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STATIONARY STATES FOR NONLINEAR DIRAC EQUATIONS
WITH SUPERLINEAR NONLINEARITIES

Minbo Yang — Yanheng Ding

Abstract. In this paper we consider the nonlinear Dirac equation

−i∂tψ = ic~
3X

k=1

αk∂kψ −mc2βψ +Gψ(x, ψ).

Under suitable superlinear assumptions on the nonlinearities we can obtain
the existence of at least one stationary state for the equation by applying

a generalized linking theorem.

1. Introduction and main results

In this paper we are going to investigate the following nonlinear Dirac equa-
tion

(1.1) −i~∂tψ = ic~
3∑
k=1

αk∂kψ −mc2βψ +Gψ(x, ψ),

where x = (x1, x2, x3) ∈ R3, ∂k = ∂/∂xk, G: R3 ×C4 → R satisfies G(x, eiθψ) =
G(x, ψ) for all θ ∈ R, ψ: R× R3 → C4 represents the wave function of the state
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of an electron, c denotes the speed of light, m > 0, the mass of the electron, ~ is
Planck’s constant, α1, α2, α3 and β are the 4× 4 complex matrices:

β =
(
I 0
0 I

)
, αk =

(
0 σk
σk 0

)
(k = 1, 2, 3)

with

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 i

i 0

)
, σ3 =

(
1 0
0 −1

)
.

Such equations have been widely used to build relativistic models of extended
particles in relativistic quantum mechanics (cf. [6], [12]). We are going to look
for stationary solutions of (1.1), i.e. solutions of the form ψ(t, x) = eiθt/~z(x).
Then ψ(t, x) is a solution of (1.1) if and only if z satisfies

(1.2) −ic~
3∑
k=1

αk∂kz +mc2βz = Gz(x, z)− θz.

For simplicity, we rewrite (1.2) as

(D) −i
3∑
k=1

αk∂kz + aβz + ωz = Fz(x, z)

where a > 0 and ω ∈ R, various assumptions on F have been used to model
various types of self-couplings. Existence and multiplicity of stationary solutions
of several models of particle physics have been established. In [2], [3], [7] and
[18] the so-called Soler model (with F independent of x):

(1.3) F (z) =
1
2
H(z̃z), H ∈ C2(R,R), H(0) = 0 where ũu := (βz, z)C4

was investigated. There if ω ∈ (−a, 0), by setting r = |x| and some suitable
assumptions on H, the authors obtained by a shooting method the solutions of
(D) of the type

(1.4) u(x) =

 v(r)
(

1
0

)
iw(r)

(
cos θ

sin θeiφ

)
 .

In [13], the authors also dealt with more general nonlinearities F (z) where (1.3)
does not hold and the ansatz (1.4) does not apply. The authors show the exis-
tence of one (nontrivial) solution provided F ∈ C2(C4,R) satisfies various growth
and sign conditions. Variational methods were also used in [11] to study the Soler
model (1.2) with the classical Ambrosetti–Rabinowitz condition

H ′(s) · s ≥ θH(s), θ > 2, s ∈ R.
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In this paper we are going to consider the nonlinearities of the type

F (x, z) = −1
2
V (x)z̃z +H(x, z).

Then the equation (D) reads as

(D)V −i
3∑
k=1

αk∂kz + (V (x) + a)βz + ωz = Hz(x, z).

If the potential is non-periodic (typically, the Coulomb-type potential), in [9]
Y.H. Ding and B. Ruf considered some asymptotically quadratic nonlineari-
ties, and in [10] Y.H. Ding and J.C. Wei treated the super-quadratic subcriti-
cal nonlinearities with asymptotically periodic condition, there the Ambrosetti–
Rabinowitz condition also plays an important role.

In a recent paper [5], T. Bartsch and Y.H. Ding studied the nonlinear Dirac
equations (D)V by critical point theory for strongly indefinite problems. By
assuming V (x) and F (x, z) were periodic in x and some conditions weaker than
the Ambrosetti–Rabinowitz condition, the authors first established the analytic
setting for the problem and then obtained the existence of stationary solutions.
When F (x, z) was even in z, then (D)V possesses infinitely many geometrically
different solutions. For other results about nonlinear Dirac equation, we refer
readers to [8] and references therein.

The purpose of this paper is to establish the existence results for periodic
Dirac equation without the Ambrosetti–Rabinowitz condition. We make the
following hypothesis:

(V1) ω ∈ (−a, a), V ∈ C1(R3,R), V ≥ 0, and V (x) is 1-periodic in xk for
k = 1, 2, 3.

(H1) Hz(x, z) is 1-periodic in x and there exist p ∈ (2, 3), c1 > 0 such that
|Hz(x, z)| ≤ c1(1 + |z|p−1).

(H2) |Hz(x, z)| = o(|z|) as |z| → 0 and H(x, z)/|z|2 → ∞ as |z| → ∞ uni-
formly in x.

(H3) Hz(x, z) · z > 2H(x, z) > 0, for all z 6= 0.
(H4) Hz(x, z) · (u+ z) ≤ 0 for all (z, u) satisfying Hz(x, z) · u = Hz(x, u) · z.

Set A := −i
∑3
k=1 αk∂k + (V (x) + a)β and L = A+ ω. We define the functional

Φ(z) =
1
2
((A+ ω)z, z)−

∫
R3
H(x, z) =

1
2
(Lz, z)−

∫
R3
H(x, z).

The hypotheses on H(x, z) imply that Φ ∈ C1(E,R) and a standard argument
shows that critical points of Φ are solutions of (D)V . Let K̂ := {z ∈ E : Φ′(z) =
0, z 6= 0} be the critical set of Φ and

Ĉ := inf{Φ(z) : z ∈ K̂ \ {0}}.
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The main result of this paper is the following theorem.

Theorem 1.1. If assumptions (V1) and (H1)–(H4) are satisfied, then prob-
lem (D)V has at least one least energy solution with Ĉ > 0.

It is well known that without Ambrosetti-Rabinowitz condition, such prob-
lems become quite difficult and complex. Ground states for periodic Schrödinger
equation under Nehari type monotone condition have received much attention,
see [15], [16], [25]. For the Dirac equation, because 0 lies in a gap of the spectrum
of Dirac operator σ(L), the action functional is strongly indefinite and it is not
easy to obtain the boundedness of the Palais–Smale sequence. Motivated by the
above works, the aim of this paper is to find at least one ground state solution
under (V1) and (H1)–(H4). We will first find a special bounded Palais–Smale
sequence for problem (D)V and then prove the existence of the solution by con-
centration compactness arguments. The main idea here lies in an application
of a variant generalized weak linking theorem for strongly indefinite problems
developed by Schechter and Zou [20], see also [23].

2. Variational tools

We will denote by | · |p the usual Lp norm for p ≥ 1. Under (V1), (V + a) ∈
L2

loc(R3,R), A is a selfadjoint operator in L2 = L2(R3,C4). Let σ(A), σe(A)
and σc(A) denote, respectively, the spectrum, essential spectrum and continuous
spectrum of the self-adjoint operator A on L2. The following spectrum property
of the operator A is established in [5].

Lemma 2.1 ([5]). If (V1) holds, then σ(A) ⊂ R \ (−a, a), σ(A) = σc(A).

It follows that the space L2 possesses the orthogonal decomposition:

L2 = L− ⊕ L+, u = u− + u+

so that A is negative definite (resp. positive definite) in L− (resp. L+). Let |A|
denote the absolute value, |A|1/2 the squared root, and take E = D(|A|1/2). E
is a Hilbert space equipped with the inner product

(u, v) = R(|A|1/2u, |A|1/2v)2

and the induced norm ‖z‖ = (z, z)1/2. E possesses the following decomposition

E = E− ⊕ E+ with E± = E ∩ L±,

orthogonal with respect to both ( · , · )2 and ( · , · ) inner products.
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Lemma 2.2 ([5]). If (V1) holds, then E = H1/2 and E embeds continuously
into Lq for q ∈ [2, 3] and compactly into Lqloc for q ∈ [1, 3).

The solutions of equation (D)V will be obtained as critical points of the
functional defined on E:

(2.1) Φ(z) =
1
2
(‖z+‖2 − ‖z−‖2 + ω|z|22)−

∫
R3
H(x, z).

The hypotheses on H(x, z) imply that Φ ∈ C1(E,R) and a standard argument
shows that critical points of Φ are solutions of (D)V . By (V1) and Lemma 2.2,

(2.2)
a− |ω|
a

‖z+‖2 ≤ (‖z+‖2 ± ω|z+|22) ≤
a+ |ω|
a

‖z+‖2

and

(2.3)
a− |ω|
a

‖z−‖2 ≤ (‖z−‖2 ± ω|z−|22) ≤
a+ |ω|
a

‖z−‖2.

Now we can introduce the norm on E

‖z‖ω = (‖z‖2 + ω(|z+|22 − |z−|22))1/2.

Using (2.2)–(2.3) one has

(2.4) ω0|z|22 ≤ ‖z‖2
ω and

a− |ω|
a

‖z‖2 ≤ ‖z‖2
ω ≤

a+ |ω|
a

‖z‖2.

The following abstract critical point theorem plays an important role in proving
our main result.

Let E be a Hilbert space with norm ‖·‖ and have an orthogonal decomposition
E = N ⊕N⊥, N ⊂ E is a closed and separable subspace. There exists a norm
|v|w satisfying |v|w ≤ ‖v‖ for all v ∈ N and inducing a topology equivalent to the
weak topology ofN on a bounded subset ofN . For u = v+w ∈ E = N⊕N⊥ with
v ∈ N , w ∈ N⊥, we define |u|2w = |v|2w + ‖w‖2. In particular, if (un = vn + wn)

is | · |w-bounded and un
|·|w−→ u, then vn ⇀ v weakly in N , wn → w strongly in

N⊥, un ⇀ v + w weakly in E (cf. [20]).
Let E = E− ⊕ E+, z0 ∈ E+ with ‖z0‖ = 1. Let N := E− ⊕ Rz0 and

E+
1 := N⊥ = (E− ⊕ Rz0)⊥. For R > 0, let

Q := {u := u− + sz0 : s > 0, u− ∈ E−, ‖u‖ < R}.

For 0 < s0 < R,we define

B := {u := sz0 + w+ : s ≥ 0, w+ ∈ E+
1 , ‖sz0 + w+‖ = s0}.

For Φ ∈ C1(E,R), define Γ := {h | h: [0, 1] × Q 7→ E is | · |w-continuous,
h(0, u) = u, Φ(h(s, u)) ≤ Φ(u), for all u ∈ Q}. For any (s0, u0) ∈ [0, 1]×Q, there
is a | · |w-neighbourhood U(s0,u0), such that

{u− h(t, u) : (t, u) ∈ U(s0,u0) ∩ ([0, 1]×Q)} ⊂ Efin}.
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where Efin denotes various finite-dimensional subspaces of E, Γ 6= ∅ since id ∈ Γ.
The variant weak linking theorem is:

Theorem 2.3 [20]. Let {Φλ} be a family of C1-functionals of the form

Φλ(u) := I(u)− λJ(u), for all λ ∈ [1, 2].

Assume:

(a) J(u) ≥ 0 for all u ∈ E, Φ1 = Φ;
(b) I(u) →∞ or J(u) →∞ as ‖u‖ → ∞;
(c) Φλ is | · |w-upper semicontinuous, Φ′λ is weakly sequentially continuous

on E. Moreover, Φλ maps bounded sets to bounded sets;
(d) sup∂Q Φλ < infB Φλ, for all λ ∈ [1, 2].

Then for almost all λ ∈ [1, 2], there exists a sequence {un} such that

sup
n
‖un‖ <∞, Φ′λ(un) → 0, Φλ(un) → Cλ;

where
Cλ := inf

h∈Γ
sup
u∈Q

Φλ(h(1, u)) ∈ [inf
B

Φλ, sup
Q

Φ].

3. Proof of the main results

In order to use Theorem 2.3, we consider

(3.1) Φλ(z) :=
1
2
‖z+‖2

ω − λ(
1
2
‖z−‖2

ω + Ψ(z)).

It is easy to see that Φλ verifies conditions (a), (b) in Theorem 2.3. To see (c),

if zn
|·|w−→ z and Φλ(zn) ≥ a, then z+

n → z+ and z−n ⇀ z− in E, going to a
subsequence if necessary, zn(x) → z(x) almost everywhere on R3. Using Fatou’s
lemma, we know Φλ(z) ≥ a, this means that Φλ is | · |w-upper semicontinuous.
Φ′λ is weakly sequentially continuous on E. To continue the discussion, we still
need to verify condition (d). Indeed, we have

Lemma 3.1. Under assumptions (V1) and (H1)–(H3), there hold:

(a) There exists ρ > 0 independent of λ ∈ [1, 2] such that κ := inf Φλ(SρE+)
> 0 where SρE+ := {z ∈ E+ : ‖z‖ω = ρ}.

(b) For fixed z0 ∈ E+ with ‖z0‖ω = 1 and any λ ∈ [1, 2], there is R > ρ > 0
such that supΦλ(∂Q) ≤ 0 where Q = {z = v + sz0 : v ∈ E−, s ≥ 0,
‖z‖ω < R}.

Proof. (a) From assumptions (H1), (H2), we know that, for any ε > 0 there
exists Cε > 0 such that |H(x, z)| ≤ ε|z|2 + Cε|z|p. Hence, for any z ∈ E+,

Φλ(z) ≥
1
2
‖z‖2

ω − λε‖z‖2
ω − C ′ε‖z‖pω.
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The conclusion follows.
(b) Suppose by contradiction that there exists a sequence zn ∈ E− ⊕ R+z0

such that Φ(zn) > 0 for all n and ‖zn‖ω →∞ as n→∞. Set wn = zn/‖zn‖ω =
snz0 + w−n , then 1 = ‖wn‖2

ω = s2n + ‖w−n ‖2
ω and

0 <
Φ(zn)
‖zn‖2

ω

=
1
2
(s2n − ‖w−n ‖2

ω)−
∫

R3

H(x, zn)
|zn|2

|wn|2.

From (H3), we know H(x, z) ≥ 0 and have

‖w−n ‖2
ω < s2n = 1− ‖w−n ‖2

ω,

therefore

‖w−n ‖ω ≤
1√
2

and
1√
2
≤ sn ≤ 1.

Going to a subsequence if necessary, we may assume sn → s > 0, wn ⇀ w and
w−n (x) → w−(x) almost everywhere in R3. Hence w = sz0 + w−(x) 6= 0 and
therefore |zn| = ‖zn‖ω|wn| → ∞. From (H2) and Fatou’s lemma, we obtain∫

R3

H(x, zn)
|zn|2

|wn|2 →∞ as n→∞.

This is a contradiction. �

Applying Theorem 2.3, we obtain the following lemma.

Lemma 3.2. Under assumptions (V1) and (H1)–(H3), for almost every λ ∈
[1, 2], there exists a sequence {zn} such that

(3.2) sup
n
‖zn‖ω <∞, Φ′λ(zn) → 0, Φλ(zn) → Cλ ∈

[
κ, sup

Q

Φ
]
,

as n→∞.

Lemma 3.3. Under assumptions (V1) and (H1)–(H3), for almost every λ ∈
[1, 2], there exists a zλ such that

Φ′λ(zλ) = 0, Φλ(zλ) ≤ sup
Q

Φ.

Proof. Let {zn} be the sequence obtained in Lemma 3.2, write zn = z+
n +z−n

with z±n ∈ E±. Since {zn} is bounded, we have either {z+
n } is vanishing, i.e.

lim
n→∞

sup
y∈R3

∫
B1(y)

|z+
n |2 = 0

or non-vanishing, i.e. there exist r, δ > 0 and a sequence {yn} ∈ Z3 such that

lim
n→∞

∫
Br(yn)

|z+
n |2 ≥ δ.
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If {z+
n } is vanishing, by Lions’ concentration compactness principle [17], we have

that z+
n → 0 in Ls(R3,C4) for all s ∈ (2, 3). Since for any ε > 0 there exists Cε

such that |Hz(x, z)| ≤ ε|z|+ Cε|z|p−1, by Hölder’s inequality, we know∣∣∣∣ ∫
R3
Hz(x, zn) · z+

n

∣∣∣∣ ≤ ε

∫
R3
|zn||z+

n |+ Cε

∫
R3
|z+
n |p−1|z+

n | → 0, as n→∞

therefore

Φλ(zn) ≤
1
2
‖z+
n ‖2

ω = 〈Φ′λ(zn), z+
n 〉+

∫
R3
Hz(x, zn) · z+

n → 0, as n→∞

this contradicts with the fact that Cλ ≥ κ. Hence {z+
n } must be non-vanishing.

Let us define vn = zn( · − yn), then∫
B(r,0)

|v+
n |2 dx ≥

δ

2
.

We know

Φ′λ(vn) → 0 and Φλ(vn) → Cλ, as n→∞.

Since {vn} is still bounded, we may assume v+
n ⇀ z+

λ , v−n ⇀ z−λ . Since v+
n → z+

λ

in L2
loc(R3,C4), we have z+

λ 6= 0. Moreover,

< Φ′λ(zλ), ϕ >= lim
n→∞

< Φ′λ(vn), ϕ >= 0, for all ϕ ∈ E,

we know Φ′λ(zλ) = 0. Since

1
2
Hz(x, z)z −H(x, z) > 0, if z 6= 0,

by Fatou’s lemma, we have

Cλ = lim
n→∞

Φλ(zn)−
1
2
〈Φ′λ(zn), zn〉

= lim
n→∞

∫
R3

(
1
2
Hz(x, zn)zn −H(x, zn)

)
≥

∫
R3

(
1
2
Hz(x, zλ)zλ −H(x, zλ)

)
= Φλ(zλ),

we know Φλ(zλ) ≤ Cλ. �

Similar to Lemma 2.2 of [22], we need to establish the following lemma for the
nonlinear function H(x, z). As we know, Lemma 2.2 of [22] plays an important
role in proving the existence of standing waves for Schrödinger equations. Here
we want to establish similar results for Dirac equation without the Nehari type
monotone condition.
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Lemma 3.4. Under assumptions (H1)–(H4). Let s ∈ R, s ≥ 1 and z, u ∈ C4

with w := sz + u 6= 0. Then

Hz(x, z) ·
(
s

(
s

2
−1

)
z+(s−1)u

)
+H(x, z)−H(x,w− z) < 0, for all x ∈ R3.

Proof. We fix x ∈ R3 and z, u ∈ C4. Let s ≥ 1 and ζ(s) = (s− 1)z + u,

h(s) := Hz(x, z) ·
(
s(
s

2
− 1)z + (s− 1)u

)
+H(x, z)−H(x, ζ(s)).

We need to show h(s) < 0 whenever s ≥ 1.
In fact, u = ζ − (s− 1)z, we know

h(s) =Hz(x, z) ·
(
s

(
s

2
− 1

)
z + (s− 1)(ζ(s)− (s− 1)z)

)
(3.3)

+H(x, z)−H(x, ζ(s))

= −
(
s2

2
− 1

2

)
Hz(x, z) · z −

1
2
Hz(x, z) · z +H(x, z)

+ (s− 1)Hz(x, z) · (ζ(s) + z)−H(x, ζ(s)).

From the assumption that H(x, z)/|z|2 →∞ as |z| → ∞ uniformly in x, we have

lim
s→∞

h(s) = −∞.

Thus h(s) must attain its maximum on [1,∞) at some point s0 ≥ 1. A direct
computation shows that

0 = h
′
(s0) = Hz(x, z) · ζ(s0)−Hz(x, ζ(s0)) · z,

then (H4) implies that

(3.4) Hz(x, z) · (ζ(s0) + z) ≤ 0.

From (3.3), by (H4) and (3.4), we know h(s) ≤ h(s0) < 0. �

Lemma 3.5. Let zλ 6= 0 be any critical point of Φλ, we have

Φλ(w − zλ) < Φλ(zλ) for any w ∈ Σ := {szλ + ψ : s ≥ 1, ψ ∈ E−}, w 6= 0.

Proof. We rewrite Φλ as

Φλ(z) =
1
2
(Lz+, z+)L2 +

λ

2
(Lz−, z−)L2 − λ

∫
R3
H(x, z).
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Since Φ′λ(zλ) = 0, for ψ ∈ E−, we have

(3.5) 0 =
〈

Φ′λ(zλ),
s2 − 2s

2
zλ + (1 + s)ψ

〉
=
s2 − 2s

2
(Lz+

λ , z
+
λ )L2 + λ

s2 − 2s
2

(Lz−λ , z
−
λ )L2

+ λ(s− 1)(Lz−λ , ψ)L2 − λ

∫
R3
Hz(x, zλ) ·

(
s2 − 2s

2
zλ + (s− 1)ψ

)
Therefore, for w = szλ + ψ, by Lemma 3.4 and (3.5), we know

Φλ(w − zλ) − Φλ(zλ)

=
1
2
{(L(s− 1)z+

λ , (s− 1)z+
λ )L2 − (Lz+

λ , z
+
λ )L2}

+
λ

2
{(L((s− 1)z−λ + ψ), (s− 1)z−λ + ψ)L2 − (Lz−λ , z

−
λ )L2}

+ λ

{ ∫
R3
H(x, zλ)−

∫
R3
H(x,w − zλ)

}
=
s2 − 2s

2
(Lz+

λ , z
+
λ )L2 + λ

s2 − 2s
2

(Lz−λ , z
−
λ )L2

+
λ

2
(Lψ,ψ)L2 + λ(s− 1)(Lz−λ , ψ)L2

+ λ

{ ∫
R3
H(x, zλ)−

∫
R3
H(x,w − zλ)

}
=
λ

2
(Lψ,ψ)L2 + λ

∫
R3

(
Hz(x, zλ) ·

(
s2 − 2s

2
zλ + (s− 1)ψ

)
+H(x, zλ)−H(x,w − zλ)

)
< 0. �

By using the above two lemmas, we are able to show the existence of bounded
(PS) sequence.

Lemma 3.6. Under assumptions (V1) and (H1)–(H4), there exist λn → 1
and sequence {zλn

} such that

Φ′λn
(zλn) = 0, Φλn(zλn) ≤ sup

Q

Φ.

Moreover, {zλn
} is bounded.

Proof. The existence of {zλn
} such that there

Φ′λn
(zλn) = 0, Φλn(zλn) ≤ sup

Q

Φ

is the direct consequence of Lemma 3.3. To show the boundedness, we argue
by contradiction, suppose that ‖zλn

‖ω → ∞. Since Φλn
(zλn

) ≥ 0, we know
‖z+
λn
‖ω ≥ ‖z−λn

‖ω.
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Let vλn
:= zλn

/‖zλn
‖ω. Then ‖v+

λn
‖2 ≥ 1/2 and vλn

(x) ⇀ v(x) almost every-
where in R3 after passing to a subsequence. We have either {v+

n } is vanishing,
i.e.

lim
n→∞

sup
y∈R3

∫
B(y,1)

|v+
λn
|2 = 0

or non-vanishing, i.e. there exist r, δ > 0 and a sequence {yn} ∈ Z3 such that

lim
n→∞

∫
B(yn,r)

|v+
λn
|2 ≥ δ.

If {v+
n } is vanishing, Lion’s concentration compactness principle implies v+

λn
→ 0

in Lr(R3) for r ∈ (2, 2∗). Therefore assumption (H1) and Lebesgue Dominated
Convergence Theorem imply that

∫
R3 H(x, Tv+

λn
) → 0 for any T ∈ R+. From

Lemma 3.5, we know that

sup
Q

Φ ≥ Φλn
(zλn

) ≥ Φλn
(Tv+

λn
)

=
T 2

2
‖v+
n ‖2

ω − λn

∫
R3
H(x, Tv+

λn
) ≥ T 2

4
− 2

∫
R3
H(x, Tv+

λn
) → T 2

4
,

we arrive at a contradiction if T is large enough. Hence non-vanishing must
hold. The invariance of Φλn

under translation implies the sequence {yn} can be
selected to be bounded. Then v+

λn
→ v+ in L2

loc(R3) with v+ 6= 0 and therefore
|zλn(x)| → ∞. It follows again from (H3) and Fatou’s lemma that∫

R3

H(x, zλn
)

|zλn
|2

|vλn
|2 →∞, as n→∞

and therefore

0 ≤ Φ(zλn)
‖zλn

‖2
ω

=
1
2
‖v+
λn
‖2
ω − λ

(
1
2
‖v−λn

‖2
ω +

∫
R3

H(x, zλn)
|zλn

|2
|vλn

|2
)
→ −∞,

as n→∞, a contradiction. Thus we have the conclusion. �

Corollary 3.7. If {zλn} is the sequence obtained in Lemma 3.6, then it is
also a (PS) sequence for Φ satisfying

lim
n→∞

Φ′(zλn
) = 0, lim

n→∞
Φ(zλn

) ≤ sup
Q

Φ.

Proof. Since zλn is bounded, from

lim
n→∞

Φ(zλn
) = lim

n→∞

(
Φλn

(zλn
) + (λn − 1)

(
1
2
‖z−λn

‖2
ω −

∫
R3
H(x, zλn

)
))

and

lim
n→∞

〈Φ′(zλn), ϕ〉 = lim
n→∞

〈Φ′λn
(zλn), ϕ〉+(λn−1)

(
(z−λn

, ϕ−)−
∫

R3
Hz(x, zλn) ·ϕ

)
uniformly in ‖ϕ‖ω ≤ 1, we obtain the conclusions. �
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Proof of Theorem 1.1. Since {zn} is bounded, we have either {z+
n } is

vanishing, i.e.

lim
n→∞

sup
y∈R3

∫
B(y,1)

|z+
λn
|2 = 0

or non-vanishing, i.e. there exist r, δ > 0 and a sequence yn ∈ Z3 such that

lim
n→∞

∫
B(yn,r)

|z+
λn
|2 ≥ δ.

If {zλn} is vanishing, then by Lion’s concentration compactness principle again,
we have that zλn

→ 0 in Ls(R3) for 2 < s < 3. However, for any ε > 0 there exists
Cε such that |Hz(x, z)| ≤ ε|z|+Cε|z|p−1. From the fact that 〈Φ′λn

(zλn
), z+

λn
〉 = 0

and Hölder’s inequality, we know

(3.6) ‖z+
λn
‖2
ω = λn

∫
R3
Hz(x, zλn

) · z+
λn

≤ ε

∫
R3
|zλn

||z+
λn
|+ Cε

∫
R3
|z+
λn
|p−1|z+

λn
| ≤ ε‖z+

λn
‖2
ω + C ′ε‖z+

λn
‖pω.

Similarly, we have

(3.7) ‖z−λn
‖2
ω ≤ ε‖z−λn

‖2
ω + C ′ε‖z−λn

‖pω.

From (3.6) and (3.7), we have

‖zλn
‖2
ω ≤ ε‖zλn

‖2
ω + C ′ε‖zλn

‖pω.

Which means ‖zλn‖ω ≥ c for some constant c, hence the vanishing case does not
hold. Let us now define vλn

= zλn
( · − yn), then∫

B(r,0)

|v+
λn
|2 dx ≥ δ

2
.

Φ and Φ′ are both invariant by translation, we know

Φ′(vλn) → 0, as n→∞.

Since {vλn
} is also bounded, we may assume vλn

⇀ v. Since vλn
→ v in L2

loc(R3),
we have v 6= 0 and Φ′(v) = 0.

Let K̂ := {u ∈ E : Φ′(u) = 0, u 6= 0} be the critical set of Φ and

Ĉ := inf{Φ(z) : z ∈ K̂ \ {0}}.

For any critical point z of Φλ,

Φλ(z) = Φλ(z)−
1
2
〈Φ′λ(z), z〉 =

∫
R3

(
1
2
Hz(x, z) · z −H(x, z)

)
> 0, if z 6= 0.

Therefore Ĉλ ≥ 0. We prove that Ĉ > 0 and there is z ∈ K̂ satisfying Φ(z) =
Ĉ. Let zj ∈ K̂ \ {0} be such that Φ(zj) → Ĉ. Then, similar to the proof of
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Lemma 3.6 {zj} is bounded, and by the concentration compactness principle
discussion above zj ⇀ z ∈ K̂ \ {0}. Then

Ĉ = lim
j→∞

Φ(zj) = lim
j→∞

∫
R3

(
1
2
Hz(x, zj) · zj −H(x, zj)

)
≥

∫
R3

(
1
2
Hz(x, z) · z −H(x, z)

)
= Φ(z) ≥ Ĉ

that is, Φ(z) = Ĉ and Ĉ > 0 because z 6= 0. �
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