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EXISTENCE OF SOLUTIONS
FOR SINGULARLY PERTURBED HAMILTONIAN ELLIPTIC

SYSTEMS WITH NONLOCAL NONLINEARITIES

Minbo Yang — Yuanhong Wei

Abstract. In the present paper we study singularly perturbed Hamilto-
nian elliptic systems with nonlocal nonlinearities

8>>><
>>>:

−ε2∆u + V (x)u =

�Z
RN

|z|p

|x− y|µ
dy

�
|z|p−2u,

−ε2∆v + V (x)v = −
�Z

RN

|z|p

|x− y|µ
dy

�
|z|p−2v,

where z = (u, v) ∈ H1(RN , R2), V (x) is a continuous real function on RN ,

0 < µ < N and 2 − µ/N < p < (2N − µ)/(N − 2). Under suitable as-

sumptions on the potential V (x), we can prove the existence of solutions
for small parameter ε by variational methods. Moreover, if N > 2 and

2 + (2− µ)/(N − 2) < p < (2N − µ)/(N − 2) then the solutions zε → 0 as

the parameter ε → 0.

1. Introduction and main results

As we all know the nonlinear Schrödinger equation

(1.1) i~
∂φ

∂t
= − ~2

2m
∆φ + W (x)φ− f(x, |φ|)φ
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has been given huge attention during the last twenty years. Here m is the mass
of the bosons, ~ is the Planck constant and W (x) is the external potential. The
nonlinearity f(x, |φ|)φ is used to describe the interactions between the parti-
cles. In many physical applications, nonlocal Hartree type nonlinearities appear
naturally, i.e.

f(x, |φ|)φ =
( ∫

RN

K(x− y)|φ|p dy

)
|φ|p−2φ,

K(x) is usually called the response function which appears naturally in the
propagation of electromagnetic waves in plasmas [11] and accounts for the finite-
range many-body interaction in the theory of Bose–Einstein condensation [14].

In recent years many people are interested in the existence of standing waves
of (1.1), i.e. solutions of the form

φ(x, t) = u(x)e−iEt/~.

With this ansatz, the Schrödinger equation can be reduced to a semilinear elliptic
equation. There are a large number of literature considering the existence and
multiplicity of nontrivial solutions for the semilinear elliptic equation

(1.2) −ε2∆u + V (x)u =
( ∫

RN

K(x− y)|u(y)|p dy

)
|u|p−2u.

In general, if the response function K(x) is the delta function, then the equation
(1.2) becomes a local one

(1.3) −ε2∆u + V (x)u = |u|2p−2u, x ∈ RN .

As we all know the property of the potential affects the existence of solutions for
problem (1.3) greatly. Assuming that V (x) satisfying inf V (x) > 0 is a glo-
bally bounded potential with a nondegenerate critical point, Floer and We-
instein [23] studied firstly the existence of single and multiple spike solutions
based on a Lyapunov–Schmidt reduction. Since then, many mathematicians are
interested in the existence and the concentration of equation (1.3) under vari-
ous assumptions on the potential V (x). In [6] Ambrosetti et. al. studied the
problem with polynomial degenerate potential V (x). In [28], still assuming that
inf V (x) > 0, Rabinowitz proved the existence of a positive ground state for any
ε > 0 by further assuming that

(1.4) 0 < a ≤ V (x) ≤ lim inf V (x), for all x ∈ RN and some a > 0,

with strict inequality on a set of positive measure. Using a local variational ap-
proach, del Pino and Felmer [17]–[19] constructed positive solutions by assuming
Λ ⊂ R3 is a bounded open set such that

V0 := inf
x∈Λ

V (x) < inf
x∈∂Λ

V (x).
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Then if inf V (x) > 0 there also exists a positive semiclassical solution. We also
refer authors to [13] for the case inf V (x) = 0 and [22] for the case where the
potential V (x) was allowed to change sign.

If the response function K(x) is a function of Coulomb type, for example
1/|x|, then we arrive at the nonlocal Schrödinger equation

(1.5) −ε2∆u + V (x)u =
( ∫

RN

u2(y)
|x− y|

dy

)
u.

If ε = 1, assuming 0 is not in the spectrum of−∆+V (x) where the potential V (x)
is periodic in x, Buffoni et. al. firstly obtained the existence of one nontrivial
solution in [12]. Ackermann [1] proposed an approach to prove the existence
of infinitely many geometrically distinct weak solutions. However there is few
works about the existence of semiclassical solutions for equation (1.5), since little
is known about the ground states of the corresponding autonomous limit problem

(1.6) −∆u + u =
( ∫

RN

u2(y)
|x− y|

dy

)
u.

Recently Wei and Winter [33] proved the non-degeneracy property of the ground
state solution of (1.6), and then they studied the existence of multi-bump so-
lutions for equation (1.5) under the assumptions that inf V (x) > 0 and V (x) ∈
C2(R3).

On the other hand, Schrödinger systems of Hamiltonian type have been also
widely considered, see [24], [15], [16], [29], [30], [32] for example. Many works
also consider the singularly perturbed Hamiltonian systems

(1.7)

{
−ε2∆u + V (x)u = |v|p−1v in RN ,

−ε2∆v + W (x)v = |u|q−1u in RN .

In [8], Ávila and Yang established existence results for strongly indefinite elliptic
systems with Neumann boundary condition, and they studied the limiting be-
havior of the positive solutions of the singularly perturbed Hamiltonian problem.
In [5], Alves et. al. established the existence and concentration behavior for the
singularly perturbed Hamiltonian systems

(1.8)

{
−ε2∆u + u = W1(x)|v|p−1v in RN ,

−ε2∆v + v = W2(x)|u|q−1u in RN .

In [4], Alves and Soares studied the existence and concentration behavior for
a class of the singularly perturbed gradient systems. Existence problems for
radially invariant Hamiltonian systems were also studied by de Figueiredo and
Yang [16], and Sirakov [30]. For systems with general nonlinearities, Alves and
Soares [3] obtained solutions of (1.7) by using the Legendre–Fenchel transforma-
tions and the Mountain Pass Theorem. Existence results for (1.7) with general
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nonlinearities were also obtained in [29] by assuming that V (x) = W (x) and (1.4)
while the growth of the nonlinearities satisfying

1
p

+
1
q

>
N − 2

N
.

In [32] Sirakov and Soares considered trapping (or “well”-type) potentials, there
the authors obtained the existence of solution for small ε by using the Legendre–
Fenchel transformation and Fourier analysis methods.

Inspired by the works mentioned above, the aim of this paper is to study the
existence of solutions of the perturbed Hamiltonian elliptic systems under the
effects of the nonlocal nonlinearities and trapping type potentials

(1.9)


−ε2∆u + V (x)u =

( ∫
RN

|z|p

|x− y|µ
dy

)
|z|p−2u,

−ε2∆v + V (x)v = −
( ∫

RN

|z|p

|x− y|µ
dy

)
|z|p−2v.

Here z = (u, v) ∈ H1(RN , R2), the potential V (x) is a continuous real function
on RN , 0 < µ < N and 2 − µ/N < p < (2N − µ)/(N − 2). Under suitable
assumptions on the potential V (x) we prove that, for small ε, there is at least
one nontrivial solution zε for (1.9). Moreover, zε → 0 as ε → 0 if the exponent
p is in a suitable range. Set

Sz =
(
−ε2∆u + V (x)u

ε2∆v − V (x)v

)
and

Ψ(z) =
1
2p

( ∫
RN

|z|p

|x− y|µ
dy

)
|z|p,

the systems (1.9) can be restated in the form

(1.10) Sz = Ψz(z), z ∈ H1(RN , R2).

To establish the existence results, we assume that the potential V (x) satisfies

(P1) V (x) ∈ C(R3) and there is b > 0 such that the set Vb := {x ∈ RN :
V (x) < b} has finite Lebesgue measure.

(P2) 0 = V (0) = minV ≤ V (x).
(P3) There exists 0 < τ < 1/2 such that

lim
|x|→0

V (x)
|x|(1−2τ)/τ

= 0.

The assumptions (P1) and (P2) are introduced in [31] by Sirakov, the standard
example is b(x) ∼ |x− x0|2 in a neighbourhood of some x0 ∈ RN . A particular
example satisfying (P1) and (P2) is

0 = inf
x∈RN

V (x) < lim inf
|x|→∞

V (x),
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which means the potential is a “well” type one. The main results of this paper
are

Theorem 1.1. Let (P1)–(P3) satisfied. Then for any σ > 0 there is Eσ > 0
such that if ε ≤ Eσ, equation (1.9) has at least one solution zε satisfying∫

RN

∫
RN

|zε(x)|p|zε(y)|p

|x− y|µ
dy dx ≤ σε((N−2)p−2N+µ+2)/(p−1)

and
‖zε‖2 ≤ ε((4−N)p+2N−µ−4)/(p−1).

Moreover, if N > 2 and 2 + (2− µ)/(N − 2) < p < (2N − µ)/(N − 2) we have
zε → 0 in H1(RN , R2) as ε → 0.

Remark 1.2. We need remark that the behavior of the potential plays an
important role in proving the main results and we believe it can not be applied
to the case V (0) > 0.

We first note that there is no compactness for the Sobolev imbedding, since
the problem is set in RN . Second, the systems of Hamiltonian type is quite
different from the Lagrangian type systems in the sense that the energy func-
tion associated to a Lagrangian system possesses the “mountain-pass” geometry,
while the energy function associated to the Hamiltonian type systems is strongly
indefinite without such a geometry, that is, the leading part the energy functional
is respectively coercive and anti-coercive on infinitely dimensional subspaces of
the energy space, thus the classical critical point theory cannot be applied di-
rectly.

This paper is organized as follows. In Section 2, we introduce the variational
framework and restate the problems in equivalent forms. In Section 3, we will
analysis the behaviors of the bounded (PS)c sequences. In Section 4, we will
prove the existence of semiclassical solutions for the Hamiltonian system (1.10).

2. Notations and variational framework

In this paper we use C, Ci to denote different positive constants and BR

the open ball centered at the origin with radius R > 0. C∞
0 (RN ) denotes func-

tions infinitely differentiable with compact support in RN . H1(RN ) is the usual
Sobolev spaces with norm

‖u‖H1 :=
( ∫

RN

(|∇u|2 + |u|2) dx

)1/2

and Ls(RN ), 1 ≤ s < ∞, denotes the Lebesgue space with the norms

|u|s :=
( ∫

RN

|u|s dx

)1/s

.
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Let 2∗ = 2N/(N − 2), the best Sobolev constant S is defined by:

S|u|22∗ ≤
∫

RN

|∇u|2 dx for all u ∈ H1(RN ).

The following inequality will be frequently used to study the nonlocal problems.

Proposition 2.1 (Hardy–Littlewood–Sobolev inequality). Let p, r > 1 and
0 < µ < N with 1/p + µ/N + 1/r = 2. Let f ∈ Lp(RN ) and h ∈ Lr(RN ), then
there exists a sharp constant C(p, µ, r), independent of f , h, such that∫

RN

∫
RN

f(x)h(y)
|x− y|µ

dy dx ≤ C(p, µ, r)|f |p|h|r.

To prove the existence of semiclassical solutions of (1.10) for small ε, we may
rewrite (1.10) in an equivalent form, let λ = ε−2, (1.9) reads then as

(2.1)


−∆u + λV (x)u = λ

( ∫
RN

|z|p

|x− y|µ
dy

)
|z|p−2u,

−∆v + λV (x)v = −λ

( ∫
RN

|z|p
|x−y|µ dy

)
|z|p−2v

for λ →∞. And then the existence results can be restated as

Theorem 2.2. Let (P1)–(P3) satisfied. Then for any σ > 0 there is Λσ > 0
such that if λ ≥ Λδ, equation (2.1) has at least one solution zλ satisfying∫

RN

∫
RN

|zλ(x)|p|zλ(y)|p

|x− y|µ
dy dx ≤ 2p

p− 1
σλ−((N−2)p−2N+µ+2)/(2(p−1))

and
‖zλ‖2λ ≤

2p

p− 1
σλ−((4−N)p+2N−µ−4)/(2(p−1)).

Moreover, if N > 2 and 2 + (2− µ)/(N − 2) < p < (2N − µ)/(N − 2) then we
have zλ → 0 as λ →∞.

To solve the problem we will apply variational methods. To this end, we
introduce the Hilbert spaces

E :=
{

u ∈ H1(RN ) :
∫

RN

V (x)u2 dx < ∞
}

with inner products

(u, v) :=
∫

RN

(∇u∇v + V (x)uv) dx

and the associated norms ‖u‖2 = (u, u).
Obviously, it follows from (P1) that E embeds continuously in H1(RN ) (see

[21], [31]). Note that the norm ‖ · ‖ is equivalent to ‖ · ‖λ deduced by the inner
product

(u, v)λ :=
∫

RN

(∇u∇v + λV (x)uv) dx
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for each λ > 0. It is thus clear that, for each s ∈ [2, 2∗], there is νs > 0
(independent of λ) such that if λ ≥ 1 then

(2.2) |u|s ≤ νs‖u‖ ≤ νs‖u‖λ for all u ∈ E.

In order to investigate the problems in suitable variational framework, we
use Aλ := −∆ + λV in L2(RN ) to denote the selfadjoint operator related to the
Schrödinger equation. By σ(Aλ), σe(Aλ) and σd(Aλ) we denote the spectrum,
the essential spectrum and the eigenvalues of Ai,λ below λe := inf σe(Aλ), re-
spectively. Note that each µ ∈ σd(Aλ) is of finite multiplicity. The following two
lemmas are proved in [22], we sketch the proofs here for the completeness of the
paper.

Lemma 2.3 ([22]). Suppose that the condition (P1) is satisfied, then there
holds λe ≥ λb.

Proof. Set Wλ(x) = λ(V (x) − b),W±
λ = max{±Wλ, 0} and Dλ = −∆ +

λb + W+
λ . By (P1), the multiplicity operator W−

λ is compact relative to Dλ,
hence σe(Aλ) ⊂ σe(Dλ) ⊂ [λb,∞). �

Fix in the following a number b′ that is close to b with 0 < b′ < b and kλ be
the numbers of the eigenvalues of Aλ which is smaller than λb′. We write ηλ,j

and hλ,j (1 ≤ j ≤ kλ) for the eigenvalues and eigenfunctions and define

Ld
λ = span {hλ,1, . . . , hλ,kλ

}.

We will also use the following orthogonal decomposition

L2(RN ) = Ld
λ ⊕ Le

λ, u = ud + ue.

Correspondingly, one has

(2.3) E = Ed
λ ⊕ Ee

λ with Ed
λ = Ld

λ ∩ E and Ee
λ = Le

λ ∩ E

orthogonal with respect to ( · , · )L2 and ( · , · )λ. From Lemma 2.3, we have

(2.4) λb′|u|22 ≤ ‖u‖2λ for all u ∈ Ee
λ.

Lemma 2.4 ([22]). For each s ∈ [2, 2∗], there is cs > 0 independent of λ such
that

csλ
(2∗−s)/(2∗−2)|u|ss ≤ ‖u‖s

λ for all u ∈ Ee
λ.

Proof. For s ∈ (2, 2∗), by Sobolev inequality and (2.4), there holds

|u|ss ≤
( ∫

RN

|u|2 dx

)(2∗−s)/(2∗−2)( ∫
RN

|u|2
∗
dx

)(s−2)/(2∗−2)

≤ ((b′λ)−1‖u‖2λ)(2∗−s)/(2∗−2)(S−1‖u‖2∗λ )(s−2)/(2∗−2)

for all u ∈ Ee
λ, thus the conclusion follows. �
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Now let H = E × E and

Iλ(z) =
1
2
‖u‖2λ −

1
2
‖v‖2λ −

λ

2p

∫
RN

∫
RN

|z(x)|p|z(y)|p

|x− y|µ
dy dx

for z = (u, v) ∈ H. Since 0 < µ < N and 2 − µ/N < p < (2N − µ)/(N − 2),
from Proposition 2.1, we know the energy functional Iλ(z) is well defined and
belongs to C1(H, R). Consequently, in order to obtain solutions of system (2.1),
we only need to look for critical points of the energy functional Iλ(z). However,
the functional Iλ is respectively coercive and anti-coercive on H+ and H− where

H+ = {z = (u, 0) ∈ H : u ∈ E}, H− = {z = (0, v) ∈ H : v ∈ E}

and H = H+ ⊕H−. So dim H± = ∞ and each z ∈ H may be represented as

z = z+ + z− = (u, 0) + (0, v) where z± ∈ H±.

Hence we can write

Iλ(z) =
1
2
‖z+‖2λ −

1
2
‖z−‖2λ −

λ

2p

∫
RN

∫
RN

|z(x)|p|z(y)|p

|x− y|µ
dy dx

with the norm on H defined by ‖z‖2λ = ‖u‖2λ + ‖v‖2λ for z = (u, v) ∈ H. On H

there is the orthogonal decomposition

(2.5) H = Hd
λ ⊕He

λ where Hd
λ = Ed

λ × Ed
λ and He

λ = Ee
λ × Ee

λ.

Note that dim Hd
λ < ∞. Accordingly, we write z = zd + ze for z = (u, v) ∈ H

with zd = (ud, vd) and ze = (ue, ve). It follows from Lemma 2.4 that for each
s ∈ [2, 2∗],

csλ
(2∗−s)/(2∗−2)|z|ss ≤ ‖z‖s

λ for all z = (u, v) ∈ He
λ,

where cs is a constant independent of λ.
To prove the existence of solutions for system (2.1), we introduce the fol-

lowing generalized linking theorem for strongly indefinite problems developed by
Bartsch and Ding [9].

Let E be a Banach space with direct sum decomposition E = Y ⊕ X and
corresponding projections PY , PX onto Y , X, respectively. For a functional
I ∈ C1(E, R) we write Ia = {z ∈ E : I(z) ≥ a}, Ib = {z ∈ E : I(z) ≤ b} and
Ib
a = Ia ∩ Ib. Recall that a sequence (zn) ⊂ E is said to be a (PS)c sequence

if I(zn) → c and I ′(zn) → 0. I is said to satisfy the (PS) condition at c if any
(PS)c sequence has a convergent subsequence.

From now on we assume that X is separable and reflexive, and we fix a dense
subset S ⊂ X∗. For each s ∈ S there is a semi-norm on E defined by

ps:E → R, ps(z) = ‖y‖+ |s(x)| for z = y + x ∈ Y ⊕X.

We denote by TS the induced topology. Let w∗ denote the weak*-topology on E∗.
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Suppose:

(I1) For any c ∈ R, Ic is TS -closed, and I ′: (Ic, TS) → (E∗, w∗) is continuous.
(I2) There exists ρ > 0 with κ := inf I(SρY ) > 0 where SρY := {z ∈ Y :

‖z‖ = ρ}.

The following theorem is a special case of the Theorem 4.2 of [20] (see also [9]).

Theorem 2.5. Let (I1)–(I2) satisfied and suppose there are R > ρ > 0 and
e ∈ Y with ‖e‖ = 1 such that sup I(∂Q) ≤ κ where Q={z = te+x : t≥0, x∈X,

‖z‖ < R}. Then I has a (PS)c sequence with κ ≤ c ≤ sup I(Q).

In our applications we take S = X∗ so that TS is the product topology on
E = Y ⊕ X given by the strong topology on Y and the weak topology on X.
The hypothesis (I0) follows from the following

Proposition 2.6. Suppose I ∈ C1(E, R) is of the form

I(z) =
1
2
(‖y‖2 − ‖x‖2)−Ψ(z) for z = y + x ∈ E = Y ⊕X

such that

(a) Ψ ∈ C1(E, R) is bounded from below;
(b) Ψ: (E, Tw) → R is sequentially lower semicontinuous, that is, zn ⇀ z in

E implies Ψ(z) ≤ lim inf Ψ(zn);
(c) Ψ′: (E, Tw) → (E∗, Tw∗) is sequentially continuous;
(d) ν:E → R, ν(z) = ‖z‖2, is C1 and ν′: (E, Tw) → (E∗, Tw∗) is sequentially

continuous.

Then I satisfies (I1).

A proof can be found in [9], Proposition 4.1.

3. Behaviors of the (PS) sequences

In this section we will analysis the behaviors of the (PS) sequences of the
functional Iλ.

Lemma 3.1. Suppose that the condition (P1) is satisfied. For fixed λ ≥ 1,
let (zn) be a (PS)c sequence for Iλ. Then c ≥ 0 and (zn) is bounded in H.

Proof. Let zn = (un, vn) be a (PS)c sequence:

Iλ(zn) → c and I ′λ(zn) → 0,

then

Iλ(zn)− 1
2
(I ′λ(zn), zn) =

(
1
2
− 1

2p

)
λ

∫
RN

∫
RN

|zn(x)|p|zn(y)|p

|x− y|µ
dy dx.
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Noting that zn = (un, vn), we have z+
n−z−n = (un,−vn) and then |z+

n−z−n | = |zn|.
Consequently, from the definition of Iλ, we have

‖zn‖2λ =(I ′λ(zn), z+
n − z−n )

+ λ

∫
RN

∫
RN

|zn(x)|p−2zn(x)(z+
n − z−n )(x)|zn(y)|p

|x− y|µ
dy dx

≤λ

∫
RN

∫
RN

|zn(x)|p|zn(y)|p

|x− y|µ
dy dx + o(1)‖zn‖λ

≤C0

(
Iλ(zn)− 1

2
I ′λ(zn)zn

)
+ o(1)‖zn‖λ,

therefore we must have that (zn) is bounded in H and c ≥ 0. �

Hence, without loss of generality, we may assume zn ⇀z in H and L2(RN, R2),
zn → z in Ls

loc(RN , R2) for 1 ≤ s < 2∗, and zn(x) → z(x) almost everywhere for
x ∈ RN . Clearly z is a critical point of Iλ.

Lemma 3.2. One has along a subsequence:

(a) Iλ(zn − z) → c− Iλ(z);
(b) I ′λ(zn − z) → 0.

Proof. (a) Direct computation shows that

Iλ(zn − z) =
1
2
‖z+

n ‖2λ −
1
2
‖z−n ‖2λ −

1
2
‖z+‖2λ +

1
2
‖z−‖2λ

− λ

2p

∫
RN

∫
RN

|zn(x)− z(x)|p|zn(y)− z(y)|p

|x− y|µ
dy dx + o(1)

= Iλ(zn)− Iλ(z) + Γn + o(1)

where

Γn =
λ

2p

{ ∫
RN

∫
RN

|zn(x)|p|zn(y)|p

|x− y|µ
dy dx

−
∫

RN

∫
RN

|z(x)|p|z(y)|p

|x− y|µ
dy dx

−
∫

RN

∫
RN

|zn(x)− z(x)|p|zn(y)− z(y)|p

|x− y|µ
dy dx

}
.

From the nonlocal Brezis–Lieb type Lemma 3.4 in [1], we know Γn → 0.
(b) For any w = (φ, ϕ) ∈ H with ‖w‖λ ≤ 1, we have

(I ′λ(zn − z), w) =
∫

RN

(∇(un − u)∇φ + λV (x)(un − u)φ) dx

−
∫

RN

(∇(vn − v)∇ϕ + λV (x)(vn − v)ϕ) dx
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− λ

∫
RN

∫
RN

|zn(y)− z(y)|p|zn(x)− z(x)|p−2[(un − u)φ + (vn − v)ϕ](x)
|x− y|µ

dy dx

=(I ′λ(zn), w)− (I ′λ(z), w) + Γ̃n + o(1)

where

Γ̃n =λ

{ ∫
RN

∫
RN

|zn(y)|p|zn(x)|p−2[unφ + vnϕ](x)
|x− y|µ

dy dx

−
∫

RN

∫
RN

|z(y)|p|z(x)|p−2[uφ + vϕ](x)
|x− y|µ

dy dx

−
∫

RN

|zn(y)− z(y)|p|zn(x)− z(x)|p−2[(un − u)φ + (vn − v)ϕ](x)
|x− y|µ

dy dx

}
.

From Lemma 3.4 in [1], we also know Γ̃n → 0 uniformly in w with ‖w‖λ ≤ 1. �

In the following we will utilize the decomposition (2.5): H = Hd
λ⊕He

λ. Write
wn := zn − z and decompose wn by

wn = wd
n + we

n, with wd
n ∈ Hd

λ and we
n ∈ He

λ.

From wn ⇀ 0 it is easy to see wd
n → 0 since dim(Hd

λ) < ∞. And therefore
zn → z if and only if wn → 0.

Lemma 3.3. Suppose that the assumption (P1) holds. There is a constant
α0 > 0 independent of λ such that, for any (PS)c sequence (zn) for Iλ with
zn ⇀ z, either zn → z along a subsequence or

c− Iλ(z) ≥ α0λ
−((N−2)p−2N+µ+2)/(2(p−1)).

Proof. Assume that (zn) has no convergent subsequence, then

lim inf
n→∞

‖wn‖λ > 0.

Lemma 3.2 implies that along a subsequence, one has

Iλ(wn) → c− Iλ(z) and I ′λ(wn) → 0.

It follows that

Iλ(wn)− 1
2
(I ′λ(wn), wn) =

λ(p− 1)
2p

∫
RN

∫
RN

|wn(x)|p|wn(y)|p

|x− y|µ
dy dx,

i.e. ∫
RN

∫
RN

|wn(x)|p|wn(y)|p

|x− y|µ
dy dx ≤ 2p

p− 1
· c− Iλ(z) + o(1)

λ
.

Noting that wn = (un−u, vn−v), we have w+
n −w−n = (un−u, v−vn) and then

|w+
n − w−n | = |wn|. Since I ′λ(wn) → 0, we must have

o(1) = (I ′λ(wn), w+
n − w−n ) = ‖wn‖2λ

− λ

∫
RN

∫
RN

|wn(x)|p−2wn(x)(w+
n − w−n )(x)|wn(y)|p

|x− y|µ
dy dx.
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Therefore, using the Hardy–Littlewood–Sobolev inequality again, we know

‖wn‖2λ ≤λ

∫
RN

∫
RN

|wn(x)|p|wn(y)|p

|x− y|µ
dy dx + o(1)(3.1)

≤C0λ

( ∫
RN

∫
RN

|wn(x)|p|wn(y)|p

|x− y|µ
dy dx

)1/p′

·
( ∫

RN

|wn|2Np/(2N−µ) dx

)(2N−µ)/(Np)

+ o(1)

≤C1λ
1/p(c− Iλ(z) + o(1))1/p′

·
( ∫

RN

|wn|2Np/(2N−µ) dx

)(2N−µ)/(Np)

+ o(1).

Since wd
n → 0, it follows from Lemma 2.4 that

‖we
n‖2λ + o(1) ≤ C1λ

1/p(c− Iλ(z) + o(1))1/p′

·
( ∫

RN

|we
n|2Np/(2N−µ) dx

)(2N−µ)/(Np)

+ o(1)

≤ C2λ
((N−2)p−2N+µ+2)/(2p)(c− Iλ(z) + o(1))1/p′‖we

n‖2λ,

consequently

1 + o(1) ≤ C2λ
((N−2)p−2N+µ+22p)(c− Iλ(z) + o(1))1/p′ .

We thus get

α0λ
−((N−2)p−2N+µ+2)/(2(p−1)) ≤ c− Iλ(z)

with α0 > 0 independent of λ, proving the lemma. �

From Lemma 3.3, we have the following convergence criterion for the (PS)
sequences.

Corollary 3.4. Let the potential V (x) satisfies the assumption (P1). Then
Iλ satisfies the (PS)c condition for all c < α0λ

−((N−2)p−2N+µ+2)/(2(p−1)).

4. Proof of the main results

In the following we will prove that Iλ satisfies the geometry conditions of the
generalized linking theorem. And then we can construct small minimax values
for Iλ at levels where the (PS)c condition holds if the parameter λ is large enough.

Proposition 4.1.

(4.1) inf
{ ∫

RN

|∇ϕ|2 dx : ϕ ∈ C∞0 (RN ),
∫

RN

∫
RN

|u(x)|p|u(y)|p

|x− y|µ
dy dx = 1

}
= 0.
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Lemma 4.2. Assume that (P1) and (P2) hold. Then∫
RN

Ψ(z)dx =
λ

2p

∫
RN

∫
RN

|z(x)|p|z(y)|p

|x− y|µ
dy dx ∈ C1(H, R)

is weakly sequentially lower semicontinuous and is weakly sequentially continu-
ous.

Proof. The conclusion follows easily because H ↪→ H1(RN , R2), so H em-
beds continuously into Lq for q ∈ [2, 2∗] and compactly into Lq

loc for q ∈ [1, 2∗).�

Lemma 4.3. Assume that the potential V (x) satisfies condition (P1)–(P3),
then the functional Iλ satisfies the geometry generalized linking theorem:

(a) for each λ ≥ 1, Iλ(0) = 0 there exists ρλ > 0 such that

κλ := inf Iλ(Sρλ
H+) > 0

where Sρλ
= {z ∈ H+ : ‖z‖λ = ρλ};

(b) for any e ∈ H+ \ {0} there is R > 0 such that Iλ|∂Q ≤ 0 where Q :=
{z = se + w : w ∈ H−, s ≥ 0, ‖z‖λ ≤ R}.

Proof. (a) First note that, for each fixed λ, Iλ(0) = 0. By the the Hardy–
Littlewood–Sobolev inequality, for each z ∈ H+, we know

Iλ(z) =
1
2
‖z‖2λ −

λ

2p

∫
RN

∫
RN

|z(x)|p|z(y)|p

|x− y|µ
dy dx(4.2)

≥ 1
2
‖z‖2λ −

λ

2p

( ∫
RN

|z|2Np/(2N−µ) dx

)(2N−µ)/N

≥ 1
2
‖z‖2λ − C0‖z‖2p

λ ,

since p > 1, the conclusion follows if ‖z‖λ is small enough.
(b) For z = se + w such that e ∈ H+, w ∈ H−, s ≥ 0, from the definition

of H±, we know that e = (e1, 0), w = (0, w1), for some e1, w1 ∈ E. Therefore,

Iλ(z) =
1
2
‖z‖2λ −

λ

2p

∫
RN

∫
RN

|z(x)|p|z(y)|p

|x− y|µ
dy dx

≤ 1
2
(s2‖e1‖2λ − ‖w1‖2λ)− 2p−1λs2p

p

∫
RN

∫
RN

|e1(x)|p|e1(y)|p

|x− y|µ
dy dx,

consequently, Iλ(z) → −∞ as ‖z‖λ →∞. �

In order to prove the existence results, we need to construct mini-max values
below the levels where the (PS) condition holds. In the following we will con-
struct the small Minimax values for large λ below the level in the Corollary 3.4.
First let us define Jλ(u):E → R by

Jλ(u) =
1
2
‖u‖2λ −

λ

2p

∫
RN

∫
RN

|u(x)|p|u(y)|p

|x− y|µ
dy dx.
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Then we have the following lemma.

Lemma 4.4. Assume that V (x) satisfies condition (P1)–(P3), then the func-
tional Jλ satisfies: For any σ > 0 there exists Λδ > 0, such that, for each λ ≥ Λδ,
there is eλ ∈ Eλ such that Jλ(eλ) < 0 and

max
t∈R

Jλ(teλ) ≤ (1− 1
p
)2(p+1)/(p−1)δλ−((N−2)p−2N+µ+2)/(2(p−1)).

Proof. From Proposition 4.1, we know

inf
{ ∫

RN

|∇ϕ|2dx : ϕ ∈ C∞0 (RN ),
∫

RN

∫
RN

|ϕ(x)|p|ϕ(y)|p

|x− y|µ
dy dx = 1

}
= 0.

Thus for any δ > 0 one can choose ϕδ ∈ C∞0 (RN ) with suppϕδ ⊂ Brδ
(0) such

that ∫
RN

∫
RN

|ϕ(x)|p|ϕ(y)|p

|x− y|µ
dy dx = 1

and |∇ϕδ|22 < 2δ. For any α ≥ (N − µ)/(4(p− 1)) and τ in assumption (P3), set

(4.3) eλ(x) := λαϕδ(λτx),

then supp eλ ⊂ Bλ−τ rδ
(0). It is easy to see that∫

RN

|∇eλ(x)|2 dx = λ2α−(N−2)τ

∫
RN

|∇ϕδ|2 dx,∫
RN

V (x)e2
λ(x) dx = λ2α−Nτ

∫
RN

V (λ−τx)ϕ2
δ(x) dx,∫

RN

∫
RN

|eλ(x)|p|eλ(y)|p

|x− y|µ
dy dx = λ2pα+(µ−2N)τ

∫
RN

∫
RN

|ϕδ(x)|p|ϕδ(y)|p

|x− y|µ
dy dx.

From suppϕδ ⊂ Brδ
(0) and

lim
|x|→0

V (x)
|x|(1−2τ)/τ

= 0,

we know that there is Λδ,0 > 0 such that V (λ−τx) ≤ 2δ/(λ1−2τ |ϕδ|22) uniformly
for x ∈ Brδ

(0). Then from the above equalities, we get

Jλ(eλ) =
1
2
‖eλ‖2λ −

λ

2p

∫
RN

∫
RN

|eλ(x)|p|eλ(y)|p

|x− y|µ
dy dx

=
λ2α−(N−2)τ

2

∫
RN

|∇ϕδ|2 dx +
λ2α−Nτ+1

2

∫
RN

V (λ−τx)ϕ2
δ dx

− λ2pα+(µ−2N)τ+1

2p

∫
RN

∫
RN

|ϕδ(x)|p|ϕδ(y)|p

|x− y|µ
dy dx

≤ 2δλ2α−(N−2)τ − λ2pα+(µ−2N)τ+1

2p
.

Since α ≥ (N − µ)/(4(p− 1)) and 0 < τ < 1/2, then

2α− (N − 2)τ < 2pα + (µ− 2N)τ + 1,
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thus we know there exists Λδ > Λδ,0 such that, for any λ > Λδ > 1 there is a eλ

such that Jλ(eλ) < 0.
Since Jλ(teλ) > 0 for t is small enough and Jλ(teλ) < 0 for t ≥ 1, we know

max
t∈R

Jλ(teλ) = max
t∈[0,1]

Jλ(teλ).

Moreover, for such fixed λ > Λδ, since 0 < δ < 1,

max
t∈[0,1]

Jλ(teλ) = max
t∈[0,1]

{
t2λ2α−(N−2)τ

∫
RN

|∇ϕδ(x)|2 dx

+ t2λ2α−Nτ+1

∫
RN

V (λ−τx)ϕ2
δ(x) dx

− t2pλ2pα+(µ−2N)τ+1

2p

∫
RN

∫
RN

|ϕδ(x)|p|ϕδ(y)|p

|x− y|µ
dy dx

}
≤ δλ−((N−2)p−2N+µ+2)/(2(p−1))

· max
t∈[0,1]

{
2t2λ2α−(N−2)τ+((N−2)p−2N+µ+2)/(2(p−1))

− t2pλ2pα+(µ−2N)τ+1+((N−2)p−2N+µ+2)/(2(p−1))

2p

}
.

Direct computation shows t2 = 22/(p−1)λ(−2(p−1)α−(µ−N−2)τ−1)/(p−1), and then

max
t∈[0,1]

Jλ(teλ) ≤
(

1− 1
p

)
2(p+1)/(p−1)δλ−((N−2)p−2N+µ+2)/(2(p−1))

· λ((1−2τ)(p(N−2)+µ−2N))/(2(p−1))

≤
(

1− 1
p

)
2(p+1)/(p−1)δλ−((N−2)p−2N+µ+2)/(2(p−1)),

since (2N − µ)/N < p < (2N − µ)/(N − 2), τ ≤ 1/2 and λ > 1. �

Using this estimate we can prove easily the following lemma.

Lemma 4.5. Under the assumptions of Lemma 4.4, for any σ > 0 there exist
Λσ > 0, such that, for each λ ≥ Λδ, there exists ẽλ ∈ H+ such that

sup
z∈Reeλ×H−

Iλ(z) ≤ σλ−((N−2)p−2N+µ+2)/(2(p−1)).

Proof. For any δ > 0, set ẽλ = (eλ, 0) ∈ H+. Let z = tẽλ + w, w =
(0, w1) ∈ H−, t ≥ 0, we know

Iλ(z) =
t2

2
‖z+‖2λ −

1
2
‖z−‖2λ −

λ

2p

∫
RN

∫
RN

|(tẽλ + w)(x)|p|(tẽλ + w)(y)|p

|x− y|µ
dy dx

≤ t2

2
‖eλ‖2λ −

1
2
‖w1‖2λ −

2p−1λt2p

p

∫
RN

∫
RN

|eλ(x)|p|eλ(y)|p

|x− y|µ
dy dx

= Jλ(teλ)− 1
2
‖w1‖2λ.
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Thus, for any σ > 0 there exist Λσ > 0, such that, for each λ ≥ Λσ, there holds

sup
z∈Reeλ×H−

Iλ(z) ≤ max
t∈R

Jλ(teλ) ≤ σλ−((N−2)p−2N+µ+2)/(2(p−1)). �

Proof of Theorem 2.2. With Y = H+ and X = H− the conditions (I1)
and (I2) hold by Lemmas 4.2 and 4.3. Lemma 4.3 also shows that Iλ possesses
the linking structure of Theorem 2.4. In particular, by Lemma 4.5 for any σ > 0
there is Λσ > 0 so that if λ ≥ Λσ we may choose ẽλ ∈ H+ with the associated
Qλ satisfying

sup Iλ(Qλ) ≤ σλ−((N−2)p−2N+µ+2)/(2(p−1)).

Hence Corollary 3.4 implies that Iλ verifies the (PS) condition for all c ≤
sup Iλ(Qλ). Therefore, there exists a critical point zλ satisfying

κλ ≤ Iλ(zλ) ≤ σλ−((N−2)p−2N+µ+2)/(2(p−1)).

Since zλ is a critical point of Iλ, we know

σλ−((N−2)p−2N+µ+2)/(2(p−1)) ≥ Iλ(zλ)− 1
2
(I ′λ(zλ), zλ)

≥ λ

(
1
2
− 1

2p

) ∫
RN

∫
RN

|zλ(x)|p|zλ(y)|p

|x− y|µ
dy dx

and therefore

p− 1
2p

∫
RN

∫
RN

|zλ(x)|p|zλ(y)|p

|x− y|µ
dy dx ≤ σλ−((N−2)p−2N+µ+2)/(2(p−1))−1.

From (I ′λ(zλ), z+
λ − z−λ ) = 0 we have

‖zλ‖λ =λ

∫
RN

∫
RN

|zλ(x)|p−2zλ(x)(z+
λ − z−λ )(x)|zλ(y)|p

|x− y|µ
dy dx

≤λ

∫
RN

∫
RN

|zλ(x)|p|zλ(y)|p

|x− y|µ
dy dx ≤ 2p

p− 1
σλ−((N−2)p−2N+µ+2)/(2(p−1)),

then if N > 2 and 2 + (2− µ)/(N − 2) < p < (2N − µ)/(N − 2) we must have
((N − 2)p− 2N + µ + 2)/(2(p− 1)) > 0 and consequently zλ → 0 as λ → ∞,
the conclusions are thus proved. �
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