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TOPOLOGICAL METHODS
FOR BOUNDARY VALUE PROBLEMS

INVOLVING DISCRETE VECTOR φ-LAPLACIANS

Cristian Bereanu — Dana Gheorghe

Abstract. In this paper, using Brouwer degree arguments, we prove some
existence results for nonlinear problems of the type

−∇[φ(∆xm)] = gm(xm, ∆xm) (1 ≤ m ≤ n− 1),

submitted to Dirichlet, Neumann or periodic boundary conditions, where

φ(x) = |x|p−2x (p > 1) or φ(x) = x/
p

1− |x|2 and gm: RN → RN

(1 ≤ m ≤ n − 1) are continuous nonlinearities satisfying some additional

assumptions.

1. Introduction and notation

In this paper, using Brouwer degree arguments, we prove some existence
results for nonlinear problems of the type

−∇[φ(∆xm)] = gm(xm,∆xm) (1 ≤ m ≤ n− 1),

submitted to Dirichlet, Neumann or periodic boundary conditions, where func-
tions gm: RN → RN (1 ≤ m ≤ n − 1) are continuous and the discrete vector
φ-Laplacian operator is defined as follows.

Let n, N be positive integers, 0 < a ≤ ∞ and φ:B(a) ⊂ RN → RN be
a homeomorphism such that φ(0) = 0. (In what follows B(ρ) denotes an open
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ball with center in zero and radius ρ). For any x = (x0, . . . , xn) ∈ [RN ]n+1 we
define

∆xm = xm+1 − xm, (0 ≤ m ≤ n− 1)

and if |∆xm| < a (0 ≤ m ≤ n− 1) we define

∇[φ(∆xm)] = φ(∆xm)− φ(∆xm−1), (1 ≤ m ≤ n− 1).

Discrete vector p-Laplacian generated by the homeomorphism

hp: RN → RN , x 7→ |x|p−2x (p > 1),

and the relativistic discrete operator generated by

φ:B(1) ⊂ RN → RN , x → x√
1− |x|2

.

are important special cases. Here and in what follows | · | denotes the Euclidean
norm generated by the Euclidean scalar product ( · | · ).

In the p-Laplacian case (φ = hp), our main results (Theorems 2.4 and 2.8) are
discrete versions of some interesting results from [5] (see also [4]). It is worth to
point out that the main tool used in [5] is the Leray–Schauder a priori estimation
method applied to some fixed point operators acting in the Sobolev space W 1,p.
In the discrete case, we use a different strategy based on the main properties
of the Brouwer degree: the homotopy invariance, existence property, Borsuk’s
theorem. Note also that Corollary 2.5 is a discrete version of [6, Theorem 7.1].
For interesting applications of Brouwer degree to nonlinear difference equations
the reader can consult [8].

In the singular case (a < ∞) our main result (Theorem 3.4) is a discrete
version of [1, Theorem 5] and the particular case N = 1 and A = 0 = B is
considered in [2].

If Ω ⊂ X is an open subset of a finite dimensional normed space X, x0 ∈ X

and S: Ω → X is a continuous function such that x0 /∈ S(∂Ω), then dB [S, Ω, x0]
denotes the Brouwer degree of S with respect to Ω and x0. For the definition
and properties of the Brouwer degree see [3], [7].

2. The p-Laplacian case

Dirichlet boundary value problems. Let fm: RN → RN be a continu-
ous function (1 ≤ m ≤ n − 1) and consider the following nonlinear Dirichlet
boundary-value problem involving the discrete vector p-Laplacian

(2.1) −∇[hp(∆xm)] = fm(xm) (1 ≤ m ≤ n− 1), x0 = 0 = xn.

First of all notice that the solutions of (2.1) can be seen as the zeros of the
continuous mapping F :V n−1

N → [RN ]n−1 defined by

Fm(x) = ∇[hp(∆xm)] + fm(xm), (1 ≤ m ≤ n− 1),
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where the (n− 1)N -dimensional vector space V n−1
N is defined by

V n−1
N = {x ∈ [RN ]n+1 : x0 = 0 = xn}.

We endow the vector space V n−1
N with the norm || · ||p defined by

||x||p =
[ n−1∑

m=1

|xm|p
]1/p

, (x ∈ V n−1
N ).

On the other hand, the mapping || · ||p,∆ defined by

||(x0, . . . , xn)||p,∆ =
[ n−1∑

m=0

|∆xm|p
]1/p

, ((x0, . . . , xn) ∈ V n−1
N )

is also a norm on V n−1
N . We introduce the eigenvalue-like constant

(2.2) λ1 = inf



n−1∑
m=0

|∆xm|p

n−1∑
m=1

|xm|p
: (x0, . . . , xn) ∈ [RN ]n+1 \ {0}, x0 = 0 = xn

 .

In the next Lemma we prove that the constant λ1 is strictly positive and we
obtain a Poincaré type inequality.

Lemma 2.1. The constant λ1 defined in (2.2) is strictly positive and

(2.3) λ1||x||pp ≤ ||x||
p
p,∆ for all x ∈ V n−1

N .

Proof. From the definition of λ1 it follows that

λ1 = inf{||x||pp,∆ : x ∈ V n−1
N , ||x||p = 1},

and using that || · ||p and || · ||p,∆ are norms on V n−1
N it follows that there exist

x ∈ V n−1
N such that ||x||p = 1 and λ1 = ||x||pp,∆. Hence, λ1 > 0 and (2.3) follows

immediately from the definition of λ1. �

In the next Lemma we prove a summation by parts type formula for vectors
belonging to V n−1

N .

Lemma 2.2. We have that

(2.4) −
n−1∑
m=1

(xm | ∇[hp(∆xm)]) =
n−1∑
m=0

|∆xm|p for all (x0, . . . , xn) ∈ V n−1
N .

Proof. Let (x0, . . . , xn) ∈ V n−1
N be fixed. For all 1 ≤ m ≤ n − 1 we have

that

(xm | ∇[hp(∆xm)]) = |∆xm|p−2(xm | xm+1) + |∆xm−1|p−2(xm−1|xm)

− |∆xm|p−2|xm|2 − |∆xm−1|p−2|xm|2.
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On the other hand, for all 0 ≤ m ≤ n− 1 we have that

|∆xm|p = |∆xm|p−2[|xm|2 − 2(xm | xm+1) + |xm+1|2].

It follows that

n−1∑
m=1

(xm | ∇[hp(∆xm)])

=
n−1∑
m=1

[|∆xm|p−2(xm | xm+1) + |∆xm−1|p−2(xm−1 | xm)]

−
n−1∑
m=1

[|∆xm|p−2|xm|2 + |∆xm−1|p−2|xm|2]

=
n−1∑
m=1

|∆xm|p−2(xm | xm+1) +
n−2∑
m=0

|∆xm|p−2(xm | xm+1)

−
n−1∑
m=1

|∆xm|p−2|xm|2 −
n−2∑
m=0

|∆xm|p−2|xm+1|2

=−
n−1∑
m=0

{|∆xm|p−2[|xm|2 − 2(xm|xm+1) + |xm+1|2]} = −
n−1∑
m=0

|∆xm|p,

and the proof is completed. �

Now, we consider the homotopy F : [0, 1]× V n−1
N → [RN ]n−1 defined by

Fm(x) = ∇[hp(∆xm)] + λfm(xm), (1 ≤ m ≤ n− 1).

Notice that F(1, · ) = F and F(0, · ) is the discrete vector p-Laplacian operator,
which is odd. On the other hand for λ ∈ [0, 1] one has that x ∈ V n−1

N is a zero
of F(λ, · ) if and only if x is a solution of the Dirichlet boundary-value problem

(2.5) −∇[hp(∆xm)] = λfm(xm) (1 ≤ m ≤ n− 1), x0 = 0 = xn.

In the next Lemma we obtain a priori estimations for the possible zeros of F .

Lemma 2.3. If

(2.6) lim sup
|x|→∞

(x|fm(x))
|x|p

< λ1 for all 1 ≤ m ≤ n− 1,

holds, then there exists ρ > 0 such that any possible zero (λ, x) of F satisfies
||x||p < ρ.

Proof. Let (λ, x) ∈ [0, 1]× V n−1
N be such that F(λ, x) = 0. It follows that

x = (x0, . . . , xn) is a solution of (2.5). Multiplying (2.5) by xm, summing from
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1 to n− 1 and using Lemma 2.2 it follows that

(2.7)
n−1∑
m=0

|∆xm|p = λ
n−1∑
m=1

(xm | fm(xm)).

Using (2.6) and the continuity of fm it follows that there exists σ ∈ (0, λ1) and
k1 > 0 such that

(2.8) (y | fm(y)) ≤ σ|y|p + k1 for all y ∈ RN , 1 ≤ m ≤ n− 1.

From (2.3), (2.7) and (2.8) we deduce that

λ1||x||pp ≤ σ||x||pp + (n− 1)k1.

Hence, using that σ ∈ (0, λ1) and p > 1 it follows that there exists ρ > 0 such
that ||x||p < ρ. �

Theorem 2.4. If (2.6) holds, then (2.1) has at least one solution.

Proof. Using Lemma 2.3 and the invariance of the Brouwer degree under
homotopy it follows that

(2.9) dB [F(1, · ), B(ρ), 0] = dB [F(0, · ), B(ρ), 0].

On the other hand F(0, · ) is odd, so the Borsuk theorem implies that

dB [F(0, · ), B(ρ), 0] 6= 0,

which together with (2.9) imply that

dB [F(1, · ), B(ρ), 0] 6= 0.

Hence, using the existence property of the Brouwer degree, we deduce that
F(1, · ) has at least one zero which is also a solution of (2.1). �

An immediate consequence is the following

Corollary 2.5. Let Am (1 ≤ m ≤ n − 1) be a N × N -matrix. If there
exists σ ∈ (0, λ1) and R > 0 such that

(x | Amx) ≤ σ|x|2 for all |x| ≥ R, 1 ≤ m ≤ n− 1,

then the Dirichlet boundary-value problem

−∇[hp(∆xm)] = Am[hp(xm)] + lm (1 ≤ m ≤ n− 1), x0 = 0 = xn

has at least one solution for any (l1, . . . , ln−1) ∈ [RN ]n−1.
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Periodic boundary value problems. Let fm: RN → RN be a continuous
function satisfying

(2.10) lim sup
|x|→∞

(x|fm(x))
|x|p

< 0 (1 ≤ m ≤ n− 1),

and consider the following nonlinear periodic boundary-value problem involving
the discrete vector p-Laplacian

(2.11) −∇[hp(∆xm)] = fm(xm) (1 ≤ m ≤ n− 1), x0 = xn, ∆x0 = ∆xn−1.

Note that, from (2.10) it follows that there exists σ1 ∈ (0, 1) and σ2 > 0 such
that

(2.12) (x | fm(x)) ≤ −σ1|x|p + σ2 for all x ∈ RN (1 ≤ m ≤ n− 1),

and that the solutions of (2.11) can be seen as the zeros of the continuous map-
ping F :Un−1

N → [RN ]n−1 defined by

Fm(x) = ∇[hp(∆xm)] + fm(xm), (1 ≤ m ≤ n− 1),

where the (n− 1)N -dimensional vector space Un−1
N is defined by

Un−1
N ={(x0, . . . , xn) ∈ [RN ]n+1 : x0 = xn, ∆x0 = ∆xn−1}

={(x0, . . . , xn) ∈ [RN ]n+1 : x0 = (x1 + xn−1)/2 = xn}.

We endow the vector space Un−1
N with the norm || · ||p.

Lemma 2.6. If (x0, . . . , xn) ∈ Un−1
N , then

n−1∑
m=1

(∇[hp(∆xm)]|xm) ≤ 0.

Proof. One has that
n−1∑
m=1

(∇[hp(∆xm)]|xm)

= (hp(∆x1)− hp(∆x0)|x1) + . . . + (hp(∆xn−1)− hp(∆xn−2)|xn−1)

=(hp(∆x1)|x1)− (hp(∆x0)|x1) + (hp(∆x2)|x2)− (hp(∆x1)|x2) + . . .

+ (hp(∆xn−1)|xn−1)− (hp(∆xn−2)|xn−1)

=− (hp(∆x0)|x1)− (hp(∆x1)|∆x1)− . . .

− (hp(∆xn−2)|∆xn−2) + (hp(∆xn−1)|xn−1)

=−
n−2∑
m=1

|∆xm|p −
|∆xn−1|p−2|xn−1 − x1|2

2
≤ 0.

�
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Lemma 2.7. If L:Un−1
N → [RN ]n−1 is the odd continuous function defined

by

Lm(x) = ∇[hp(∆xm)]− hp(xm), (1 ≤ m ≤ n− 1),

then dB [L,B(ρ), 0] 6= 0 for all ρ > 0.

Proof. Assume that (x0, . . . , xn) solves the problem

L(x0, . . . , xn) = 0, (x0, . . . xn) ∈ Un−1
N .

It follows that

n−1∑
m=1

{(∇[hp(∆xm)]|xm)− (hp(xm)|xm))} = 0.

Using Lemma 2.6 we deduce that

n−1∑
m=1

|xm|p =
n−1∑
m=1

(∇[hp(∆xm)]|xm) ≤ 0,

and x0 = . . . = xn = 0. Now the result follows from Borsuk’s theorem. �

Theorem 2.8. If (2.10) holds, then (2.11) has at least one solution.

Proof. Let H: [0, 1]× Un−1
N → [RN ]n−1 be the homotopy

Hm(x) = ∇[hp(∆xm)] + λfm(xm)− (1− λ)hp(xm) (1 ≤ m ≤ n− 1).

It is clear that

H(0, · ) = L, H(1, · ) = F.

Let also (λ, x) ∈ [0, 1] × Un−1
N be such that H(λ, x) = 0. Using (2.12) and

Lemma 2.6 we deduce that

0 ≤ λ

n−1∑
m=1

(xm|fm(xm))− (1− λ)||x||pp

≤ −λσ1||x||pp + (n− 1)σ2 − (1− λ)||x||pp.

Hence, ||x||p < ρ for any ρ > ((n − 1)σ2/σ1)1/p. Using Lemma 2.7 and the
invariance under homotopy of the Brouwer degree, it follows that

dB [F,B(ρ), 0] = dB [L,B(ρ), 0], dB [F,B(ρ), 0] 6= 0,

for ρ > ((n − 1)σ2/σ1)1/p. Then, using the existence property of the Brouwer
degree it follows that F has a zero which is also a solution of (2.11). �
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Neumann boundary value problems. Let fm: RN → RN (1≤m≤n−1)
be a continuous function satisfying (2.10) and consider the following nonlinear
Neumann boundary-value problem involving the discrete vector p-Laplacian

(2.13) −∇[hp(∆xm)] = fm(xm) (1 ≤ m ≤ n− 1), ∆x0 = 0 = ∆xn−1.

Using the same strategy like in he periodic case one can prove that (2.13) has at
least one solution.

3. The φ-Laplacian case with singular φ

Let n, N be positive integers, a > 0, φ:B(a) ⊂ RN → RN be a homeo-
morphism such that φ(0) = 0; we call it singular. The space [RN ]n+1 will be
endowed we the norm

||x||∞ =
n∑

m=0

|xm| (x ∈ [RN ]n+1).

Nonhomogeneous Neumann boundary value problems. Let A and B

in RN be fixed.

Lemma 3.1. Let l1, . . . , ln−1 ∈ RN . Forced problem

(3.1) ∇[φ(∆xm)] = lm (1 ≤ m ≤ n− 1), φ(∆x0) = A, φ(∆xn−1) = B

is solvable if and only if

(3.2)
n−1∑
m=1

lm = B −A.

In this case the general solution (x0, . . . , xn) is given by

x0 ∈ RN ,

x1 = x0 + φ−1(A),

xm = x0 + φ−1(A) +
m−1∑
j=1

φ−1

(
A +

j∑
k=1

lk

)
(2 ≤ m ≤ n− 1),

xn = x0 + φ−1(A) + φ−1(B) +
n−2∑
j=1

φ−1

(
A +

j∑
k=1

lk

)
.

Proof. The proof follows by s simple computation and is left to the reader.�

Let gm: RN × RN → RN (1 ≤ m ≤ n − 1) be continuous and consider
nonhomogeneous Neumann boundary value problem

(3.3)
∇[φ(∆xm)] = gm(xm,∆xm) (1 ≤ m ≤ n− 1),

φ(∆x0) = A, φ(∆xn−1) = B.
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Let Q: [RN ]n−1 → RN be defined by

Q(l) =
1

n− 1

n−1∑
m=1

lm.

It is clear that (3.3) can be written in the equivalent form

(3.4)
∇[φ(∆xm)] = gm(xm,∆xm)−Q[s(xm,∆xm)] (1 ≤ m ≤ n− 1),

φ(∆x0) = A, φ(∆xn−1) = B,

and

(3.5) Q[s(xm,∆xm)] = 0,

where

(3.6) sm(xm,∆xm) = gm(xm,∆xm)− 1
n− 1

(B −A) (1 ≤ m ≤ n− 1).

Now, we reformulate (3.4), (3.5) as a fixed point problem. Consider the operator

M : [RN ]n+1 → [RN ]n+1, M(x) = y,

y0 =x0 + Q(s),

y1 =x0 + Q(s) + φ−1(A),

ym =x0 + Q(s) + φ−1(A) +
m−1∑
j=1

φ−1

(
A +

j∑
k=1

lk

)
(2 ≤ m ≤ n− 1),

yn =x0 + Q(s) + φ−1(A) + φ−1(B) +
n−2∑
j=1

φ−1

(
A +

j∑
k=1

lk

)
,

where s is given in (3.6) and

(3.7) lm = gm(xm,∆xm)−Q(s) (1 ≤ m ≤ n− 1).

Then, using Lemma 3.1 one has the following

Lemma 3.2. The vector x ∈ [RN ]n+1 is a solution of (3.3) if and only if
M(x) = x.

In order to prove that M has at least one fixed point, we define the homotopy

M: [0, 1]× [RN ]n+1 → [RN ]n+1, M(λ, x) = y,

y0 =x0 + Q(s),

y1 =x0 + Q(s) + φ−1(λA),

ym =x0 + Q(s) + φ−1(λA) +
m−1∑
j=1

φ−1

(
λ

[
A +

j∑
k=1

lk

])
(2 ≤ m ≤ n− 1),

yn =x0 + Q(s) + φ−1(λA) + φ−1(λB) +
n−2∑
j=1

φ−1

(
λ

[
A +

j∑
k=1

lk

])
,
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where s and l are defined in (3.6), (3.7) respectively. Note that M(1, · ) = M .
We introduce the following assumption:

(Hg,A,B) There exists R > 0 such that

n−1∑
m=1

gm(xm,∆xm) 6= B −A,

for all x ∈ [RN ]n+1 satisfying

min
0≤m≤n

|xm| ≥ R and max
0≤m≤n−1

|∆xm| < a.

Lemma 3.3. Assume that (Hg,A,B) holds. If (λ, x) ∈ [0, 1]× [RN ]n+1 is such
that x = M(λ, x), then

||x||∞ < R + na.

Proof. Let (λ, x) ∈ [0, 1] × [RN ]n+1 be such that x = M(λ, x). It follows
that

max
0≤m≤n−1

|∆xm| < a,

and
n−1∑
m=1

gm(xm,∆xm) = B −A,

implying that
min

0≤m≤n
|xm| < R.

Hence, using that

|xm| ≤ min
0≤m≤n

|xm|+
n−1∑
j=0

|∆xj | (0 ≤ m ≤ n),

we get the result. �

Consider the continuous function

γ: RN → RN , c 7→
n−1∑
m=1

gm(c, 0).

Theorem 3.4. If assumption (Hg,A,B) holds, then for all sufficiently large
ρ > 0,

dB [I −M(1, · ), B(ρ), 0] = (−1)NdB [γ, B(R), B −A].

If furthermore
dB [γ, B(R), B −A] 6= 0,

then (3.3) has at least one solution.

Proof. Note that, from assumption (Hg,A,B) it follows that γ(c) 6= B − A

for all |c| ≥ R, which implies that the Brouwer degree dB [γ, B(R), B − A] is
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well defined. On the other hand, taking ρ > R + na, using Lemma 3.3 and the
homotopy invariance of Brouwer degree, we get that

dB [I −M(1, · ), B(ρ), 0] = dB [I −M(0, · ), B(ρ), 0].

But, the range of M(0, · ) is isomorphic to RN . Actually,

Mm(0, x) = x0 + Q(s)(x) (0 ≤ m ≤ n)

where s is given in (3.6). Hence, using the reduction and excision properties of
the Brouwer degree we have

dB [I −M(0, · ), B(ρ), 0] = dB [I −M(0, · )|RN , B(ρ), 0]

= (−1)NdB [γ, B(R), B −A].

Now, the result follows from the existence property of the Brouwer degree. �

An immediate consequence of Theorem 3.4 is the following

Corollary 3.5. Assume that there exists ε ∈ {−1, 1} and R > 0 such that

ε(gm(x + y, z)− (n− 1)−1(B −A)|x) > 0

for all 1 ≤ m ≤ n− 1, |x| ≥ R, |y| < na and |z| < a, then (3.3) has at least one
solution.

Remark 3.6. Similar considerations hold also for Dirichlet and periodic
boundary value problems. In these cases, in order to construct the associated
fixed point operators (see [2] for N = 1), φ must be of gradient type like in [1].
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