangent at x(0). If IM < −IS then (η ◦ x)′′(0) > 0.

Proof. Using the previous lemma, we deduce

(η ◦ x)′′ = d2
xη(x

′, x′) + dxη(x′′) = −|∇η|IS
x (x′) + |∇η|〈nS , x

′′〉,
(η ◦ x)′′(0) = −(IS + IM )|∇η| > 0. �

Theorem 5.4. Let D satisfy RDcurv(D, p) > −1 for all p ∈ M = ∂D.
Then D is contractible.

Proof. Without loss of generality, we may assume that D is centered at 0,
that is: D ⊆ B(RD, 0). Let R > RD be such that curv(D, p) > −1/R for every
p ∈M . Let η:D → R,

η(x, y) = x−
√
R2 − |y|2

where x ∈ R and y ∈ Rn−1. Clearly η is a C∞ function defined also in a neigh-
bourhood of D which is an n-dimensional manifold with boundary ∂D. Consider
S(t) = {η = t} = ∂B((t, 0), R) ∩ {x ≥ t} with the orientation given by ∇η.

Let us prove that η is a Morse function in D. First of all, there are no critical
points inside D. A critical point of η|M is a point p such that S(t) is tangent
to M in p for some t. A critical point of η as a Morse function in a manifold
with boundary is a critical point of η|M such that ∇η points inwards D. In such
a point p, S(t) and M are outside tangent. Also

IS(t)
p (v) = −|v|2 1

R
< |v|2curv(D, p) ≤ −IM

p (v)

for every t ∈ R, v ∈ Rn.
The previous lemma applies and we get that p is a nondegenerate local min-

imum.
Morse theory implies now that D has the homotopy type of a disjoint union

of points, one per each critical point. As D is connected, we deduce that D is
contractible. �

Remark 5.5. As we saw in Remark 2.4(c), curv(D, p) can be calculated us-
ing tangent balls. This might suggest a generalization of the notion of curvature
for arbitrary open sets if one defines the concept of exterior tangent ball in the
following way: B is an exterior tangent ball at p ∈ ∂D if p ∈ B and there exists
a neighbourhood V of p such that D ∩ V ⊂ Rn \B.
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Then it is natural to ask if Theorem 5.4 is still valid in this context. The
answer is negative:

Consider for example n = 3,

D = B(0, 1) \ (B((0, 1, 0), 1 + ε) ∪B((0,−1, 0), 1 + ε))

for small ε > 0. This set obviously satisfies RDcurv(D, p) > −1 because for
every point in the boundary there is an external tangent ball of radius 1+ ε, but
it has the homotopy type of S1.

However, if we approximate D by smooth domains, it is clear that the con-
dition fails. This shows that the previous definition of curvature for arbitrary
domains is not accurate.

Theorem 5.6. Let D satisfy (3.2) for some η and some f . Then D is
contractible.

Proof. Using (3.2), let us firstly notice that if |∇η| < 1, then 0 ≤ d2
xη(y, y)+

C for arbitrary y, so d2
xη must be positive semidefinite.

Let Ka = {x ∈ D : dxη = 0, η(x) = a} be the critical set of level a and
ηa = {x ∈ D : η(x) < a} the level set.

As ∇η is continuous in D there is an ε > 0 such that for all a, d2η is positive
semidefinite in Oa = B(Ka, ε). Since η ≥ a in Oa, we deduce that if b > a then
Ob ∩ Ka = ∅. This implies that there are only finite critical values. Also it is
clear that Oa ∩ ηa = ∅, so the Morse deformation Lemma shows that D has the
homotopy type of the finite disjoint union of the level sets Ka. Again, since D is
connected there is only one critical set Ka which is also the minimum set of η.
Now let δ > 0 be small enough such that ηa+δ ⊆ Oa (where a is the minimum).
The set ηa+δ is a level set of a (non strict) convex function so it is a convex set.
Then the critical set Ka is the intersection of all such convex sets so it is again
convex. �
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