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THE SPLITTING LEMMAS FOR NONSMOOTH FUNCTIONALS

ON HILBERT SPACES II.

THE CASE AT INFINITY

Guangcun Lu

In memory of Professor Shuzhong Shi (1939–2008)

Abstract. We generalize the Bartsch–Li’s splitting lemma at infinity for

C2-functionals in [2] and some later variants of it to a class of continuously

directional differentiable functionals on Hilbert spaces. Different from the
previous flow methods our proof is to combine the ideas of the Morse–

Palais lemma due to Duc–Hung–Khai [9] with some techniques from [11],

[17], [18]. A simple application is also presented.

1. Introduction and main results

The Gromoll-Meyer’s generalized Morse lemma (so called splitting lemma)

is one of key results in infinite dimensional Morse theory. As a supplement

of it, Thomas Bartsch and Shujie Li proved in 1997 a splitting lemma at infinity

(see [2]) and used it to develop a kind of Morse theory to study some variational

problem without compactness ([2], [10] and [12]). Recently, Shaowei Chen and

Shujie Li generalized it [5] (in a Hilbert space frame) and [6] (in a Banach space

frame). These were successfully used by them in studying problems with (strong)

resonance. Their proof adopted the flow method as done for the usual splitting

lemma as in [4], [16]. So the functionals are assumed to be at least C2. Based on
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the proof ideas of the Morse–Palais lemma due to Duc–Hung–Khai [9] and some

techniques from [11], [17], [18] we find a new method to establish the splitting

theorems for nonsmooth functionals on Hilbert spaces in [13], [14]. We shall

follow the notations therein.

Recall that a neighbourhood of infinity in a Banach space (X, ‖ · ‖X) is a set

containing {u ∈ X | ‖u‖X > R} for some R > 0. A map A from a neighbourhood

of infinity in X to X is said to be strictly Fréchet differentiable at ∞ if there

exists an operator A′(∞) ∈ L(X) such that

‖A(x1)−A(x2)−A′(∞)(x1 − x2)‖X
‖x1 − x2‖X

→ 0,

as x1 6= x2 and (‖x1‖X , ‖x2‖X) → (∞,∞). (We also say that A has a strict

Fréchet derivative A′(∞).) The map A is called Fréchet differentiable at ∞ if

‖A(x) − A′(∞)x‖X = o(‖x‖X) as ‖x‖X → ∞. The operator A′(∞) is called

Fréchet derivative of A at ∞. (Be careful not to confuse the two concepts!)

Let H be a Hilbert space with inner product ( · , · )H and the induced norm

‖ · ‖, and let X be a Banach space with norm ‖ · ‖X , such that

(S) X ⊂ H is dense in H and the inclusion X ↪→ H is continuous (and hence

we may assume ‖x‖ ≤ ‖x‖X for all x ∈ X).

In this paper for R > 0 we write

BX(∞, R) := {x ∈ X | ‖x‖X > R}, BX(∞, R) := {x ∈ X | ‖x‖X ≥ R},

BH(∞, R) := {x ∈ H | ‖x‖ > R}, BH(∞, R) := {x ∈ H | ‖x‖ ≥ R}.

Let V∞ be an open neighbourhood of infinity in H. Then V∞ ∩ X is open

in X, and also star-shaped with respect to infinity provided V∞ star-shaped with

respect to infinity. For clearness we shall write V∞∩X as V X∞ when it is equipped

with the induced topology from X.

Suppose that a functional L : V∞ → R satisfies the following conditions:

(F1∞) L is continuous and continuously directional differentiable on V∞.

(F2∞) There exists a continuous and continuously directional differentiable map

A : V X∞ → X, such that

DL(x)(u) = (A(x), u)H for all x ∈ V∞ ∩X, for all u ∈ X.

(This actually implies that L|V X∞ ∈ C
1(V X∞ ,R).)

(F3∞) There exists a map B from (V∞ ∩ X) ∪ {∞} to the space Ls(H) of

bounded self-adjoint linear operators of H such that B(∞)(X) ⊂ X and

(DA(x)(u), v)H = (B(x)u, v)H for all x ∈ V∞ ∩X, for all u, v ∈ X.

(This implies: DA(x)=B(x)|X for all x∈V∞∩X, and thus B(x)(X)⊂X
for all x ∈ (V∞ ∩X) ∪ {∞}.)
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(C1∞) Either 0 /∈σ(B(∞)) or 0 is an isolated point of the spectrum σ(B(∞)) (1).

(C2∞) If u ∈ H such that B(∞)(u) = v for some v ∈ X, then u ∈ X.

(D∞) The map B : (V∞ ∩X) ∪ {∞} → Ls(H) has a decomposition

B(x) = P (x) +Q(x) for all x ∈ (V∞ ∩X) ∪ {∞},

where P (x) : H → H is a positive definite linear operator andQ(x) : H →
H is a compact linear operator with the following properties:

(D1∞) All eigenfunctions of the operator B(∞) that correspond to negative

eigenvalues belong to X;

(D2∞) For any sequence {xk} ⊂ V∞ ∩ X with ‖xk‖ → ∞ it holds that

‖P (xk)u− P (∞)u‖ → 0 for any u ∈ H;

(D3∞) The map Q : (V∞ ∩ X) ∪ {∞} → L(H) is continuous at ∞ with

respect to the topology induced from H on V∞ ∩ X, i.e. ‖Q(x) −
Q(∞)‖L(H) → 0 as x ∈ V∞ ∩X and ‖x‖ → ∞;

(D4∞) For any sequence {xn} ⊂ V∞ ∩ X with ‖xn‖ → ∞ (as n → ∞),

there exist constants C0 > 0 and n0 > 0 such that

(P (xn)u, u)H ≥ C0‖u‖2 for all u ∈ H, for all n ≥ n0.

As before let H0
∞ = Ker(B(∞)), which is contained in X by (C2∞). Then

H±∞ := (H0
∞)⊥ is equal to the range of B(∞) by (C1∞). (See Proposition B.2

in [13] and [14]). Obverse that H±∞ splits as H±∞ = H+
∞ ⊕H−∞, where H+

∞ (resp.

H−∞) is positive (resp. negative) definite subspace of B(∞), that is, there exists

some a∞ > 0 such that

(1.1)

(B(∞)u+, u+)H ≥ 2a∞‖u+‖2 for all u ∈ H+
∞,

(B(∞)u−, u−)H ≤ −2a∞‖u−‖2 for all u ∈ H−∞.

Write X±∞ := H±∞ ∩X and X∗∞ := H∗∞ ∩X, ∗ = +,−. We get topological direct

sum decompositions X = H0
∞⊕X±∞ and X±∞ = X+

∞⊕X−∞. In addition, H0
∞ and

X−∞ have finite dimensions by (D∞). (Note: As in the proof of [13, Lemma 2.13]

or [14, Lemma 3.1] the conditionH0
∞ ⊂ X is enough for the following Lemmas 2.2

and 2.3 because this implies that H0
∞ ⊂ X is complete in both H and X and

therefore that H and X induce equivalent norms on H0
∞ in the case). Let

ν∞ := dimH0
∞ and µ∞ := dimH−∞.

They are called the nullity and Morse index of L at infinity, respectively. Denote

by P ∗∞ the orthogonal projections from H onto H∗∞, ∗ = +, 0,−.

As in the proof of [13, Lemma 2.13] or [14, Lemma 3.1] we get that

B(∞)|X±∞ : X±∞ → X±∞

(1) The claim is actually implied in the following condition (D∞) by Proposition B.2 in [13]

and [14]. In order to state some results without the condition (D∞) we still list it here.
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is a Banach space isomorphism. Let

C∞1 = ‖(B(∞)|X±∞)−1‖L(X±∞,X
±
∞) and C∞2 = ‖I − P 0

∞‖L(X,X±∞).

We shall give our results in cases ν∞ > 0 and ν∞ = 0, respectively. For the

former case we further assume the following condition to be satisfied.

(E∞) M(A) := lim
R→∞

sup{‖(I − P 0
∞)A(z)‖X : z ∈ H0

∞, ‖z‖X ≥ R} < ∞, and

there exist R1 > 0, κ > 1 and ρA ∈ ((κ/(κ− 1))C∞1 M(A),∞), such that

(1.2) ‖(I − P 0
∞)A(z1 + x1)−B(∞)x1 − (I − P 0

∞)A(z2 + x2) +B(∞)x2‖X±∞

≤ 1

κC∞1
‖z1 + x1 − z2 − x2‖X

for all xi ∈ BX(θ, ρA) ∩ X±∞ and zi ∈ H0
∞ with ‖zi‖ ≥ R1, i = 1, 2.

Moreover, if (1.2) holds with ρA = ∞ the assumption that M(A) < ∞
is not needed. (Obverse that (1.2) is satisfied if

(1.3) ‖A(z1 + x1)−A(z2 + x2)−B(∞)(x1 − x2)‖X

≤ 1

κC∞1 C∞2
‖z1 + x1 − z2 − x2‖X

for all xi ∈ BX(θ, ρA) ∩X±∞ and zi ∈ H0
∞ with ‖zi‖ ≥ R1, i = 1, 2.) (2)

Clearly, (E∞) is satisfied if the following assumption holds.

(SE∞) M(A) := lim
R→∞

sup{‖(I − P 0
∞)A(z)‖X : z ∈ H0

∞, ‖z‖X ≥ R} < ∞, and

there exists ρA ∈ (C∞1 M(A),∞) such that

‖(I − P 0
∞)A(z1 + x1)−B(∞)x1 − (I − P 0

∞)A(z2 + x2) +B(∞)x2‖X±∞
‖z1 + x1 − z2 − x2‖X

→ 0

uniformly in x1, x2 ∈ BX(θ, ρA) ∩ X±∞ as (z1, z2) ∈ H0
∞ × H0

∞ and

(‖z1‖, ‖z2‖) → (∞,∞). (Note: ρA > (κ/(κ− 1))C∞1 M(A) if κ > 1 is

large enough.) Moreover, if this holds with ρA =∞ the assumption that

M(A) <∞ is not needed.

Note: Since the norms ‖ · ‖ and ‖ · ‖X are equivalent on H0
∞ and we have

assumed ‖u‖ ≤ ‖u‖X for all u ∈ X, which implies ‖z + x‖2X ≥ ‖z + x‖2 =

‖z‖2 + ‖x‖2 ≥ ‖z‖2 for any (z, x) ∈ H0
∞ × X±∞, if B(∞)|X ∈ L(X) and A has

the strict Fréchet derivative B(∞)|X at ∞, it is easily proved that (SE∞) holds

for any ρA ∈ (0,∞].

The following assumption is slightly weaker than (E∞).

(E′∞) M(A) := lim
R→∞

sup{‖(I − P 0
∞)A(z)‖X : z ∈ H0

∞, ‖z‖X ≥ R} < ∞, and

there exist R1 > 0, κ > 1 and ρA ∈ ((κ/(κ− 1))C∞1 M(A),∞) such that

(2) If R1 > 0 is large enough then z + x ∈ V∞ ∩ X for any z ∈ BH0
∞

(∞, R1) and any

x ∈ X±∞.
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(1.4) ‖(I − P 0
∞)A(z + x1)−B(∞)x1 − (I − P 0

∞)A(z + x2) +B(∞)x2‖X±∞

≤ 1

κC∞1
‖x1 − x2‖X

holds for all xi ∈ BX(θ, ρA) ∩X±∞ and z ∈ H0
∞ with ‖z‖ ≥ R1. More-

over, if (1.4) holds with ρA = ∞ the assumption that M(A) < ∞
is not needed. (Clearly, (1.4) is satisfied if (1.3) is satisfied for all

xi ∈ BX(θ, ρA) ∩X±∞ and z1 = z2 ∈ H0
∞ with ‖zi‖ ≥ R1.)

As above (E′∞) is satisfied under the following assumption.

(SE′∞) M(A) := lim
R→∞

sup{‖(I − P 0
∞)A(z)‖X : z ∈ H0

∞, ‖z‖X ≥ R} < ∞, and

there exists ρA ∈ (C∞1 M(A),∞) such that

‖(I − P 0
∞)A(z + x1)−B(∞)x1 − (I − P 0

∞)A(z + x2) +B(∞)x2‖X±∞
‖x1 − x2‖X

→ 0

uniformly in x1, x2 ∈ BX(θ, ρA) ∩X±∞ as z ∈ H0
∞ and ‖z‖ → ∞.

(Note: ρA > (κ/(κ− 1)C∞1 M(A) if κ > 1 is large enough.) Moreover, if

this holds with ρA =∞ the assumption that M(A) <∞ is not needed.

[Note: If B(∞)|X ∈ L(X) and A has the strict Fréchet derivative B(∞)|X
at ∞, then (SE′∞) holds for any ρA ∈ (0,∞].]

We have the following splitting lemmas at infinity on Hilbert spaces.

Theorem 1.1. Under the above assumptions (S), (F1∞)–(F3∞) and (C1∞)–

(C2∞), (D∞), also suppose that ν∞ > 0 and (E′∞) is satisfied and that

(1.5) L(u) =
1

2
(B(∞)u, u)H + o(‖u‖2) as ‖u‖ → ∞. (3)

Then there exist a positive number R, a (unique) continuous map h∞ :BH0
∞

(∞, R)

→ X±∞ (which takes values in BX±∞(θ, ρA) in the case M(A) <∞) satisfying

(1.6) (I − P 0
∞)A(z + h∞(z)) = 0 for all z ∈ BH0

∞
(∞, R),

and a homeomorphism Φ: BH0
∞

(∞, R)⊕H±∞ → BH0
∞

(∞, R)⊕H±∞ of form

(1.7) Φ(z + u+ + u−) = z + h∞(z) + φz(u
+ + u−)

with φz(u
+ + u−) ∈ H±∞ and Φ(BH0

∞
(∞, R)⊕X±∞) ⊂ X, such that

(1.8) L ◦ Φ(z + u+ + u−) = ‖u+‖2 − ‖u−‖2 + L(z + h∞(z))

for all (z, u+ + u−) ∈ BH0
∞

(∞, R) × H±∞. The homeomorphism Φ has also

properties:

(a) For each z ∈ BH0
∞

(∞, R), Φ(z, θ) = z + h∞(z), and φz(u
+ + u−) ∈ H−∞

if and only if u+ = θ;

(3) This condition is weaker than the assumption (A∞) in [2]. See Section 3.1 below.
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(b) The restriction of Φ to BH0
∞

(∞, R) ⊕ H−∞ is a homeomorphism from

BH0
∞

(∞, R) ⊕ H−∞ ⊂ X onto Φ(BH0
∞

(∞, R) ⊕ H−∞)) ⊂ X even if the

topologies on these two sets are chosen as the induced one by X.

The map h∞ and the function L∞ : BH0
∞

(∞, R) → R, z 7→ L(z + h∞(z)) also

satisfy:

(i) lim
‖z‖X→∞

‖h∞(z)‖X = 0 provided that

lim
R→∞

sup{‖(I − P 0
∞)A(z)‖X : z ∈ H0

∞, ‖z‖X ≥ R} = 0;

(ii) If A is C1, then h∞ is C1 and

dh∞(z) = −
[
(I − P 0

∞)A′(z + h∞(z))|X±∞
]−1

(I − P 0
∞)A′(z + h∞(z))|H0

∞
,

moreover the function L∞ is C2 and

(1.9) dL∞(z0)(z) = (A(z0 +h∞(z0)), z)H , for all z0 ∈ BH0
∞

(∞, R), z ∈ H0
∞.

(iii) If L is C2 then h∞ is also C1 as a map to H±∞ (hence X±∞).

If (E′∞) is replaced by the slightly strong (E∞) (and ρA is given by (E∞)) one

has:

(iv) The map h∞ is Lipschitz, and has a strict Fréchet derivative zero at ∞;

(v) L∞ is C1 and (1.9) holds;

(vi) If B(∞) ∈ L(X) and A has a strict Fréchet derivative B(∞)|X at ∞,

then L∞ is C2−0 and dL∞ has the strict Fréchet derivative zero at ∞.

(In this case, as noted below (SE∞) we may choose ρA above to be any

positive number, but R depends on this choice.)

Remark 1.2. Similar conclusions to Remarks 2.2, 2.3 in [13], [14] also hold.

Namely, we only use Lemmas 2.4 and 2.5 in the proof of Lemma 2.6. Hence the

condition (D∞) can be replaced by the following:

(D′∞) There exist a subset U∞ ⊂ V∞ of form U∞ = BH0
∞

(∞, R′) ⊕ H±∞,

a positive number c∞ and a function ω∞ : U∞ ∩ X → [0,∞) with the

property that ω∞(x)→ 0 as x ∈ U∞ ∩X and ‖x‖ → ∞, such that

(D′∞1) the kernel H0
∞ and negative definite subspace H−∞ of B(∞) are finite

dimensional subspaces contained in X;

(D′∞2) (B(x)v, v)H ≥ c∞‖v‖2 for all v ∈ H+
∞, x ∈ U∞ ∩X;

(D′∞3) |(B(x)u, v)H − (B(∞)u, v)H | ≤ ω∞(x)‖u‖ · ‖v‖ for all u ∈ H, v ∈
H−∞ ⊕H0

∞;

(D′∞4) (B(x)u, u)H ≤ −c∞‖u‖2 for all u ∈ H−∞, x ∈ U∞ ∩X.

In order to state our second result, for positive numbers R and δ we set

CR,δ := BH0
∞

(∞, R)⊕BH+
∞

(θ, δ)⊕BH−∞(θ, δ).

(It is often identified with BH0
∞

(∞, R)×BH+
∞

(θ, δ)×BH−∞(θ, δ)).
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Theorem 1.3. Under the above assumptions (S), (F1∞)–(F3∞) and (C1∞)–

(C2∞), (D∞), also suppose that ν∞ > 0 and (E′∞) is satisfied. Then for any

r ∈ (0,∞) there exist positive numbers R, δr > 0 and a (unique) continuous

map h∞ : BH0
∞

(∞, R) → X±∞ (which takes values in BX±∞(θ, ρA) in the case

M(A) <∞) satisfying

(1.10) (I − P 0
∞)A(z + h∞(z)) = 0 for all z ∈ BH0

∞
(∞, R),

an open set V (R, r) in H with V (R, r) ⊂ CR,r+ρA , and a homeomorphism

Φ: CR,δr → V (R, r) of form

Φ(z + u+ + u−) = z + h∞(z) + φz(u
+ + u−)

with φz(u
+ + u−) ∈ H±∞ and Φ(CR,δr ∩X) ⊂ X, such that

L ◦ Φ(z, u+ + u−) = ‖u+‖2 − ‖u−‖2 + L(z + h∞(z))

for all (z, u+, u−) ≡ z+u+ +u− ∈ CR,δr . The homeomorphism Φ also possesses

properties:

(a) For each z ∈ BH0
∞

(∞, R), Φ(z, θ) = z + h∞(z), φz(u
+ + u−) ∈ H−∞ if

and only if u+ = θ;

(b) The restriction of Φ to BH0
∞

(∞, R) ⊕ BH−∞(θ, δr) is a homeomorphism

from BH0
∞

(∞, R)⊕BH−∞(θ, δr) ⊂ X onto Φ(BH0
∞

(∞, R)⊕BH−∞(θ, δr)) ⊂
X even if the topologies on these two sets are chosen as the induced one

by X.

The map h∞ and the function L∞ : BH0
∞

(∞, R)→ R, z 7→ L(z+ h∞(z)) satisfy

the conclusions (i)–(iii) in Theorem 1.1, and also (iv)–(vi) in Theorem 1.1 if

(E∞) holds and ρA is given by (E∞).

In Theorems 1.1, 1.3, if L is C2 and D2L(w)=B(∞) + o(1) as ‖w‖→∞, we

shall prove in Remark 2.15 that Φ−1 is C1 outside the submanifold of codimen-

sion µ∞ if R > 0 is large enough.

Remark 1.4. Similar conclusions to Remarks 2.2, 2.3 in [13], [14] also hold.

By the note below Lemma 2.5, we can still get Theorem 1.3 if we replace the

condition (D∞) by the following:

(D′′∞) There exist a subset of X of form

W∞ = BH0
∞

(∞, R′)⊕ (BH(θ, r′) ∩X±∞) ⊂ V∞ ∩X,

a positive number c∞ and a function ω∞ : W∞ → [0,∞) with the prop-

erty that ω∞(x)→ 0 as x ∈W∞ and ‖x‖ → ∞, such that

(D′′∞1) the kernel H0
∞ and negative definite subspace H−∞ of B(∞) are finite

dimensional subspaces contained in X;

(D′′∞2) (B(x)v, v)H ≥ c∞‖v‖2 for all v ∈ H+
∞, x ∈W∞;
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(D′′∞3) |(B(x)u, v)H − (B(∞)u, v)H | ≤ ω∞(x)‖u‖ · ‖v‖ for all u ∈ H, v ∈
H−∞ ⊕H0

∞;

(D′′∞4) (B(x)u, u)H ≤ −c∞‖u‖2 for all u ∈ H−∞, x ∈W∞.

Corollary 1.5. Suppose that one of the following condition groups holds:

(a) (S), (F1∞)–(F3∞) and (C1∞)–(C2∞), (D∞) and (E∞);

(b) (S), (F1∞)–(F3∞) and (C1∞)–(C2∞), (D∞) and (E′∞), and A being C1.

Then each critical point z of the function L∞ : BH0
∞

(∞, R)→ R gives a critical

point of L, z + h∞(z).

Proof. Under the condition group (a) or (b), L∞ is at least C1. For a critical

point z of it (1.9) shows that (A(z + h∞(z)), z′)H = 0 for all z′ ∈ H0
∞, i.e.

(P 0
∞A(z + h∞(z)), u)H = 0 for all u ∈ H.

This and (1.10) imply A(z + h∞(z)) = θ. Since X is dense in H, the desired

claim follows from the condition (F2∞). �

When X = H, Theorems 1.1, 1.3 have the following corollaries, respectively.

Corollary 1.6. Let V∞ be a neighbourhood of infinity in a Hilbert space H,

and let L : V∞ → R be a C1-functional. Suppose that ∇L : V∞ → H is continu-

ously directional differentiable and that there exists a map B from V∞ ∪ {∞} to

the space Ls(H) of bounded self-adjoint linear operators of H such that

(D∇L(x)(u), v)H = (B(x)u, v)H for all x ∈ V∞, for all u, v ∈ H.

(So L has the Gâteaux derivative of second order L′′(x) = B(x) at x ∈ V∞.)

Write L as

L(x) =
1

2
(B(∞)x, x)H + g(x).

(g has the Gâteaux derivative of second order g′′(x) = B(x)−B(∞) at x ∈ V∞.)

Suppose

(a) g(x) = o(‖x‖2) as ‖x‖ → ∞;

(b) 0 ∈ σ(B(∞)) and B(∞) = P (∞) + Q(∞), where P (∞) ∈ Ls(H) is

positive definite and Q(∞) ∈ Ls(H) is compact;

(c) For any sequence {xn} ⊂ V∞ with ‖xn‖ → ∞ (as n → ∞), there exist

constants C0 > 0 and n0 > 0 such that

([B(xn)−Q(∞)]u, u)H ≥ C0‖u‖2 for all u ∈ H, for all n ≥ n0.

(d) H0
∞ := Ker(B(∞)) 6= {θ}, H±∞ := (H0

∞)⊥, C∞1 =‖(B(∞)|H±∞)−1‖L(H±∞),

if M(A) := lim
R→∞

sup{‖(I − P 0
∞)A(z)‖ : z ∈ H0

∞, ‖z‖ ≥ R} < ∞ with

A=∇L, there exist constants R1>0, κ>1, ρA∈(κ/(κ−1))(C∞1 M(A),∞)

such that for all y ∈ BH±∞(θ, ρA), z ∈ BH0
∞

(θ,R1),

‖(I − P 0
∞)[B(z + y)−B(∞)]|H±∞‖L(H±∞) ≤

1

κC∞1
.
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Moreover, that M(A)<∞ is not needed if there exists a constant R1>0,

κ > 1 such that for all y ∈ H±∞, z ∈ BH0
∞

(θ,R1),

‖(I − P 0
∞)[B(z + y)−B(∞)]|H±∞‖L(H±∞) ≤

1

κC∞1
.

Then there exist a positive number R ≥ R1, a (unique) continuous map

h∞ : BH0
∞

(∞, R)→ H±∞

satisfying (1.6) with A = ∇L, which takes values in BH±∞(θ, ρA) in the case

M(A) <∞, and a homeomorphism Φ: BH0
∞

(∞, R)⊕H±∞ → BH0
∞

(∞, R)⊕H±∞
such that

L ◦ Φ(z + u+ + u−) = ‖u+‖2 − ‖u−‖2 + L(z + h∞(z))

for all (z, u+ +u−) ∈ BH0
∞

(∞, R)×H±∞. Moreover, if L is C2 then the map h∞

is C1 and the function BH0
∞

(∞, R)→ R, z 7→ L∞(z) := L(z + h∞(z)) is C2.

Proof. By Propositions B.2 and B.3 in [13] or [14], 0 is an isolated spectrum

point of B(∞)), and B(∞) has the finite dimensional kernel H0
∞ and negative

definite subspace H−∞. For x ∈ V∞ let P (x) = P (∞) + g′′(x) = B(x) − Q(∞)

and Q(x) ≡ Q(∞). Then B(x) = P (x) + Q(x). The condition (iii) implies

that (D4∞) is satisfied. It follows that P (x) is positive definite for each x in a

neighbourhood of infinity in H. Hence (D∞) is satisfied.

Next we shows that the condition (iv) implies (E′∞). Since g′(x) = A(x) −
B(∞)x with A = ∇L, and g′′(x) = B(x)−B(∞) using the mean value theorem

in inequality form we deduce that

‖(I − P 0
∞)A(z + x1)−B(∞)x1 − (I − P 0

∞)A(z + x2) +B(∞)x2‖
‖x1 − x2‖

=
‖(I − P 0

∞)g′(z + x1)− (I − P 0
∞)g′(z + x2)‖

‖x1 − x2‖

≤ sup
t∈[0,1]

‖(I − P 0
∞)g′′(z + tx1 + (1− t)x2)|H±∞‖L(H±∞) ≤

1

κC∞1

for all z ∈ BH0
∞

(∞, R1) and xi ∈ BH±∞(θ, ρA), i = 1, 2 and x1 6= x2. Moreover,

since I − P 0
∞ 6= 0, C∞2 = ‖I − P 0

∞‖L(H,H±∞) = 1. So the condition (E′∞) holds.

Corollary 1.6 immediately follows from Theorem 1.1. �

In Corollary 1.6, if L is C2 and g′′(x) = o(1) as ‖x‖ → ∞ then the conditions

(c)–(d) are satisfied automatically. This almost leads to the splitting lemmas

at infinity first established by Thomas Bartsch and Shujie Li [2, p. 431]. See

Section 3.1 below for a detailed explanation. As in the proof of Corollary 1.6

Theorem 1.3 leads to

Corollary 1.7. Under the assumptions (b)–(d) of Corollary 1.6, for any

r ∈ (0,∞) there exist positive numbers R ≥ R1, δr > 0 and a (unique) continuous
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map h∞ : BH0
∞

(∞, R) → X±∞ (which takes values in BX±∞(θ, ρA) in the case

M(A) < ∞) satisfying (1.10) with A = ∇L, an open set V (R, r) in H with

V (R, r) ⊂ CR,r+ρA , and a homeomorphism Φ: CR,δr → V (R, r) such that

L ◦ Φ(z, u+ + u−) = ‖u+‖2 − ‖u−‖2 + L(z + h∞(z))

for all (z, u+, u−) ≡ z + u+ + u− ∈ CR,δr . Moreover, if L is C2 then the map

h∞ is C1 and the function BH0
∞

(∞, R) 3 z 7→ L(z + h∞(z)) ∈ R is C2.

This corollary generalizes not only a slightly different version of Bartsch–Li

splitting lemmas at infinity [2] given in [10, Proposition 3.3] but also Theorem 2.1

in [5]. Moreover, we do not need the assumption (1.5). See Section 3.2 below for

a detailed explanation.

The premise of the assumptions (E∞) and (E′∞)) is ν∞ > 0. When ν∞ = 0

the proofs of Theorems 1.1, 1.3 cannot be completed if no further conditions are

imposed. The following may be viewed as a corresponding version of them in

the case ν∞ = 0.

Theorem 1.8. Under the above assumptions (S), (F1∞)–(F3∞) and (C1∞)

–(C2∞), (D∞), also suppose that ν∞ = 0 and that there exist constants R > 0

and λ ∈ (0, a∞) such that

|L(u)− (B(∞)u, u)/2| ≤ λ‖u‖2 for all u ∈ BH(∞, R),(1.11)

‖A(u)−B(∞)u‖ ≤ λ‖u‖ for all u ∈ BH(∞, R) ∩X.(1.12)

(a) If µ−∞ = 0 then there exist a number R > 0 and a homeomorphism φ

from BH(∞,R) onto an open subset of H to satisfy:

L(φ(u)) = ‖u‖2 for all u ∈ BH(∞,R),

‖u‖√
2a∞

≤ ‖φ(u)‖ ≤ 1√
a∞ − λ

‖u‖ for all u ∈ BH(∞,R).

(b) If µ−∞ > 0 then there exist a number R > 0 and a homeomorphism φ from

BH+
∞

(∞,R) ⊕ H−∞ onto an open subset of H such that for all (u, v) ∈
BH+

∞
(∞,R)×H−∞,

L(φ(u+ v)) = ‖u‖2 − ‖v‖2,
‖u‖√

2‖B(∞)‖
≤ ‖P+

∞ ◦ φ(u+ v)‖ ≤
√
a∞ − λ‖u‖,

P−∞ ◦ φ
(
BH+

∞
(∞,R)⊕H−∞

)
= H−∞,

where P+
∞ and P−∞ are the orthogonal projections onto H+

∞ and H−∞,

respectively.
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Corollary 1.9. Under the above assumptions (S), (F1∞)–(F3∞) and (C1∞)

–(C2∞), (D∞), let ν∞ = 0, (1.5) hold and

(1.13) ‖A(u)−B(∞)u‖ = o(‖u‖) as u ∈ X and ‖u‖ → ∞.

Then the conclusions in Theorem 1.8 hold with λ = a∞/2 and some R > 0.

Perhaps, the condition (1.5) (resp. (1.11)) may be derived from (1.13) (resp.

(1.12)). But the author does not know how to do.

One of main applications of the splitting lemmas at infinity is to compute

the critical group at infinity of L, C∗(L,∞) := lim←−H∗(H, {L ≤ a};F) the inverse

limit of the system {H∗(H,La) → H∗(H,Lb) | −∞ < a ≤ b < ∞}, where the

homomorphism H∗(H,La)→ H∗(H,Lb) is induced by the inclusion (H,La)) ↪→
(H,Lb)). In the case ν∞ = 0 and µ∞ > 0 it follows from (1.5) that L is

bounded from below on H+
∞ and that L(u)→ −∞ for u ∈ H−∞ as ‖u‖ → ∞. By

Proposition 3.8 of [2] we get that Cj(L,∞) = δkjF for k = µ∞ = dimH−∞. If

ν∞ = µ∞ = 0 this also holds because C∗(L,∞) = H∗(H, {‖u‖ ≥ R};F) for any

sufficiently large R > 0.

For Theorems 1.1, 1.3 and 1.8 we can also give a corresponding result with

Theorem 2.25 of [13] or Theorem 6.1 of [14].

The proofs of Theorems 1.1, 1.3 and 1.8 will be given in Section 2. Some

relations between these theorems and previous ones will be discussed in Section 3.

In Section 4, as a simple application we give a generalization of Theorem 5.2 in [2].

It shows that our results may give better results even if for C2 functionals. Our

theory can be used to deal with a class of more general functionals of form J(u) =∫
Ω
F (x, u(x),∇u(x))dx (with lower smoothness than C2 usually), see [13]–[15].

2. Proofs of main theorems

For reader’s conveniences we here state the following parameterized version

of Theorem 1.1 in [9]. Its proof was given in Appendix A of [13] and [14].

Theorem 2.1. Let (H, ‖·‖) be a normed vector space and let Λ be a compact

topological space. Let J : Λ×BH(θ, 2δ)→ R be continuous, and for every λ ∈ Λ

the function J(λ, · ) : BH(θ, 2δ) → R is continuously directional differentiable.

Assume that there exist a closed vector subspace H+ and a finite-dimensional

vector subspace H− of H such that H+⊕H− is a direct sum decomposition of H

and

(a) J(λ, θ) = 0 and D2J(λ, θ) = 0,

(b) [D2J(λ, x + y2) − D2J(λ, x + y1)](y2 − y1) < 0 for any (λ, x) ∈ Λ ×
BH+(θ, δ), y1, y2 ∈ BH−(θ, δ) and y1 6= y2,

(c) D2J(λ, x+ y)(x− y) > 0 for any (λ, x, y) ∈ Λ×BH+(θ, δ)×BH−(θ, δ)

and (x, y) 6= (θ, θ),
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(d) D2J(λ, x)x > p(‖x‖) for any (λ, x) ∈ Λ×BH+(θ, δ)\{θ}, where p : (0, δ]

→ (0,∞) is a non-decreasing function.

Then there exist a positive ε ∈ R, an open neighbourhood U of Λ×{θ} in Λ×H
and a homeomorphism

φ : Λ×
(
BH+(θ,

√
p(ε)/2) +BH−(θ,

√
p(ε)/2)

)
→ U

such that

J(λ, φ(λ, x+ y)) = ‖x‖2 − ‖y‖2 and φ(λ, x+ y) = (λ, φλ(x+ y)) ∈ Λ×H

for all (λ, x, y) ∈ Λ×BH+(θ,
√
p(ε)/2)×BH−(θ,

√
p(ε)/2). Moreover, for each

λ ∈ Λ, φλ(0) = 0, φλ(x+ y) ∈ H− if and only if x = 0, and φ is a homoeomor-

phism from Λ×BH−(θ,
√
p(ε)/2) onto U ∩ (Λ×H−) according to any topology

on both induced by any norm on H−.

2.1. Proofs of Theorems 1.1, 1.3. Unlike the proof of [13, Theorem 2.1]

and [14], we cannot directly apply Theorem 2.1 to the function F∞ in (2.10)

because BH0
∞

(∞, R1) is only locally compact. We must directly prove corre-

sponding conclusions with those in Steps 1, 6, 7 of the proof of it given in

Appendix A of [13], [14]. Moreover, in some steps we may prove the same parts

of Theorem 1.1 and Theorem 1.3 in a unite way, in other steps we must deal

with those two cases, respectively.

The following Lemma 2.2 (resp. Lemma 2.3) is the analogue of [13, Lem-

ma 2.13] or [14, Lemma 3.1] under the condition (E∞) (resp. (E′∞)).

Lemma 2.2. Under the above assumptions (S), (F1∞)–(F3∞) and (C1∞)–

(C2∞), and (E∞) there exists a unique map h∞ : BH0
∞

(∞, R1) → BX±∞(θ, ρA)

(by increasing R1 > 0 if necessary), which is Lipschitz continuous, such that

(a) (I − P 0
∞)A(z + h∞(z)) = θ for all z ∈ BH0

∞
(∞, R1);

(b) h∞ is strictly F-differentiable at infinity and dh∞(∞) = 0 under the

assumption (SE∞);

(c) lim
‖z‖X→∞

‖h∞(z)‖X = 0 provided that M(A) = 0 in the assumption (E∞);

(d) the function BH0
∞

(∞, R1)→ R, z 7→ L∞(z) := L(z + h∞(z)) is C1 and

dL∞(z0)(z) = (A(z0 + h∞(z0)), z)H for all z0 ∈ BH0
∞

(∞, R1), z ∈ H0
∞;

(e) If P 0
∞ ◦ A : X → X0

∞ has a strict Fréchet derivative S ∈ L(X,X0
∞) at

infinity, (for instance this is true when A is strictly F -differentiable at

infinity), then the function L∞ is C2−0, and dL∞ has a strict Fréchet

derivative zero provided S = P 0
∞ ◦B(∞)|X ;

(f) If A is C1 the maps h∞ and L∞ are C1 and C2, respectively, and

dh∞(z) = −
[
(I − P 0

∞)A′(z + h∞(z))|X±∞
]−1

(I − P 0
∞)A′(z + h∞(z))|H0

∞
;

(g) If L is C2 then h∞ is also C1 as a map to H±∞ (hence X±∞).



The Splitting Lemmas for Nonsmooth Functionals II 289

Proof. (a) Consider the map S∞ : BH0
∞

(∞, R1)×BX±∞(θ, ρA)→ X±∞,

(z, x) 7→ −(B(∞)|X±∞)−1(I − P 0
∞)A(z + x) + x.

Let z1, z2 ∈ BH0
∞

(∞, R1), and let x1, x2 ∈ BX±∞(θ, ρA). Noting that B(∞)xi ∈
X±∞ and B(∞)zi = 0, i = 1, 2, it follows from (1.2) that

(2.1) ‖S∞(z1, x1)− S∞(z2, x2)‖X±∞ ≤ C
∞
1 · ‖(I − P 0

∞)A(z1 + x1)−B(∞)x1

− (I − P 0
∞)A(z2 + x2) +B(∞)x2‖X±∞ ≤

1

κ
‖z1 + x1 − z2 − x2‖X .

In particular, for any z ∈ BH0
∞

(∞, R1) and x1, x2 ∈ BX±∞(θ, ρA), we get

‖S∞(z, x1)− S∞(z, x2)‖X±∞ ≤
1

κ
‖x1 − x2‖X .(2.2)

• If ρA <∞ in (E∞), this means that

M(A) <∞ and ρA ∈
(

κ

κ− 1
C∞1 M(A),∞

)
.

By increasing R1 > ρA we may derive

sup{‖(I − P 0
∞)A(z)‖X : z ∈ H0

∞, ‖z‖X ≥ R1} ≤
κ− 1

κ

ρA
C∞1

and hence

‖S∞(z, θ)‖X±∞ ≤ ‖(B(∞)|X±∞)−1‖L(X±∞) · ‖(I − P
0
∞)A(z)‖X±∞ ≤

κ− 1

κ
ρA.

It follows from this and (2.2) that

‖S∞(z, x)‖X±∞ ≤‖S
∞(z, x)− S∞(z, θ)‖X±∞ + ‖S∞(z, θ)‖X±∞(2.3)

≤ 1

κ
‖x‖X +

κ− 1

κ
ρA ≤

1

κ
ρA +

κ− 1

κ
ρA ≤ ρA

for any z ∈ BH0
∞

(∞, R1) and x ∈ BX±∞(θ, ρA). Hence the Banach fixed point

theorem gives a unique map h∞ : BH0
∞

(∞, R1) → BX±∞(θ, ρA), which is also

continuous, such that S∞(z, h∞(z)) = h∞(z) or equivalently

(2.4) (I − P 0
∞)A(z + h∞(z)) = θ for all z ∈ BH0

∞
(∞, R1).

This and (2.1) imply

‖h∞(z1)− h∞(z2)‖X = ‖S∞(z1, h
∞(z1))− S∞(z2, h

∞(z2))‖X±∞

≤ 1

κ
‖z1 + h∞(z1)− z2 − h∞(z2)‖X

and hence

(2.5) ‖h∞(z1)− h∞(z2)‖X ≤
1

κ− 1
‖z1 − z2‖X for all z1, z2 ∈ BH0

∞
(∞, R1).

That is, h∞ is Lipschitz continuous.
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• If ρA =∞ in (E∞), then (2.1) holds for any z ∈ BH0
∞

(∞, R1) and x1, x2 ∈
X±∞. The Banach fixed point theorem gives a unique map h∞ : BH0

∞
(∞, R1)→

X±∞, which is continuous, such that (2.4) and (2.5) also hold.

(b) If M(A) <∞ in (SE∞) we choose κ > 1 so large that ρA >
κ
κ−1C

∞
1 M(A).

Then (1.2) is satisfied by increasing R1 > 0 (if necessary). Hence (2.1)–(2.5) are

still effective for these κ and R1. For zi ∈ BH0
∞

(θ,R1) set xi = h∞(zi) in (2.1),

i = 1, 2. We obtain

‖h∞(z1) − h∞(z2)‖X±∞ = ‖S∞(z1, h
∞(z1))− S∞(z2, h

∞(z2))‖X±∞(2.6)

≤C∞1 · ‖(I − P 0
∞)A(z1 + h∞(z1))−B(∞)(z1 + h∞(z1))

− (I − P 0
∞)A(h∞(z2)) +B(∞)(z2 + h∞(z2))‖X .

For any given small ε > 0, since

‖zi + h∞(zi)‖2X ≥ ‖zi + h∞(zi)‖2 = ‖zi‖2 + ‖h∞(zi)‖2 ≥ ‖zi‖2,

and ‖zi‖ → ∞ if and only if ‖zi‖X → ∞ for zi ∈ H0
∞, i = 1, 2, by (SE∞) there

exists R > R1 such that for any zi ∈ BH0
∞

(∞, R), i = 1, 2 we have

‖(I − P 0
∞)A(z1 + h∞(z1))−B(∞)(z1 + h∞(z1))

− (I − P 0
∞)A(z2 + h∞(z2)) +B(∞)(z2 + h∞(z2))‖X

≤ ε‖z1 + h∞(z1)− z2 − h∞(z2)‖X ≤
κ

κ− 1
ε‖z1 − z2‖X

by (2.5). From this and (2.6) we derive that

(2.7) ‖h∞(z2)− h∞(z1)‖X ≤
κ

κ− 1
C∞1 ε‖z2 − z1‖X

for any zi ∈ BH0
∞

(∞, R), i = 1, 2. This shows that h∞ has the strict Fréchet

derivative zero at ∞.

(c) Recall that h∞(z) is a unique fixed point in BX±∞(θ, ρA) of the map

x 7→ S∞(z, x) = −(B(∞)|X±∞)−1(I − P 0
∞)[A(z + x)−B(∞)x].

Since M(A) = 0, for any small 0 < ε < ρA there exists a large R > R1 such that

‖(I − P 0
∞)A(z)‖X± <

(κ− 1)ε

C∞1 κ

for any z ∈ BH0
∞

(∞, R). By the deduction of (2.3), for any z ∈ BH0
∞

(∞, R) and

x ∈ BX±∞(θ, ε) we have

‖S∞(z, x)‖X± ≤
1

κ
‖x‖X + ‖(B(∞)|X±∞)−1(I − P 0

∞)A(z)‖X±

≤ 1

κ
‖x‖X + C∞1 ‖(I − P 0

∞)A(z)‖X±∞ ≤
ε

κ
+

(κ− 1)ε

κ
< ε.



The Splitting Lemmas for Nonsmooth Functionals II 291

So the map BX±∞(θ, ε) → BX±∞(θ, ε), x 7→ S∞(z, x) has a unique fixed point,

which is, of course, contained in BX±∞(θ, ρA) and hence must be h∞(z). This

shows ‖h∞(z)‖X ≤ ε.
(d) The proof is similar to Step 2 of proof of [13, Lemma 2.13] or [14,

Lemma 3.1]. For any z0 ∈ BH0
∞

(∞, R1), z ∈ H0
∞ and t ∈ R \ {0} with

z0 + tz ∈ BH0
∞

(∞, R1), by the mean value theorem we have s ∈ (0, 1) such

that

L∞(z0 + tz) − L∞(z0) = DL(zs,t)(tz + h∞(z0 + tz)− h∞(z0))(2.8)

= (A(zs,t), tz + h∞(z0 + tz)− h∞(z0))H

= (A(zs,t), tz)H + ((I − P 0
∞)A(zs,t), h

∞(z0 + tz)− h∞(z0))H

because h∞(z0 + tz)− h∞(z0) ∈ X±∞ ⊂ H±∞, where zs,t = z0 + h∞(z0) + s[tz +

h∞(z0 + tz)− h∞(z0)]. Note that (2.5) implies

‖h∞(z0 + tz)− h∞(z0)‖H ≤ ‖h∞(z0 + tz)− h∞(z0)‖X ≤
1

κ− 1
|t| · ‖z‖X .

Let t→ 0, we have∣∣∣∣ ((I − P 0
∞)A(zs,t), h

∞(z0 + tz)− h∞(z0))H
t

∣∣∣∣
≤ ‖(I − P

0
∞)A(zs,t)‖H · ‖h∞(z0 + tz)− h∞(z0)‖H

|t|

≤ 1

κ− 1
‖z‖X‖(I − P 0

∞)A(zs,t)‖X

→ 1

κ− 1
‖z‖X · ‖(I − P 0

∞)A(z0 + h∞(z0))‖X = 0

because of (2.4). From this and (2.8) it follows that

DL∞(z0)(z) = lim
t→0

L∞(z0 + tz)− L∞(z0)

t
= (A(z0 + h∞(z0)), z)H .

That is, L∞ is Gâteaux differentiable at z0. Clearly, z 7→ DL∞(z0)(z) is lin-

ear and continuous, i.e. L∞ has a linear bounded Gâteaux derivative at z0,

DL∞(z0), given by

DL∞(z0)z = (A(z0 + h∞(z0)), z)H = (P 0
∞A(z0 + h(z0)), z)H for all z ∈ H0

∞.

Note that B(∞)|H0
∞

= 0, B(∞)(H±∞) ⊂ H±∞ and h∞(z0), h∞(z′0) ∈ X±∞ ⊂ H±∞
for any z0, z

′
0 ∈ BH0

∞
(∞, R1). We have

(P 0
∞B(∞)(z0 + h∞(z0)), z)H = (P 0

∞B(∞)(z′0 + h∞(z′0)), z)H = 0

for all z ∈ H0
∞. From this it easily follows that

|DL∞(z0)z −DL∞(z′0)z| = |(P 0
∞A(z0 + h∞(z0))− P 0

∞A(z′0 + h∞(z′0)), z)H |

= |(P 0
∞A(z0 + h∞(z0))− P 0

∞B(∞)(z0 + h∞(z0)), z)H

− (P 0
∞A(z′0 + h∞(z′0))− P 0

∞B(∞)(z′0 + h∞(z′0)), z
)
H
|
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≤‖P 0
∞A(z0 + h∞(z0))− P 0

∞B(∞)(z0 + h∞(z0))

− P 0
∞A(z′0 + h∞(z′0)) + P 0

∞B(∞)(z′0 + h∞(z′0))‖H · ‖z‖H
≤ [‖A(z0 + h∞(z0))−A(z′0 + h∞(z′0))‖X

+ ‖B(∞)(z0 + h∞(z0))−B(∞)(z′0 + h∞(z′0))‖H ] · ‖z‖X

and hence

‖DL∞(z0)−DL∞(z′0)‖(X0
∞)∗ ≤ ‖A(z0 + h∞(z0))−A(z′0 + h∞(z′0))‖X
+ ‖B(∞)(z0 + h∞(z0))−B(∞)(z′0 + h∞(z′0))‖H ,

where (X0
∞)∗ = (H0

∞)∗ = L(X0
∞,R).

Since both A : X → X and B(∞) : H → H are continuous by (F2∞), from

(2.5) we derive that z0 7→ DL∞(z0) is continuous and therefore that L∞ is

Fréchet differentiable at z0 and its Fréchet differential dL∞(z0) = DL∞(z0).

Moreover, the above estimate also shows that z0 7→ dL∞(z0) is continuous.

(e) Since P 0
∞ ◦A has the strict Fréchet derivative S ∈ L(X,X0

∞) at ∞ then

(2.9) ‖P 0
∞ ◦A(x1)− P 0

∞ ◦A(x2)− S(x1 − x2)‖X ≤ K̂R‖x1 − x2‖X

for all x1, x2 ∈ BX(∞, R) with constant K̂R → 0 as R→∞.

Let C > 0 be such that ‖z‖X ≤ C‖z‖ for all z ∈ H0
∞. For R > R1 and any

z0, z
′
0 ∈ BH0

∞
(∞, R), since

‖z + h∞(z)‖2X ≥ ‖z + h∞(z)‖2 = ‖z‖2 + ‖h∞(z)‖2 ≥ ‖z‖2 for z = z0, z
′
0,

it follows from the proof of (d), (2.9) and (2.5) that

|dL∞(z0)z − dL∞(z′0)z − (S(z0 + h∞(z0)− z′0 − h∞(z′0)), z)H |

= |(P 0
∞A(z0 + h∞(z0))− P 0

∞A(z′0 + h∞(z′0)), z)H

− (S(z0 + h∞(z0)− z′0 − h∞(z′0)), z)H |

≤ ‖P 0
∞A(z0 + h∞(z0))− P 0

∞A(z′0 + h∞(z′0))

− S(z0 + h∞(z0)− z′0 − h∞(z′0))‖H · ‖z‖H
≤‖P 0

∞A(z0 + h∞(z0))− P 0
∞A(z′0 + h∞(z′0))

− S(z0 + h∞(z0)− z′0 − h∞(z′0))‖X · ‖z‖X

≤ K̂R · ‖z0 + h∞(z0)− z′0 − h∞(z′0)‖X · ‖z‖X

≤ κ

κ− 1
K̂R · ‖z0 − z′0‖X · ‖z‖X ≤

κ

κ− 1
C2K̂R · ‖z0 − z′0‖X · ‖z‖

for any z ∈ H0
∞. Hence

‖dL∞(z0) − dL∞(z′0)‖L(H0
∞,R)

≤ κ

κ− 1
C2K̂R · ‖z0 − z′0‖X + ‖S(z0 + h∞(z0)− z′0 − h∞(z′0))‖X

≤ κ

κ− 1
(1 + C2K̂R) · ‖z0 − z′0‖X ,
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that is, L∞ is C2−0. Moreover, if S = P 0
∞ ◦B(∞)|X , then (S(z0 +h∞(z0)− z′0−

h∞(z′0)), z)H = 0 for all z ∈ H0
∞, and hence

|dL∞(z0)z − dL∞(z′0)z‖

= |dL∞(z0)z − dL∞(z′0)z − (S(z0 + h∞(z0)− z′0 − h∞(z′0)), z)H |

≤ κ

κ− 1
C2K̂R · ‖z0 − z′0‖X · ‖z‖

for any z ∈ H0
∞. This implies

‖dL∞(z0)− dL∞(z′0)‖L(H0
∞,R)

‖z0 − z′0‖
→ 0

as (‖z0‖, ‖z′0‖) → (∞,∞) and z0 6= z′0. Hence dL∞ has the strict Fréchet

derivative zero at infinity.

(f) Since A is C1 the corresponding conclusions can be obtained as in [13,

Remark 2.14] or [14, Remark 3.2].

(g) If L is C2 then ∇L(x) = A(x) for all x ∈ X∞. For z0 ∈ BH0
∞

(∞, R1)

we have (I − P 0
∞)∇L(z0 + h∞(z0)) = θ. By the implicit function theorem

there exists a neighbourhood O(z0) of z0 in BH0
∞

(∞, R1) and a unique C1 map

h : O(z0)→ H±∞ such that (I−P 0
∞)∇L(z+h(z)) = θ for all z ∈ O(z0). Moreover,

(I − P 0
∞)∇L(z + h∞(z)) = (I − P 0

∞)A(z + h∞(z)) = θ

for all z ∈ BH0
∞

(∞, R1), and h∞ is also continuous as a map to H±∞, by the

implicit function theorem (precisely its proof) we get h(z) = h∞(z) for all z ∈
O(z0). The desired conclusion is proved. �

Lemma 2.3. Under the above assumptions (S), (F1∞)–(F3∞) and (C1∞)–

(C2∞), and (E′∞) there exist R1 > 0 and a unique map

h∞ : BH0
∞

(∞, R1)→ BX(θ, ρA) ∩X±∞,

which is continuous, such that

(a) (I − P 0
∞)A(z + h∞(z)) = θ for all z ∈ BH0

∞
(∞, R1);

(b) lim
‖z‖X→∞

‖h∞(z)‖X = 0 provided that M(A) = 0 in (E′∞);

(c) If A is C1, then h∞ is C1 and

dh∞(z) = −
[
(I − P 0

∞)A′(z + h∞(z))|X±∞
]−1

(I − P 0
∞)A′(z + h∞(z))|H0

∞
.

Moreover, the functional L∞ : BH0
∞

(∞, R1) → R, z 7→ L(z + h∞(z)) is

C2 and dL∞(z0)(z) = (A(z0 + h∞(z0)), z)H for all z0 ∈ BH0
∞

(∞, R1)

and z ∈ H0
∞;

(d) If L is C2 then h∞ is also C1 as a map to H±∞ (hence X±∞).

Proof. Recall the proof of Lemma 2.2(a). Under the condition (E′∞), we

can only obtain (1.4) and (2.1) for z1 = z2. Hence (2.2) still holds. Unless (2.1)

and (2.5) the proof of Lemma 2.2(a) is valid.
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The proof of (b) is the same as that of Lemma 2.2(c). (c)–(d) can be obtained

by the implicit function theorem as usual. �

Define a continuous map

(2.10) F∞ : BH0
∞

(∞, R1)×H±∞ → R

by F∞(z, u) = L(z+h∞(z)+u)−L(z+h∞(z)). Then for each z ∈ BH0
∞

(∞, R1)

the map F∞(z, ·) is continuously directional differentiable on H±∞, and the di-

rectional derivative of it at u ∈ H±∞ in any direction v ∈ H±∞ is given by

D2F
∞(z, u)(v) = (A(z + h∞(z) + u), v)H = ((I − P 0

∞)A(z + h∞(z) + u), v)H .

It follows from this and (2.4) that

(2.11) F∞(z, θ) = 0 and D2F
∞(z, θ)(v) = 0 for all v ∈ H±∞.

Later on, if (1.5) holds we shall assume (by increasing R1 > 0) that

(2.12) −a∞
8
‖z + u‖2 ≤ L(z + u)− 1

2
(B(∞)u, u)H ≤

a∞
8
‖z + u‖2

for any (z, u) ∈ BH0
∞

(∞, R1)×H±∞.

Under the assumptions (C1∞)–(C2∞) and (D∞), with the same proof meth-

ods we can obtain the corresponding results with [13, Lemma 2.15] and [13,

Lemma 2.16] (or [14, Lemma 3.3] and [14, Lemma 3.4]) as follows.

Lemma 2.4. There exists a function ω∞ : V∞∩X → [0,∞) with the property

that ω∞(x)→ 0 as x ∈ V∞ ∩X and ‖x‖ → ∞, such that

|(B(x)u, v)H − (B(∞)u, v)H | ≤ ω∞(x)‖u‖ · ‖v‖

for any x ∈ V∞ ∩X, u ∈ H0
∞ ⊕H−∞ and v ∈ H.

Lemma 2.5. Let a∞ > 0 as in (1.1). By increasing R1 we may find a number

a1 ∈ (0, 2a∞] such that for any x ∈ BH(∞, R1) ∩X one has

(a) (B(x)u, u)H ≥ a1‖u‖2 for all u ∈ H+
∞;

(b) |(B(x)u, v)H | ≤ ω∞(x)‖u‖ · ‖v‖ for all u ∈ H+
∞ and all v ∈ H−∞ ⊕H0

∞;

(c) (B(x)u, u)H ≤ −a∞‖u‖2 for all u ∈ H−∞.

Note: Actually, for the proof of Theorem 1.1 (resp. Theorem 1.3) we only

need that Lemmas 2.4 and 2.5 hold in a set of form

BH0
∞

(∞, R′)⊕X±∞ (resp. BH0
∞

(∞, R′)⊕ (BH(θ, r′) ∩X±∞)).

In this case we can only get the following Lemma 2.6 in such a set too.

As in the proof of [13, Lemma 2.17] or [14, Lemma 3.5] we can use the above

lemmas to prove:

Lemma 2.6. The functional F∞ in (2.10) satisfies (a)–(d) in Theorem 2.1, i.e.

(a) F∞(z, θ) = 0 and D2F
∞(z, θ) = 0 for any z ∈ BH0

∞
(∞, R1);
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(b) [D2F
∞(z, u+ v2)−D2F

∞(z, u+ v1)](v2− v1) ≤ −a∞‖v2− v1‖2 < 0 for

any (z, u) ∈ BH0
∞

(∞, R1)×H+
∞, v1, v2 ∈ H−∞ with v1 6= v2;

(c) D2F
∞(z, u + v)(u − v) ≥ a1‖u‖2 + a∞‖v‖2 > 0 for any (z, u, v) ∈

BH0
∞

(∞, R1)×H+
∞ ×H−∞ with (u, v) 6= (θ, θ);

(d) D2F
∞(z, u)u ≥ a1‖u‖2 > p(‖u‖) for any (z, u) ∈ BH0

∞
(∞, R1) × H+

∞
with u 6= θ, where p(t) = a1t

2/2.

Proof. By (2.11) it suffices to prove that F∞ satisfies conditions (b)–(d).

Step 1. For any z ∈ BH0
∞

(∞, R1), u+ ∈ X+
∞ and u−1 , u

−
2 ∈ H−∞, as in the

proof of [13, Lemma 2.17] or [14, Lemma 3.5], since the function

u 7→ (A(z + h∞(z) + u+ + u), u−2 − u
−
1 )H

is continuously directional differentiable, by the condition (F2∞) and the mean

value theorem we have a number t ∈ (0, 1) such that

[D2F
∞(z, u+ + u−2 )−D2F

∞(z, u+ + u−1 )](u−2 − u
−
1 )

= (A(z + h∞(z) + u+ + u−2 ), u−2 − u
−
1 )H

− (A(z + h∞(z) + u+ + u−1 ), u−2 − u
−
1 )H

= (DA(z + h∞(z) + u+ + u−1 + t(u−2 − u
−
1 ))(u−2 − u

−
1 ), u−2 − u

−
1 )H

= (B(z + h(z) + u+ + u−1 + t(u−2 − u
−
1 ))(u−2 − u

−
1 ), u−2 − u

−
1 )H

≤ − a∞‖u−2 − u
−
1 ‖2,

where the third equality comes from (F3∞), and the final inequality is due to

Lemma 2.5(c). Hence the density of X+
∞ in H+

∞ leads to

[D2F
∞(z, u+ + u−2 )−D2F

∞(z, u+ + u−1 )](u−2 − u
−
1 ) ≤ −a0‖u−2 − u

−
1 ‖2

for all z ∈ BH0
∞

(∞, R1), u+ ∈ H+ and u−1 , u
−
2 ∈ H−. This implies the condi-

tion (b).

Step 2. For z ∈ BH0
∞

(∞, R1), u+ ∈ X+
∞ and u− ∈ H−∞, using (2.11), the

mean value theorem and (F2∞)–(F3∞), for some t ∈ (0, 1) we have

D2F
∞(z, u+ + u−)(u+ − u−)

=D2F
∞(z, u+ + u−)(u+ − u−)−D2F

∞(z, θ)(u+ − u−)

= (A(z + h∞(z) + u+ + u−), u+ − u−)H − (A(z + h∞(z) + θ), u+ − u−)H

= (B(z + h∞(z) + t(u+ + u−))(u+ + u−), u+ − u−)H

= (B(z + h∞(z) + t(u+ + u−))u+, u+)H

− (B(z + h∞(z) + t(u+ + u−))u−, u−)H ≥ a1‖u+‖2 + a∞‖u−‖2.

The final inequality comes from Lemma 2.5(a) and (c). The condition (c) follows

because X+
∞ is dense in H+

∞.
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Step 3. For z ∈ BH0
∞

(∞, R1) and u+ ∈ X+
∞, as above we may use the mean

value theorem to get a number t ∈ (0, 1) such that

D2F
∞(z, u+)u+ =D2F

∞(z, u+)u+ −D2F
∞(z, θ)u+

= (A(z + h∞(z) + u+), u+)H − (A(z + h∞(z) + θ), u+)H

= (B(z + h∞(z) + tu+)u+, u+)H ≥ a1‖u+‖2.

The final inequality is because of Lemma 2.5(a). The condition (d) follows. �

[Note: The condition ν∞ > 0 is essentially used in the proofs of the above

lemma. If ν∞ = 0 the arguments before Lemma 2.4 is not needed. In this

case Lemmas 2.4, 2.5 also hold with H0
∞ = {θ}. When replaceing F∞ with

L the corresponding conclusions in Lemma 2.6 cannot be proved if no further

conditions are imposed on L. (See proof of Lemma 2.16).]

Now BH0
∞

(∞, R1) is only locally compact, we cannot directly apply Theo-

rem 2.1 to the function F∞. Recall that the compactness are only used in Steps 1

and 6 of proof of [13, 14, Theorem A.1]. (See the proof of more general [13, 14,

Claim A.3]). We shall directly prove these two steps in the present case. To this

end we need the following result.

Lemma 2.7. (a) Let {zk} ⊂ V∞ ∩H0
∞ and {uk} ⊂ H±∞ such that ‖zk‖ → ∞

and that ‖uk − u0‖ → 0 for some u0 ∈ H. Then

F∞(zk, uk)→ 1

2
(B(∞)u0, u0)H as k →∞.

(b) If L(u) = (B(∞)u, u)H/2 + o(‖u‖2) as ‖u‖ → ∞, then

a∞
4
‖u+‖2 − 2‖B(∞)‖ · ‖u−‖2 − 2‖B(∞)‖2

a∞
· ‖h∞(z)‖2 − a∞

2
‖z‖2

≤F∞(z, u+ + u−)

≤ 2‖B(∞)‖ · ‖u+‖2 − a∞
4
‖u−‖2 +

a∞
2
‖z‖2 +

2‖B(∞)‖2

a∞
‖h∞(z)‖2.

for any (z, u+, u−) ∈ BH0
∞

(∞, R1) × H+
∞ × H−∞. Consequently, for any given

(z0, u
+
0 ) ∈ BH0

∞
(∞, R1)×H+

∞ there exists a neighbourhood U of it in BH0
∞

(∞, R1)

×H+
∞ such that F∞(z, u+ + u−) → −∞ uniformly in (z, u+) ∈ U as u− ∈ H−∞

and ‖u−‖ → ∞.

Proof. (a) Since F∞ is continuous and X±∞ is dense in H±∞ we can choose

{u′k} ⊂ X±∞ such that ‖u′k − u0‖ → 0 and |F∞(zk, uk) − F∞(zk, u
′
k)| < 1/k for

k = 1, 2, . . . Hence we can assume that {uk} ⊂ X±∞ in the sequel without loss of

generality.

Note that h∞(zk) + stuk ∈ X±∞ ⊂ H±∞ and

‖zk + h∞(zk) + stuk‖2 = ‖zk‖2 + ‖h∞(zk) + stuk‖2 ≥ ‖zk‖2
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for all s, t ∈ [0, 1] and k = 1, 2, . . . By (D2∞), for any u ∈ H we have

(2.13) lim
k→∞

‖P (zk + h∞(zk) + stuk)u− P (∞)u‖ = 0

uniformly in s, t ∈ [0, 1]. Then the principle of uniform boundedness implies

(2.14) M(P ) := sup{‖P (zk + h∞(zk) + stuk)‖L(H) | k ∈ N, s, t ∈ [0, 1]} <∞

Moreover, by (D3∞) we have also

(2.15) lim
k→∞

‖Q(zk + h∞(zk) + stuk)−Q(∞)‖L(H) = 0

uniformly in s, t ∈ [0, 1]. It follows from (2.13) and (2.14) that

|(P (zk + h∞(zk) + stuk)uk, uk)H − (P (∞)u0, u0)H |

= |(P (zk + h∞(zk) + stuk)(uk − u0), uk)H

+ (P (zk + h∞(zk) + stuk)u0, uk − u0)H

+ (P (zk + h∞(zk) + stuk)u0, u0)H − (P (∞)u0, u0)H |

≤ ‖P (zk + h∞(zk) + stuk)‖L(H)‖uk − u0‖ · ‖uk‖

+ ‖P (zk + h∞(zk) + stuk)u0‖ · ‖uk − u0‖

+ |(P (zk + h∞(zk) + stuk)u0, u0)H − (P (∞)u0, u0)H | → 0

uniformly in (s, t) ∈ [0, 1] × [0, 1] as k → ∞. Similarly, from (2.15) we derive

that

|(Q(zk + h∞(zk) + stuk)uk, uk)H − (Q(∞)u0, u0)H | → 0

uniformly in (s, t) ∈ [0, 1]× [0, 1] as k →∞. Since (I − P 0
∞)A(zk + h∞(zk)) = 0

for all k, by the mean value theorem we obtain

F∞(zk, uk) =

∫ 1

0

DL(zk + h∞(zk) + tuk)(uk) dt

=

∫ 1

0

(A(zk + h∞(zk) + tuk), uk)H dt

=

∫ 1

0

(A(zk + h∞(zk) + tuk)−A(zk + h∞(zk)), uk)H dt

=

∫ 1

0

∫ 1

0

(B(zk + h∞(zk) + stuk)(tuk), uk)H ds dt

=

∫ 1

0

∫ 1

0

t(P (zk + h∞(zk) + stuk)uk, uk)H ds dt

+

∫ 1

0

∫ 1

0

t(Q(zk + h∞(zk) + stuk)uk, uk)H ds dt

→
∫ 1

0

∫ 1

0

t(P (∞)u0, u0)H ds dt+

∫ 1

0

∫ 1

0

t(Q(∞)u0, u0)H ds dt

=

∫ 1

0

∫ 1

0

t(B(∞)u0, u0)H ds dt =
1

2
(B(∞)u0, u0)H as k →∞.
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(b) Since a∞ ≤ ‖B(∞)‖ and

‖B(∞)‖ · ‖h∞(z)‖ · ‖u+ + u−‖ ≤ ‖B(∞)‖2

2a∞
‖h∞(z)‖2 +

a∞
2
‖u+‖2 +

a∞
2
‖u−‖2,

from (2.12) and (1.1) we derive

L(z + h∞(z) + u+ + u−) ≤ 1

2
(B(∞)(h∞(z) + u+ + u−), h∞(z) + u+ + u−)H

+
a∞
8
‖z + h∞(z) + u+ + u−‖2

=
1

2
(B(∞)u+, u+)H +

1

2
(B(∞)u−, u−)H

+ (B(∞)h∞(z), u+ + u−)H +
a∞
8
‖z + h∞(z) + u+ + u−‖2

≤ 1

2
‖B(∞)‖ · ‖u+‖2 − a∞‖u−‖2 + ‖B(∞)‖ · ‖h∞(z)‖ · ‖u+ + u−‖

+
a∞
4
‖z‖2 +

a∞
4
‖h∞(z)‖2 +

a∞
4
‖u+‖2 +

a∞
4
‖u−‖2

≤ 2‖B(∞)‖ · ‖u+‖2 − a∞
4
‖u−‖2 +

a∞
4
‖z‖2 +

‖B(∞)‖2

a∞
‖h∞(z)‖2.

Similarly, we have

L(z + h∞(z) + u+ + u−) ≥ 1

2
(B(∞)(h∞(z) + u+ + u−), h∞(z) + u+ + u−)H

− a∞
8
‖z + h∞(z) + u+ + u−‖2

=
1

2
(B(∞)u+, u+)H +

1

2
(B(∞)u−, u−)H

+ (B(∞)h∞(z), u+ + u−)H −
a∞
8
‖z + h∞(z) + u+ + u−‖2

≥ a∞‖u+‖2 − 1

2
‖B(∞)‖ · ‖u−‖2 − ‖B(∞)‖2

2a∞
‖h∞(z)‖2 − a∞

2
‖u+‖2

− a∞
2
‖u−‖2 − a∞

4
‖z‖2 − a∞

4
‖h∞(z)‖2 − a∞

4
‖u+‖2 − a∞

4
‖u−‖2

≥ a∞
4
‖u+‖2 − 2‖B(∞)‖ · ‖u−‖2 − ‖B(∞)‖2

a∞
· ‖h∞(z)‖2 − a∞

4
‖z‖2.

Hence

a∞
4
‖u+‖2 − 2‖B(∞)‖ · ‖u−‖2 − ‖B(∞)‖2

a∞
· ‖h∞(z)‖2 − a∞

4
‖z‖2

≤L(z + h∞(z) + u+ + u−)

≤ 2‖B(∞)‖ · ‖u+‖2 − a∞
4
‖u−‖2 +

a∞
4
‖z‖2 +

‖B(∞)‖2

a∞
‖h∞(z)‖2.
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In particular, we have

−‖B(∞)‖2

a∞
· ‖h∞(z)‖2 − a∞

4
‖z‖2 ≤ L(z + h∞(z))

≤ a∞
4
‖z‖2 +

‖B(∞)‖2

a∞
‖h∞(z)‖2.

Since F∞(z, u+ + u−) = L(z + h∞(z) + u+ + u−)−L(z + h∞(z)) by (2.10), the

desired inequalities easily follow. �

For F∞ we can directly prove the corresponding conclusions with Step 1 in

the proof of Theorem 2.1 (given in Appendix A of [13], [14]) as follows.

Lemma 2.8. (a) For any r ∈ (0,∞) there exists a number εr ∈ (0, r) such

that for each (z, u) ∈ BH0
∞

(∞, R1) × BH+
∞

(θ, εr) there exists a unique point

ϕz(u) ∈ BH−∞(θ, r) satisfying

F∞(z, u+ ϕz(u)) = max{F∞(z, u+ v) | v ∈ BH−∞(θ, r)}.

One has also ϕz(θ) = θ.

(b) If L(u) = (B(∞)u, u)H/2 + o(‖u‖2) as ‖u‖ → ∞, for each (z, u) in

BH0
∞

(∞, R1)×H+
∞ there exists a unique point ϕz(u) ∈ H−∞ such that

F∞(z, u+ ϕz(u)) = max{F∞(z, u+ v) | v ∈ H−∞}.

Moreover, ϕz(θ) = θ, and

‖ϕz(u+)‖2 ≤ 8

a∞
‖B(∞)‖ · ‖u+‖2 + 4‖z‖2 +

16‖B(∞)‖2

a2
∞

‖h∞(z)‖2.

Clearly, Lemma 2.7(b) implies that for any bounded subset K ⊂ BH0
∞

(R1,∞),

F∞(z, u+ ϕz(u)) ≥ F∞(z, u)→∞ uniformly in z∈K as u∈H+
∞ and ‖u‖→∞.

Later on we shall understand r =∞ and ε∞ =∞ for conveniences in case (b).

Note that the cases (a) and (b) of Lemma 2.8 correspond to Theorems 1.3 and 1.1,

respectively. Moreover, if Lemmas 2.4–2.6 only hold in a set BH0
∞

(∞, R′) ⊕
(BH(θ, r′) ∩X±∞), then z and r in (a) are restricted in BH0

∞
(∞, R′) and (0, r′),

respectively.

Proof of Lemma 2.8. As at the beginning of proof of Theorem 2.1 (given

in Appendix A of [13], [14]) we only need to consider the case dimH−∞ > 0.

(a) Since the function H−∞ → R, u− 7→ F∞(z, u+ + u−) is strictly concave

by Lemma 2.6(b), it has a unique maximum point on a convex set if existing.

Clearly, it attains the maximum on the compact subset BH−∞(θ, r). Suppose by

contradiction that there exist sequences {(zn, xn)} ∈ BH0
∞

(∞, R1) × BH+
∞

(θ, r)

with xn → 0, and {vn} ⊂ ∂BH−∞(θ, r) such that

(2.16) F∞(zn, xn+vn) > F∞(zn, xn+u) for all u ∈ BH−∞(θ, r), for all n ∈ N.
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If {zn} is bounded we may assume up to subsequences that zn → z0 ∈
BH0

∞
(∞, R1) and vn→v0 ∈ ∂BH−∞(θ, r) since both BH0

∞
(∞, R1) and ∂BH−∞(θ, r)

are compact. It follows from these and (2.16) that

F∞(z0, v0) ≥ F∞(z0, u) for all u ∈ BH−∞(θ, r).

On the other hand, the mean value theorem yields a number s ∈ (0, 1) such that

F∞(z0, v0) =F∞(z0, v0)− F∞(z0, θ) = D2F (z0, sv0)v0

=
1

s
[D2F (z0, sv0)(sv0)−D2F (z0, θ)(sv0)]

≤ − a∞
s
‖sv0‖2 = −sa∞‖v0‖2 < 0 = F∞(z0, θ)

by Lemma 2.6(a)–(b). A contradiction is obtained in this case.

Up to subsequences we assume that ‖zn‖ → ∞ and vn → v0 ∈ ∂BH−∞(θ, r)

in H. Then H±∞ 3 un := xn + vn → v0. By Lemma 2.7 we get

F∞(zn, xn + vn)→ 1

2
(B(∞)v0, v0)H < 0, F∞(zn, xn)→ 1

2
(B(∞)θ, θ)H = 0.

Hence (2.16) leads to (B(∞)v0, v0)H ≥ 0, and therefore a contradiction is ob-

tained again.

To see ϕz(θ) = θ, note that D2F
∞(z, ϕz(θ)) = 0. If ϕz(θ) 6= θ then

0 = [D2F
∞(z, ϕz(θ))−D2F

∞(z, θ)](ϕz(θ)− θ) ≤ −a∞‖ϕz(θ)‖2 < 0

by Lemma 2.6(b), which is a contradiction.

(b) By Lemma 2.6(b) the function H−∞ → R, u− 7→ −F∞(z, u+ + u−) is

strictly convex. The second claim of Lemma 2.7 also shows that this function is

coercive. Hence it attains the minimum at some point ϕz(u
+) ∈ H−∞. That is,

the function H−∞ → R, u− 7→ F∞(z, u+ + u−) takes the maximum at ϕz(u
+).

As in the proof of Lemma 2.1 of [9] the uniqueness of ϕz(u
+) follows from

Lemma 2.6(b) as well.

The proof that ϕz(θ) = θ may be obtained as above. To see the another

claim, by Lemma 2.7(b),

2‖B(∞)‖ · ‖u+‖2 − a∞
4
‖ϕz(u+)‖2 +

a∞
2
‖z‖2 +

2‖B(∞)‖2

a∞
‖h∞(z)‖2

≥F∞(z, u+ + ϕz(u
+)) ≥ F∞(z, u+)

≥ a∞
4
‖u+‖2 − 2‖B(∞)‖2

a∞
· ‖h∞(z)‖2 − a∞

2
‖z‖2.

The conclusion follows immediately. �

Remark 2.9. Note that a local maximum of a concave function (with finite

values) on a normed linear space is also a global maximum. From Lemma 2.8(a)

it follows that for any r > 0 there exists a number εr ∈ (0, r) such that for each
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(z, u) ∈ BH0
∞

(∞, R1)×BH+
∞

(θ, εr) there exists a unique point ϕz(u) ∈ BH−∞(θ, r)

satisfying

F∞(z, u+ ϕz(u)) = max{F∞(z, u+ v) | v ∈ BH−∞(θ, r)}(2.17)

= max{F∞(z, u+ v) | v ∈ H−∞}.

Define

(2.18) rL := sup{εr | r > 0}.

Then for each (z, u) ∈ BH0
∞

(∞, R1) × BH+
∞

(θ, rL) there exists a unique point

ϕz(u) ∈ H−∞ with ϕz(θ
+) = θ−, such that

F∞(z, u+ ϕz(u)) = max{F∞(z, u+ v) | v ∈ H−∞}.

Clearly, under the assumption (1.5), i.e. L(u) = (B(∞)u, u)H/2 + o(‖u‖2) as

‖u‖ → ∞, we have rL = ∞ by Lemma 2.8(b) (because ε∞ = ∞). [Note: if

Lemmas 2.4–2.6 only hold in a set BH0
∞

(∞, R′) ⊕ (BH(θ, r′) ∩ X±∞), we define

rL := sup{εr | 0 < r < r′}. Then for each (z, u) ∈ BH0
∞

(∞, R′) × BH+
∞

(θ, rL)

there exists a unique ϕz(u) ∈ BH−∞(θ, r′) with ϕz(θ
+) = θ−, such that F∞(z, u+

ϕz(u)) = max{F∞(z, u+ v) | v ∈ BH−∞(θ, r′)}. In this case the following map j

is only defined on BH0
∞

(∞, R′)×BH+
∞

(θ, rL).]

It is easily seen that the following map

(2.19) j : BH0
∞

(∞, R1)×BH+
∞

(θ, rL)→ R, (z, u) 7→ F∞(z, u+ ϕz(u)),

is well-defined.

Lemma 2.10. The map j is continuous, and for every z ∈ BH0
∞

(∞, R1) the

map BH+
∞

(θ, rL)→ R, u 7→ j(z, u) is continuously directional differentiable.

Proof. Clearly, it suffices to prove that the restriction of j to BH0
∞

(∞, R1)×
BH+

∞
(θ, εr) is continuously directional differentiable.

If r <∞, since BH(∞, R1)∩BH(θ,R)∩H0
∞ is compact for any R > R1, as

in Step 3 of the proof of Theorem 2.1 (given in Appendix A of [13, 14]) we can

get the desired conclusion from Lemma 2.3 of [9].

If r = ∞, i.e. (1.5) holds, for any (z0, u
+
0 ) ∈ BH0

∞
(∞, R1) × H+

∞, by

Lemma 2.8(b) there exists a bounded neighbourhood U of it in BH0
∞

(∞, R1)×
H+
∞ and a positive number R such that ϕz(u) ∈ BH0

∞
(θ,R) for all (z, u) ∈ U .

Suppose that {(zn, u+
n )} converges to (z0, u

+
0 ). As in Step 2 of the proof of The-

orem 2.1 (given in Appendix A of [13], [14]) it is easily proved that ϕzn(u+
n ) →

ϕz0(u+
0 ) as n→∞. Hence j is continuous in this case. The second claim follows

from Lemma 2.3 of [9]. �

By (2.17), for (z, u) ∈ BH0
∞

(∞, R1)×BH+
∞

(θ, rL) we have

(2.20) F∞(z, u+ ϕz(u)) ≥ F∞(z, u+ v) for all v ∈ H−∞.
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Moreover, for any z ∈ BH0
∞

(∞, R1) we have also

F∞(z, u) ≥ a1

4
‖u‖2 for all u ∈ H+

∞,(2.21)

F∞(z, v) ≤ −a∞
4
‖v‖2 for all v ∈ H−∞.(2.22)

In fact, using the mean value theorem and Lemma 2.6(iv) we get

F∞(z, u) =F∞(z, u)− F∞(z, θ) = D2F
∞(z, su)(u)

=
1

s
D2F

∞(z, su)(su) ≥ a1s‖u‖2 ≥ 0

for some s ∈ (0, 1). If u 6= θ, the same reason yields a number su ∈ (1/2, 1) such

that

F∞(z, u) > F∞(z, u)− F∞(z, u/2) = D2F
∞(z, suu)(u/2) ≥ a1

4
‖u‖2.

Similarly, we get a number s ∈ (0, 1) such that

F∞(z, v) =F∞(z, v)− F∞(z, θ) = D2F
∞(z, sv)(v)

=
1

s
D2F

∞(z, sv)(sv) ≤ −a∞s‖v‖2 ≤ 0

by Lemma 2.6(c). Moreover, if v 6= θ we have also a number sv ∈ (1/2, 1) such

that

F∞(z, v) < F∞(z, v)− F∞(z, v/2) = D2F
∞(z, svv)(v/2) ≤ −a∞

4
‖v‖2.

For r ∈ (0,∞], z ∈ BH0
∞

(∞, R1) and (u, v) ∈ BH+
∞

(θ, εr)×BH−∞(θ, r), define

ψ1(z, u+ v) =


√
F∞(z, u+ ϕz(u))

‖u‖
u if u 6= θ,

θ if u = θ,

ψ2(z, u+ v) =


√
F∞(z, u+ ϕz(u))− F∞(z, u+ v)

‖v − ϕz(u)‖
(v − ϕz(u)) if v 6= ϕz(u),

θ if v = ϕz(u).

By Lemma 2.10, the map

(2.23) ψ : BH0
∞

(∞, R1)× (BH+
∞

(θ, εr)⊕BH−∞(θ, r))→ H±∞

given by ψ(z, u+ v) = ψ1(z, u+ v) + ψ2(z, u+ v), is continuous. Clearly,

ψ(z, u+ v) ∈ Im(ψ) ∩H−∞ if and only if u = θ,

and F∞(z, u+ v) = ‖ψ1(z, u+ v)‖2 − ‖ψ2(z, u+ v)‖2.

As in Step 5 in the proof of Theorem 2.1 (given in Appendix A of [13], [14])

we can prove
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Lemma 2.11. For each z ∈ BH0
∞

(∞, R1) the map

ψ(z, · ) : BH+
∞

(θ, εr)⊕BH−∞(θ, r)→ H±∞

is injective whether r is finite or infinite.

[Note: If Lemmas 2.4–2.6 only hold in a set BH0
∞

(∞, R′)⊕ (BH(θ, r′)∩X±∞),

we require z and r in this lemma and the following Lemma 2.12(a) to sit in

BH0
∞

(∞, R′) and (0, r′), respectively.]

Now we are a position to prove the corresponding conclusions with Step 6 in

the proof of Theorem 2.1 (given in Appendix A of [13], [14]).

Lemma 2.12. (a) For any r ∈ (0,∞) there is a number εr ∈ (0, εr/4) such

that

BH+
∞

(θ,
√
a1εr

)
⊕BH−∞(θ,

√
a1εr

)
⊂ ψ

(
z,BH+

∞
(θ, 2εr)⊕BH−∞(θ, r)

)
for any z ∈ BH0

∞
(∞, R1).

(b) If L(u) = (B(∞)u, u)H/2 + o(‖u‖2) as ‖u‖ → ∞, that is, r = ∞, then

for each z ∈ BH0
∞

(∞, R1) the map

ψ(z, · ) : H+
∞ ⊕H−∞ → H+

∞ ⊕H−∞

is surjective, and hence bijective due to Lemma 2.11. As a consequence we get

ψ−1(H+
∞ ⊕H−∞) = BH0

∞
(∞, R1)× (H+

∞ ⊕H−∞).

Proof. (a) By (2.22) there exists a number C > 0 such that

(2.24) F∞(z, v) < −C for all (z, v) ∈ BH0
∞

(∞, R1)× ∂BH−∞(θ, r).

Claim 2.12.1. There exists a number εr ∈ (0, εr/4) such that

(2.25) F∞(z, u+ v) ≤ 0

for any (z, u, v) ∈ BH0
∞

(∞, R1)×BH+
∞

(θ, 2εr)× ∂BH−∞(θ, r).

Suppose by contradiction that there exists a sequence

{(zn, un, vn)} ⊂ BH0
∞

(∞, R1)×BH+
∞

(θ, εr)× ∂BH−∞(θ, r)

such that un → θ and F∞(zn, un + vn) ≥ 0 for all n. If {zn} has a bounded

subsequence we can get a contradiction as in Step 6 of proof of Theorem 2.1

(given in Appendix A of [13], [14]). Otherwise, after passing to a subsequence

we may assume that ‖zn‖ → ∞ and vn → v0. Then using Lemma 2.7(a) we

derive

F (zk, uk + vk)→ 1

2
(B(∞)v0, v0)H < 0 as k →∞.

This leads to a contradiction again. (2.25) is proved.

Claim 2.12.2. One can shrink the positive number εr in (2.25) such that

(2.26) ϕz(BH+
∞

(θ, 2εr)) ⊂ BH−∞(θ, r/2) for all z ∈ BH0
∞

(∞, R1).
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By a contradiction suppose that there exist sequences {zn} ⊂ BH0
∞

(∞, R1)

and {un} ⊂ BH+
∞

(θ, εr) such that

‖un‖ → 0 and ϕzn(un) /∈ BH−∞(θ, r/2) for all n = 1, 2, . . .

By Lemma 2.8 each ϕzn(un) is a unique point in BH−∞(θ, r) such that

F∞(zn, un + ϕzn(un)) = max{F∞(zn, un + v) | v ∈ BH−∞(θ, r)}.

Since BH−∞(θ, r) is compact, after passing a subsequence (if necessary) we may

assume ϕzn(un)→ v0 ∈ BH−∞(θ, r) \BH−∞(θ, r/2).

• If {zn} has a bounded subsequence, passing to a subsequence we may

assume zn → z0 ∈ BH0
∞

(∞, R1). Then by (2.22) we get

F∞(zn, un + ϕzn(un))→ F∞(z0, v0) ≤ −a∞
4
‖v0‖2 ≤ −

r2a∞
16

< 0

as n→∞, and F∞(zn, un)→ F∞(z0, θ) = 0 as n→∞. This contradicts to the

fact that F∞(zn, un) ≤ F∞(zn, un + ϕzn(un)) for all n.

• If {zn} has no bounded subsequences, passing to a subsequence we may

assume ‖zn‖ → ∞. In this case Lemma 2.7(a) leads to

F∞(zn, un + ϕzn(un))→ 1

2
(B(∞)v0, v0)H ≤ −a∞‖v0‖2 ≤ −

a∞r
2

4

as n → ∞, and F∞(zn, un) → (B(∞)θ, θ)H/2 = 0 as n → ∞. This also yields

a contradiction to the fact that F∞(zn, un + ϕzn(un)) ≥ F∞(zn, un) for all n.

Claim 2.12.2 is proved.

For (z, u) ∈ BH0
∞

(∞, R1)×BH+
∞

(θ, 2εr), by (2.20) and (2.21) we get

F∞(z, u+ ϕz(u)) ≥ F∞(z, u) ≥ a1

4
‖u‖2.(2.27)

This and (2.25) imply that

F∞(z, u+ ϕz(u))− F∞(z, u+ v) > a1ε
2
r(2.28)

for any (z, u, v) ∈ BH0
∞

(∞, R1)× ∂BH+
∞

(θ, 2εr)× ∂BH−∞(θ, r).

Note that (2.24)–(2.28) correspond to (A.2)–(A.6) in Step 6 in the proof of

Theorem 2.1 (given in Appendix A of [13], [14]), respectively. Using these and

repeating the remained arguments therein (i.e. Step 6 in the proof of Theorem 2.1

given in Appendix A of [13], [14]) we may get

BH+
∞

(θ,
√
a1εr) ⊂ ψ1

(
z,BH+

∞
(θ, 2εr)

)
and the desired conclusion (a).

(b) For any given (u+, u−) ∈ H+
∞×H−∞, without loss of generality, we assume

(u+, u−) 6= (θ, θ) because ψ(z, θ) = θ.

• If u+ = θ then u− 6= θ. Since (2.17) and Lemma 2.7(b) imply

0 = F∞(z, ϕz(θ) ≥ F∞(z, u)→ −∞ as u ∈ H−∞ and ‖u‖ → ∞,
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the intermediate value theorem gives a number t > 0 such that −F∞(z, tu−) =

‖u−‖2. Set u− := tu−. Then ψ1(z, θ + u−) = ψ1(z, θ) = θ and

ψ2(z, θ + u−) =

√
F∞(z, ϕz(θ))− F∞(z, u−)

‖u− − ϕz(θ)‖
(u− − ϕz(θ)) = u−.

Namely, ψ(z, θ + u−) = (θ, u−).

• Let u+ 6= θ. By Lemma 2.8(b), ϕz(θ) = θ and F∞(z, u+ϕz(u))→∞ as u ∈
H+
∞ and ‖u‖ → ∞. Lemma 2.10 also tells us that H+

∞ 3 u 7→ F∞(z, u+ ϕz(u))

is continuous. By the intermediate value theorem we have a number t > 0 such

that

F∞(z, tu+ + ϕz(tu
+)) = ‖u+‖2.

Set u+ := tu+. Then ψ1(z, u+ + v) = u+ for any v ∈ H−∞. If u− = θ, then

ψ2(z, u+ + u−) = θ = u− for u− = ϕz(u
+).

If u− 6= θ, we define a function g : [0,∞)→ R by

g(s) = F∞(z, u+ + ϕz(u
+))− F∞(z, u+ + ϕz(u

+) + su−).

Then g(s) ≥ 0, g(0) = 0 and g(s) →∞ as s →∞ by Lemma 2.7(b). Using the

intermediate value theorem may yield a number s0 > 0 such that g(s0) = ‖u−‖2.

Hence for u− := ϕz(u
+) + s0u

− ∈ H−∞ we get√
F∞(z, u+ + ϕz(u+))− F∞(z, u+ + u−)

‖u− − ϕz(u+)‖
(u− − ϕz(u+)) = u−.

This shows ψ(z, u+ + u−) = (u+, u−).

Summarizing the above arguments we have proved that the map ψ(z, · ) is

surjective. The other conclusions of (b) easily follows. �

The cases (a) and (b) of Lemma 2.12 correspond to Theorems 1.3 and 1.1,

respectively. If Lemmas 2.4–2.6 only hold in a set BH0
∞

(∞, R′) ⊕ (BH(θ, r′) ∩
X±∞), we require z and r in Lemma 2.12(a) to sit in BH0

∞
(∞, R′) and (0, r′),

respectively.

The following two lemmas give the corresponding conclusions with Step 7

of the proof of Theorem 2.1 (given in Appendix A of [13], [14]) in the cases of

Theorems 1.1 and 1.3, respectively.

Lemma 2.13. Let L(u) = (B(∞)u, u)H/2 + o(‖u‖2) as ‖u‖ → ∞. (That is,

r =∞). By Lemmas 2.11 and 2.12(b) we have a bijection

BH0
∞

(∞, R1)× (H+
∞ ⊕H−∞)→ BH0

∞
(∞, R1)× (H+

∞ ⊕H−∞),

(z, u+ v) 7→ (z, ψ(z, u+ v)).

Its inverse, denoted by φ, has a form

φ(z, u+ v) = (z, φz(u+ v)) := (z, u′ + v′),
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where (u′, v′) ∈ H+
∞ × H−∞ is a unique point satisfying u + v = ψ(z, u′ + v′).

Then φ is a homeomorphism and

F∞(φ(z, u+ v)) = ‖u‖2 − ‖v‖2

for any (z, u, v) ∈ BH0
∞

(∞, R1) × H+
∞ × H−∞. In particular, for each z ∈

BH0
∞

(∞, R1), φz (and so ψz = ψ(z, · )) is a homeomorphism from H+
∞ ⊕ H−∞

onto H+
∞ ⊕H−∞. Moreover, φ(z, u+ v) belongs to Im(ψ)∩ (BH0

∞
(∞, R1)×H−∞)

if and only if u = θ.

Proof. By Lemma 2.12(b) it suffices to prove that φ is continuous. Suppose

that

(z0, u
′
0, v
′
0) ∈ BH0

∞
(∞, R1)×H+

∞ ×H−∞,

{(zn, u′n, v′n)} ⊂ BH0
∞

(∞, R1)×H+
∞ ×H−∞

satisfy: zn → z0 and

un :=ψ1(zn, u
′
n + v′n)→ u0 = ψ1(z0, u

′
0 + v′0),

vn :=ψ2(zn, u
′
n + v′n)→ v0 = ψ2(z0, u

′
0 + v′0).

Our goal is to prove that u′n → u′0 and v′n → v′0.

Step 1. Prove that {u′n} and {v′n} are bounded.

For each n either u′n = θ or u′n 6= θ and

un =

√
F∞(zn, u′n + ϕzn(u′n))

‖u′n‖
u′n

and hence

‖un‖2 = F∞(zn, u
′
n + ϕzn(u′n)) ≥ F∞(zn, u

′
n) ≥ a1

4
‖u′n‖2

by (2.20) and (2.21). Since ‖un‖ → ‖u0‖ we deduce that {u′n} is bounded and

that u′n → θ = u′0 as n→∞ if u′0 = θ (and so u0 = θ by the definition of ψ1).

For each n, either v′n = ϕzn(u′n) or v′n 6= ϕzn(u′n) and

vn =

√
F∞(zn, u′n + ϕzn(u′n))− F∞(zn, u′n + v′n)

‖v′n − ϕzn(u′n)‖
(v′n − ϕzn(u′n)).

In the latter case F∞(zn, u
′
n + ϕzn(u′n)) − F∞(zn, u

′
n + v′n) = ‖vn‖2. Since

{u′n}, {zn} and thus {h∞(zn)} are bounded, it follows from Lemma 2.8(b)

that {ϕzn(u′n)} is bounded, which implies by Lemma 2.7(b) that {F∞(zn, u
′
n +

ϕzn(u′n))} is bounded. Hence {F∞(zn, u
′
n + v′n) | v′n 6= ϕzn(u′n)} is bounded.

Using Lemma 2.7(b) again we deduce that {v′n | v′n 6= ϕzn(u′n)} is bounded. The

claim is proved.

Step 2. Prove that u′n → u′0 and v′n → v′0.

The first claim has been proved if u′0 = θ. Let us consider the case u′0 6= θ.

Since ‖ψ1(z0, u
′
0 + v′0)‖ =

√
j(z0, u′0) > 0, ψ1(zn, u

′
n + v′n)→ ψ1(z0, u

′
0 + v′0) and
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hence ‖ψ1(zn, u
′
n + v′n)‖ > 0 for large n, we deduce that for large n, u′n 6= θ and

j(zn, u
′
n) = ‖ψ1(zn, u

′
n + v′n)‖2 converges to j(z0, u

′
0). Now√

j(zn, u′n)

‖u′n‖
u′n = un → u0 =

√
j(z0, u′0)

‖u′0‖
u′0 ⇒ u′n

‖u′n‖
→ u′0
‖u′0‖

.

Suppose by a contradiction that {u′n} does not converge to u′0. There exists

a subsequence {u′nk} and ε > 0 such that ‖u′nk − u
′
0‖ ≥ ε for all k. We may

assume that ‖u′nk‖ → α due to the boundedness of {u′n}. Then {u′nk} converges

to (α/‖u′0‖)u′0 and hence j(znk , u
′
nk

) → j(z0, (α/‖u′0‖)u′0) = j(z0, u
′
0) > 0. The

latter implies

(2.29) ψ1

(
z0,

α

‖u′0‖
u′0

)
= ψ1(z0, u

′
0).

Since {v′n} is bounded, we may assume that v′nk → v′ by replaceing {u′nk} with

a subsequence. Then

ψ2

(
z0,

α

‖u′0‖
u′0 + v′

)
← ψ2(znk , u

′
nk

+ v′nk) = vnk → v0 = ψ2(z0, u
′
0 + v′0).

Obverse that ψ1 is independent of elements in H−∞. By (2.29) we get

ψ1

(
z0,

α

‖u′0‖
u′0 + v′

)
= ψ1(z0, u

′
0 + v′0)

and hence

ψ

(
z0,

α

‖u′0‖
u′0 + v′

)
= ψ(z0, u

′
0 + v′0).

The latter implies that (α/‖u′0‖)u′0 = u′0 and v′ = v′0 because ψ(z0, · ) is one-

to-one. It follows that α = ‖u′0‖ and u′nk → u′0. This contradiction shows that

u′n → u′0.

Similarly, suppose by a contradiction that {v′n} does not converge to v′0.

There exists a subsequence {v′nk} and ε > 0 such that ‖v′nk − v
′
0‖ ≥ ε for all k.

Passing to a subsequence we may assume v′nk → v′ as above. Then we also

obtain a contradiction because

ψ2(z0, u
′
0 + v′)← ψ2(znk , u

′
nk

+ v′nk) = vnk → v0 = ψ2(z0, u
′
0 + v′0)

and hence ψ(z0, u
′
0 + v′) = ψ(z0, u

′
0 + v′0) by (2.29), which implies v′ = v′0. It

contradicts the assumption that ‖v′ − v′0‖ ≥ ε. �

Lemma 2.14. For any r ∈ (0,∞) there exists a number δr > 0 such that

BH0
∞

(∞, R1)× (BH+
∞

(θ, δr)⊕BH−∞(θ, δr))

is contained in

U(R1, r) := ψ−1(BH+
∞

(θ,
√
a1εr)⊕BH−∞(θ,

√
a1εr)).(2.30)

By Lemma 2.11 and Lemma 2.12(a) we have a bijection

BH0
∞

(∞, R1)× (BH+
∞

(θ,
√
a1εr)⊕BH−∞(θ,

√
a1εr))→ U(R1, r),
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(z, u+ v) 7→ (z, ψ(z, u+ v)),

whose inverse, denoted by φ, has a form

φ(z, u+ v) = (z, φz(u+ v)) := (z, u′ + v′),

where (u′, v′) ∈ BH+
∞

(θ,
√
a1εr) × BH−∞(θ,

√
a1εr) is a unique point satisfying

u+ v = ψ(z, u′ + v′). This bijection φ is actually a homeomorphism and

F∞(φ(z, u+ v)) = ‖u‖2 − ‖v‖2 for any (z, u+ v) ∈ U(R1, r).

Moreover, φ(z, u+ v) ∈ Im(ψ) ∩ (BH0
∞

(∞, R1)×H−∞) if and only if u = θ.

Proof. We only prove the first claim. The proofs of others are the same as

those of Lemma 2.13.

Let r ∈ (0,∞) be given. Since ψ is continuous and ψ(z, θ) = θ for any

z ∈ BH0
∞

(∞, R1), it is easily seen that for a given large R > R1 we have

(BH0
∞

(∞, R1) ∩BH0
∞

(θ,R))× (BH+
∞

(θ, δ)⊕BH−∞(θ, δ)) ⊂ U(R1, r)

for sufficiently small δ > 0. So if the conclusion in Lemma 2.14 does not hold for

this r then there exist sequences {zn} ⊂ BH0
∞

(∞, R1) and {u+
n +u−n } ⊂ H±∞\{θ}

such that ‖zn‖ → ∞, ‖u+
n + u−n ‖ → 0 (hence ‖u+

n ‖ → 0 and ‖u−n ‖ → 0) and

ψ(zn, u
+
n + u−n ) /∈ BH+

∞
(θ,
√
a1εr)⊕BH−∞(θ,

√
a1εr) for all n = 1, 2, . . .

The last relation implies that

either ‖ψ1(zn, u
+
n + u−n )‖ ≥

√
a1εr or ‖ψ2(zn, u

+
n + u−n )‖ ≥

√
a1εr

for each n = 1, 2, . . . After passing to a subsequence two cases happen:

• ‖ψ1(zn, u
+
n + u−n )‖ ≥ √a1εr for all n = 1, 2, . . .

• ‖ψ2(zn, u
+
n + u−n )‖ ≥ √a1εr for all n = 1, 2, . . .

In the first case, by the definition of ψ1 we have u+
n 6= θ and

F∞(zn, u
+
n + ϕzn(u+

n )) ≥ a1ε
2
r for all n = 1, 2, . . .

Since ‖u+
n ‖ → 0, we may assume that u+

n ∈ BH+
∞

(θ, εr) and hence ϕzn(u+
n ) ∈

BH−∞(θ, r) for all n ∈ N. After passing to a subsequence we may assume

ϕzn(u+
n )→ v0 ∈ H−∞. Then Lemma 2.7(a) leads to

F∞(zn, u
+
n + ϕzn(u+

n ))→ 1

2
(B(∞)v0, v0)H ≤ 0

and hence a contradiction.

In the second case we have u−n 6= ϕzn(u+
n ) and

F∞(zn, u
+
n + ϕzn(u+

n ))− F∞(zn, u
+
n + u−n ) ≥ a1ε

2
r for all n = 1, 2, . . .

As above we may assume ϕzn(u+
n )→ v0 ∈ H−∞ and use Lemma 2.7(a) to obtain

F∞(zn, u
+
n + ϕzn(u+

n ))− F∞(zn, u
+
n + u−n )→ 1

2
(B(∞)v0, v0)H ≤ 0.
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This also gives a contradiction. Lemma 2.14 is proved. �

Note: If Lemmas 2.4–2.6 only hold in a set BH0
∞

(∞, R′)⊕ (BH(θ, r′)∩X±∞),

we require z and r in Lemma 2.14 to sit in BH0
∞

(∞, R′) and (0, r′), respectively.

Completion of proof of Theorem 1.1. For the homeomorphism in Lem-

ma 2.13,

φ : BH0
∞

(∞, R1)× (H+
∞ ⊕H−∞)→ BH0

∞
(∞, R1)× (H+

∞ ⊕H−∞),

(z, u+ + u−) 7→ (z, φz(u
+ + u−)),

by (2.10) we have

L(z + h∞(z) + φz(u
+ + u−))− L(z + h∞(z))

= F∞(φ(z, u+ + u−)) = ‖u+‖2 − ‖u−‖2

for any (z, u+, u−) ∈ BH0
∞

(∞, R1)×H+
∞ ×H−∞. Define

Φ: BH0
∞

(∞, R1)× (H+
∞ ⊕H−∞)→ H,

(z, u+ + u−) 7→ z + h∞(z) + φz(u
+ + u−).

Since h∞ takes values in H±∞, it is easy to check that Φ is a homeomorphism from

BH0
∞

(∞, R1)× (H+
∞⊕H−∞) onto BH0

∞
(∞, R1)× (H+

∞⊕H−∞) (by Lemma 2.13),

and that

L(Φ(z, u+ + u−)) = ‖u+‖2 − ‖u−‖2 + L(z + h∞(z))

for any (z, u+, u−) ∈ BH0
∞

(∞, R) × H+
∞ × H−∞. The other conclusions in The-

orems 1.1 directly follow from Lemmas 2.2, 2.3, 2.7, 2.8(b), 2.10–2.12(b) and

Lemma 2.13. �

Completion of proof of Theorem 1.3. For the homeomorphism in Lem-

ma 2.14

φ : U(R1, r)→ BH0
∞

(∞, R1)× (BH+
∞

(θ,
√
a1εr) +BH−∞(θ,

√
a1εr)),

(z, u+ v) 7→ (z, φz(u+ v)),

as above we may use (2.10) to get

L(z + h∞(z) + φz(u
+ + u−))− L(z + h∞(z)) = ‖u+‖2 − ‖u−‖2

for any (z, u+ + u−) ∈ U(R1, r). By Lemmas 2.14 and 2.12(a) we have

CR1,δr = BH0
∞

(∞, R1)× (BH+
∞

(θ, δr)⊕BH−∞(θ, δr))

⊂ U(R1, r) = ψ−1(BH+
∞

(θ,
√
a1εr)⊕BH−∞(θ,

√
a1εr))

⊂ BH0
∞

(∞, R1)× (BH+
∞

(θ, 2εr)⊕BH−∞(θ, r)) ⊂ CR1,r

(because we may assume 2εr < r). Define

Φ: CR1,δr → H, (z, u+ + u−) 7→ z + h∞(z) + φz(u
+ + u−),
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and V (R, r) := Φ(CR,δr ) for every R ≥ R1. Note that h∞ is a map from

BH0
∞

(∞, R1) to BX±∞(θ, ρA) by Lemma 2.2. One easily prove that

V (R1, r) = Φ(CR1,δr ) ⊂ CR1,r+ρA .

By Lemma 2.14, (as in the proof of [13, Lemma 2.18] or [14, Lemma 3.6]) one

may prove:

(i) V (R1, r) is an open set of H,

(ii) Φ is a homeomorphism from CR1,δr onto V (R1, r),

(iii) for any (z, u+, u−) ≡ z + u+ + u− ∈ CR1,δr ,

L(Φ(z, u+ + u−)) = ‖u+‖2 − ‖u−‖2 + L(z + h∞(z)).

The other conclusions in Theorem 1.3 follow from Lemmas 2.2, 2.3, 2.7,

2.8(a), 2.10–2.12(a) and Lemma 2.14. �

By the Note in Remark 2.9 and the Notes under Lemmas 2.5, 2.8, 2.11,

2.13 and 2.14 one may obtain the conclusions in Remark 1.4. Similarly, that of

Remark 1.2 can be obtained.

Remark 2.15. (a) Under the assumptions that

(2.31) L is C2 and D2L(w) = B(∞) + o(1) as ‖w‖ → ∞,

by increasing R1 we may assure that the map

BH0
∞

(∞, R2)×BH+
∞

(θ, rL)→ H−∞, (z, u) 7→ ϕz(u)

is C1. In particular, if (1.5) holds then (z, u) 7→ ϕz(u) gives a C1 map from

BH0
∞

(∞, R1) × H+
∞ to H−∞. As a consequence, the map j in (2.19) is C1 on

BH0
∞

(∞, R1)×BH+
∞

(θ, rL).

In fact, since L is C2, h∞ is C1 by the final claim of Lemma 2.2. Moreover,

by Remark 2.9 ϕz(u) ∈ H−∞ is the unique maximum point of the function

H−∞ → R, v 7→ F∞(z, u+ v) = L(z + h∞(z) + u+ v)− L(z + h∞(z)).

We derive (∇L(z + h∞(z) + u+ ϕz(u)), v)H = 0∀v ∈ H−∞, that is,

P−∞∇L(z + h∞(z) + u+ ϕz(u)) = θ.

Consider the map Ξ: BH0
∞

(∞, R1)×BH+
∞

(θ, rL)×H−∞ → H−∞ given by

Ξ(z, u, v) = P−∞∇L(z + h∞(z) + u+ v).

It is C1 and

DvΞ(z, u, ϕz(u)) = P−∞D
2L(z + h∞(z) + u+ ϕz(u))|H−∞ : H−∞ → H−∞.

Since ‖z + h∞(z) + u + ϕz(u)‖2 = ‖z‖2 + ‖h∞(z) + u + ϕz(u)‖2 ≥ ‖z‖2 and

D2L(w) = B(∞) + o(1) as ‖w‖ → ∞ we can increase R1 so that for any (z, u) ∈
BH0

∞
(∞, R1)×BH+

∞
(θ, rL) the operator DvΞ(z, u, ϕz(u)) has a bounded inverse.

Hence the desired conclusion follows from the implicit function theorem.
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(b) Under the assumption (2.31), the homeomorphism

φ−1 : BH0
∞

(∞, R2)× (BH+
∞

(θ,
√
a1εr) +BH−∞(θ,

√
a1εr))→ U(R2, r),

(z, u+ v) 7→ (z, ψ(z, u+ v)),

is C1 on BH0
∞

(∞, R1)× (BH+
∞

(θ,
√
a1εr) +BH−∞(θ,

√
a1εr)) \ 4r, where

4r := {(z, u+ ϕz(u)) | (z, u) ∈ BH0
∞

(∞, R1)×BH+
∞

(θ, rL)}

is a C1-submanifold of BH0
∞

(∞, R1)×H±∞ of codimension µ∞.

Indeed, it has been proved that the map j in (2.19) is C1 on BH0
∞

(∞, R1)×
BH+

∞
(θ, rL) above. Then the construction of ψ directly gives the desired conclu-

sion.

Let V (R1, r) be as in the proof of Theorem 1.3. Write a point of V (R1, r)

as (z, u+ + u−), where z ∈ BH0
∞

(∞, R1) and u∗ ∈ H∗∞, ∗ = +,−. It is easily

checked that Φ−1 : V (R1, r)→ CR1,δr is given by

Φ−1(z, u+ + u−) = φ−1(z, u+ + u− − h∞(z)) = (z, ψ(z, u+ + u− − h∞(z))).

Note that h∞ is C1 (because L is C2). Hence Φ−1 is C1 outside the submanifold

of codimension µ∞,

4̃r := {(z, u+ ϕz(u) + h∞(z)) | (z, u) ∈ BH0
∞

(∞, R1)×BH+
∞

(θ, rL)}.

Furthermore, if (1.5) holds, the restriction of φ−1 to BH0
∞

(∞, R1)×(H+
∞⊕H−∞),

BH0
∞

(∞, R1)× (H+
∞ ⊕H−∞)→ BH0

∞
(∞, R1)× (H+

∞ ⊕H−∞),

(z, u+ v) 7→ (z, ψ(z, u+ v)),

is C1 outside 4∞ := {(z, u+ ϕz(u)) | (z, u) ∈ BH0
∞

(∞, R1)×H+
∞}. Since

Φ−1 : BH0
∞

(∞, R1)× (H+
∞ ⊕H−∞)→ BH0

∞
(∞, R1)× (H+

∞ ⊕H−∞)

is given by

Φ−1(z, u+ + u−) = φ−1(z, u+ + u− − h∞(z)) = (z, ψ(z, u+ + u− − h∞(z))),

we see that Φ−1 is C1 outside the submanifold of codimension µ∞,

4̃∞ := {(z, u+ ϕz(u) + h∞(z)) | (z, u) ∈ BH0
∞

(∞, R1)×H+
∞}.

2.2. The proof of Theorem 1.8.

2.2.1. Case µ∞ = 0, i.e. H−∞ = {θ}. By (1.1) and (1.12), for any u ∈
BH(∞, R) ∩X we have

DL(u)u = DL(u)u− (B(∞)u, u)H + (B(∞)u, u)H

= (A(u)−B(∞)u, u)H + (B(∞)u, u)H

≥ 2a∞‖u‖2 − ‖A(u)−B(∞)u‖ · ‖u‖ ≥ (2a∞ − λ)‖u‖2 ≥ a∞‖u‖2.
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Since L is continuously directional differentiable and X is dense in H we get

(2.32) DL(u)u ≥ a∞‖u‖2 for all u ∈ BH(∞, R).

Define ψ : BH(∞, R)→ H by ψ(u) =
√
L(u)/‖u‖u.

Claim. ψ is injective.

In fact, if there exist u1, u2 ∈ BH(∞, R), u1 6= u2, such that ψ(u1) = ψ(u2).

Then L(u1) = L(u2) and so u1/‖u1‖ = u2/‖u2‖. This implies ‖u1‖ 6= ‖u2‖. We

may assume ‖u2‖ > ‖u1‖. Then u2 = ku1, k > 1. Obverse that tu1 +(1− t)u2 =

(t+ (1− t)k)u1 ∈ BH(∞, R) for all t ∈ [0, 1]. We derive

L(u2)− L(u1) =L(tu2 + (1− t)u1)|t=1
t=0

=DL(tu2 + (1− t)u1)(u2 − u1)

=DL([tk + (1− t)]u1)((k − 1)u1)

=
k − 1

tk + (1− t)
DL([tk + (1− t)]u1)((tk + 1− t)u1)

≥ a∞
k − 1

tk + (1− t)
‖(tk + 1− t)u1‖2

= a∞(k − 1)(tk + 1− t)‖u1‖2 > 0

because of (2.32). This contradiction shows that ψ is injective.

By (1.11), for any u ∈ BH(∞, R) = BH+
∞

(∞, R) we get

(a∞ + λ)‖u‖2 ≥ L(u) ≥ (a∞ − λ)‖u‖2

and hence

√
2a∞ ≥

√
L(u)

‖u‖
≥
√
a∞ − λ for all u ∈ BH(∞, R).

For ζ ∈ BH(∞,
√

2a∞R) let ζ = R
‖ζ‖ζ. Take t2 > 1 such that√

L(t2ζ) ≥
√
a∞ − λt2‖ζ‖ > ‖ζ‖ ≥

√
2a∞R =

√
2a∞‖ζ‖ ≥

√
L(ζ).

Since t 7→ L(tζ) is continuous, the intermediate value theorem yields a number

t1 ∈ [1, t2] such that ‖ζ‖ =
√
L(t1ζ) and hence

ψ(t1ζ) =

√
L(t1ζ) · t1ζ

‖t1ζ‖
= ‖ζ‖ · ζ

‖ζ‖
= ζ.

This shows that BH(∞,
√

2a∞R) ⊂ ψ(BH(∞, R)). Hence it follows from the

above claim that, for each u ∈ BH(∞,
√

2a∞R), there exists a unique φ(u) ∈
BH(∞, R) such that ψ(φ(u)) = u. Clearly, the map φ : BH(∞,

√
2a∞R) →

BH(∞, R) is injective. By the definition of ψ,

u = ψ(φ(u)) =

√
L(φ(u))

‖φ(u)‖
φ(u) and so L(φ(u)) = ‖u‖2
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for any u ∈ BH(∞,
√

2a∞R). Since

√
2a∞ ≥

√
L(φ(u))

‖φ(u)‖
≥
√
a∞ − λ,

we deduce that

‖u‖√
2a∞

≤ ‖φ(u)‖ ≤ 1√
a∞ − λ

‖u‖ for all u ∈ BH(∞,
√

2a∞R).

Let {ζk}∞k=1 ⊂ BH(∞,
√

2a∞R) converge to ζ ∈ BH(∞,
√

2a∞R). Set ηk =

φ(ζk) and η = φ(ζ). Then ψ(ηk) = ζk and ψ(η) = ζ. So ‖ζk‖ → ‖ζ‖ implies

L(ηk)→ L(η). Note that

ψ(ηk) =

√
L(ηk)

‖ηk‖
ηk =

√
L(ηk)

‖ζk‖
ζk and ψ(η) =

√
L(η)

‖η‖
η =

√
L(η)

‖ζ‖
ζ.

We deduce that ηk → η. That is, φ is continuous. Hence φ is a homeomorphism

onto its image and satisfies: L(φ(u)) = ‖u‖2 for all u ∈ BH(∞,
√

2a∞R). Taking

R =
√

2a∞R gives the desired conclusion.

2.2.2. Case µ∞ > 0. Note that Lemmas 2.4, 2.5 still hold with H0
∞ = {θ}

under the conditions (C1∞)–(C2∞) and (D∞). Let us give the corresponding

result with Lemma 2.6.

Lemma 2.16. Let R1 > 0 be as Lemmas 2.4, 2.5 and R2 = max{R,R1}.
Then:

(a) [DL(u+v2)−DL(u+v1)](v2−v1) ≤ −a∞‖v2−v1‖2 < 0 for any u ∈ H+
∞

with ‖u‖ ≥ R2, and v1, v2 ∈ H−∞ with v1 6= v2;

(b) DL(u + v)(u − v) ≥ a1‖u‖2 + a∞‖v‖2 > 0 for any (u, v) ∈ H+
∞ × H−∞

with (u, v) 6= (θ, θ);

(c) DL(u)u ≥ a∞‖u‖2 > p(‖u‖) for any u ∈ H+
∞ with ‖u‖ ≥ R, where

p(t) = a∞t
2/2.

Proof. (a) For any u+ ∈ X+
∞ with ‖u+‖ ≥ R1 and u−1 , u

−
2 ∈ H−∞, since the

function X 3 u 7→ (A(u+ + u), u−2 − u
−
1 )H is continuously directional differen-

tiable, by the condition (F2∞) and the mean value theorem we have a number

t ∈ (0, 1) such that

[DL(u+ + u−2 )−DL(u+ + u−1 )](u−2 − u
−
1 )

= (A(u+ + u−2 ), u−2 − u
−
1 )H − (A(u+ + u−1 ), u−2 − u

−
1 )H

= (DA(u+ + u−1 + t(u−2 − u
−
1 ))(u−2 − u

−
1 ), u−2 − u

−
1 )H

= (B(u+ + u−1 + t(u−2 − u
−
1 ))(u−2 − u

−
1 ), u−2 − u

−
1 )H ≤ −a∞‖u−2 − u

−
1 ‖2,

where the third equality comes from (F3∞), and the final inequality is due to

the fact that ‖u+ + u−1 + t(u−2 − u
−
1 )‖ ≥ ‖u+‖ ≥ R1 and Lemma 2.5(c). Hence

the desired conclusion follows from the density of X+
∞ in H+

∞.
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(b) By (1.12), ‖A(u) − B(∞)u‖ ≤ λ‖u‖ for any u ∈ X with ‖u‖ ≥ R2.

Because X+
∞ is dense in H+

∞, as above it suffices to prove the conclusion for

u+ ∈ X+
∞ with ‖u+‖ ≥ R2, and u− ∈ H−∞. Note that ‖u+ +u−‖ ≥ R2. We have

DL(u+ + u−)(u+ − u−) = (A(u+ + u−)−B(∞)(u+ + u−), u+ − u−)H

+ (B(∞)(u+ + u−), u+ − u−)H

≥ (B(∞)u+, u+)− (B(∞)u−, u−)H

− ‖A(u+ + u−)−B(∞)(u+ + u−)‖ · ‖u+ − u−‖

≥ 2a∞(‖u+‖2 + ‖u−‖2)− λ‖u+ + u−‖ · ‖u+ − u−‖

= 2a∞(‖u+‖2 + ‖u−‖2)− λ
√
‖u+ + u−‖2 ·

√
‖u+ − u−‖2

= 2a∞(‖u+‖2 + ‖u−‖2)− λ
√
‖u+‖2 + ‖u−‖2 ·

√
‖u+‖2 + ‖u−‖2

≥ a∞(‖u+‖2 + ‖u−‖2).

(c) can be proved as that of (2.32). �

By (1.11), for any u+ + u− ∈ BH(∞, R2) we have

L(u+ + u−) ≤ 1

2
(B(∞)(u+ + u−), u+ + u−) + λ‖u+ + u−‖2(2.33)

=
1

2
(B(∞)u+, u+) +

1

2
(B(∞)u−, u−) + λ‖u+ + u−‖2

≤‖B(∞)‖ · ‖u+‖2 − a∞‖u−‖2 + λ‖u+‖2 + λ‖u−‖2

≤ 2‖B(∞)‖‖u+‖2 − (a∞ − λ)‖u−‖2

because (1.1) implies the inequality a∞ ≤ ‖B(∞)‖. In particular, for any

u+ ∈ H+
∞ it holds that L(u+ + u−) → −∞ as u− ∈ H−∞ and ‖u−‖ → ∞.

By Lemma 2.16(a), for each u+ ∈ H+
∞ with ‖u+‖ ≥ R2 the function H−∞ 3

u− 7→ −L(u+ + u−) is strictly convex. Hence H−∞ 3 u− 7→ L(u+ + u−) attains

the maximum at a unique point ϕ(u+) ∈ H−∞. Define

j : H+
∞ → R, u+ 7→ L(u+ + ϕ(u+)).

Then j(u+)→ +∞ as u+ ∈ H+
∞ and ‖u+‖ → ∞ because

(2.34) L(u+ +ϕ(u+)) ≥ L(u+) =
1

2
(B(∞)u+, u+)−λ‖u+‖2 ≥ (a∞−λ)‖u+‖2.

As in the proof of Lemma 2.10 we may prove that j is continuous, and continu-

ously directional differentiable. For (u, v) ∈ BH+
∞

(∞, R2)×H−∞ define

ψ1(u+ v) =

√
L(u+ ϕ(u))

‖u‖
u,

ψ2(u+ v) =


√
L(u+ ϕ(u))− L(u+ v)

‖v − ϕ(u)‖
(v − ϕ(u)) if v 6= ϕ(u),

θ if v = ϕ(u).
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Then the map

(2.35) ψ = ψ1 + ψ2 : BH+
∞

(∞, R2)⊕H−∞ → H±∞

is continuous, and satisfies: L(u+ v) = ‖ψ1(u+ v)‖2 − ‖ψ2(u+ v)‖2.

For u ∈ BH+
∞

(∞, R2), since ‖u+ ϕ(u)‖2 = ‖u‖2 + ‖ϕ(u)‖2, by (2.33)–(2.34)

we have

(2.36) 2‖B(∞)‖‖u‖2 ≥ L(u+ ϕ(u)) ≥ L(u) ≥ (a∞ − λ)‖u‖2.

For ζ ∈ BH+
∞

(∞,
√

2‖B(∞)‖R2) let ζ = (R2/‖ζ‖)ζ. By (2.36) we may take

t2 > 1 such that√
L(t2ζ + ϕ(t2ζ)) ≥

√
a∞ − λ · t2‖ζ‖ > ‖ζ‖ ≥

√
2‖B(∞)‖R2

=
√

2‖B(∞)‖ · ‖ζ‖ ≥
√
L(ζ + ϕ(ζ)).

Since t 7→ L(tζ + ϕ(tζ)) is continuous, as above we have a number t1 ∈ [1, t2]

such that ‖ζ‖ =
√
L(t1ζ + ϕ(t1ζ)) and hence

ψ1(t1ζ) =

√
L(t1ζ + ϕ(t1ζ)) · t1ζ

‖t1ζ‖
= ‖ζ‖ · ζ

‖ζ‖
= ζ.

Let ξ ∈ H−∞ and ξ 6= 0. Note that the function

[0,∞) 3 s 7→ L(t1ζ + ϕ(t1ζ))− L(t1ζ + ϕ(t1ζ) + sv)

takes over all values in [0,∞) for any v ∈ H−∞ \ {θ}. Take v = ξ. We have

a number s > 0 such that√
L(t1ζ + ϕ(t1ζ))− L(t1ζ + ϕ(t1ζ) + sξ) = ‖ξ‖.

Set v := ϕ(t1ζ) + sξ. Then

ψ2(t1ζ + v) =

√
L(t1ζ + ϕ(t1ζ))− L(t1ζ + v)

‖v − ϕ(t1ζ)‖
(v − ϕ(t1ζ)) =

‖ξ‖
‖sξ‖

sξ = ξ.

Hence ψ(t1ζ + v) = ζ + ξ. This shows that

BH+
∞

(∞,
√

2‖B(∞)‖R2)⊕H−∞ ⊂ ψ(BH(∞, R2)) = ψ1(BH(∞, R2))⊕H−∞.

As in the proofs of Lemmas 2.11, 2.12(b) and 2.13 we can show that ψ

is a homeomorphism onto its image (by increasing R2 > 0 if necessary). Let

φ denote the restriction of ψ−1 to BH+
∞

(∞,
√

2‖B(∞)‖R2) ⊕ H−∞. Set R =√
2‖B(∞)R2. We get

L(φ(u+ v)) = ‖u‖2 − ‖v‖2 for all (u, v) ∈ BH+
∞

(∞,R)×H−∞.
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3. Relations to previous splitting lemmas at infinity

3.1. Relations to the splitting lemma at infinity in [2]. We begin with

the following elementary functional analysis fact.

Lemma 3.1. Let A0 be a bounded linear self-adjoint operator on a Hilbert

space H and let 0 be an isolated point of σ(A0). Let H0 = N(A0) = Ker(A0) and

H+ (resp. H−) be the positive (resp. negative) definite subspace of A0. Suppose

that both H0 and H− are finite dimensional and that there exists a number

α > 0 such that ∗(Au∗, u∗) ≥ 2α‖u∗‖2 for all u∗ ∈ H∗, ∗ = +,−. Then A0

can be expressed as a sum P +Q, where Q ∈ Ls(H) is compact and P ∈ Ls(H)

satisfies: (Pu, u) ≥ 2α‖u‖2 for all u ∈ H.

Proof. Since A0 is self-adjoint and 0 is an isolated point of σ(A0), by

Proposition 4.5 of [7] the range R(A0) is closed, and hence N(A0)⊥ = N(A∗0)⊥ =

R(A0) = R(A0). It follows that R(A) = H+ ⊕ H− and H = H0 ⊕ R(A) =

H0 ⊕H− ⊕H+. Let P 0 : H → H0 ⊕H− be the orthogonal projection, which is

an operator of finite rank and hence compact. Define operators P,Q ∈ Ls(H) by

Pu = 2αu if u ∈ H0, Pu = ∗A0u if u ∈ H∗, ∗ = +,−,

Qu = A0u− Pu if u ∈ H0 ⊕H−, Qu = θ if u ∈ H+.

Then A0 = P +Q, Q is of finite rank and hence compact, and P satisfies

(Pu, u)H = (Pu0, u0)H + (Pu−, u−)H + (Pu+, u+)H

≥ 2α‖u0‖2 + 2α‖u−‖2 + 2α‖u+‖2 = 2α‖u‖2

for any u = u0 + u− + u+ ∈ H0 ⊕H− ⊕H+ = H. �

Recall the following basic assumption in [2, p. 425]:

(A∞) f(x) = (A0x, x)H/2 + g(x) where A0 : H → H is a self-adjoint li-

near operator such that 0 is isolated in the spectrum of A0. The map

g ∈ C1(H,R) is of class C2 in a neighbourhood of infinity and satis-

fies g′′(x) → 0 as ‖x‖ → ∞. Moreover, g and g′ map bounded sets to

bounded sets.

(Note: It was claimed below (A∞) in [2] that (A∞) implies: g(x) = o(‖x‖2)

and g′(x) = o(‖x‖) as ‖x‖ → ∞, which are used in the proof of Lemma 4.2 of [2].

The assumption (A∞) in [10, p. 226] also required g′(x)→ 0 as ‖x‖ → ∞.)

Claim 3.2. Under the assumption (A∞), suppose that A0 has the finite di-

mensional kernel and negative definite subspace. Then the conditions of Corol-

lary 1.6 are satisfied.

Proof. Since 0 ∈ σ(A0) is isolated, there exists α > 0 such that ∗(Au∗, u∗) ≥
2α‖u∗‖2 for all u∗ ∈ H∗, ∗ = +,−. By Lemma 3.1 we may write A0 =
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P (∞) + Q(∞), where Q(∞) ∈ Ls(H) is compact and P (∞) ∈ Ls(H) satis-

fies: (P (∞)u, u) ≥ 2α‖u‖2 for all u ∈ H. We take B(∞) := A0. Choose

R > 0 so large that ‖g′′(x)‖ ≤ α as ‖x‖ ≥ R. Since B(x) = A0 + g′′(x) =

P (∞) +Q(∞) + g′′(x), we derive that

([B(x)−Q(∞)]u, u)H = (P (∞)u, u)H + (g′′(x)u, u)H ≥ α‖u‖2

for all u ∈ H and x ∈ BH(∞, R). Namely, the condition (c) of Corollary 1.6

is satisfied. Clearly, the condition (d) therein also holds since B(x) − B(∞) =

B(x)−A0 = g′′(x)→ 0 as ‖x‖ → ∞. �

That A0 has a finite dimensional negative definite subspace corresponds to

the finiteness of the Morse index at infinity, which is needed for computations

of critical groups. The finiteness of dim Ker(A0) is naturally satisfied in the

most actual applications. In this sense Claim 3.2 shows that Corollary 1.6 is

a generalization of the splitting lemma at infinity on the page 431 of [2]. Our

homeomorphism is not necessarily C1-smooth, but we do not use the condition

that g and g′ map bounded sets to bounded sets yet.

Consider the following weaker assumption than (A∞), which was given in

Remark 2.3 of [10, p. 226]:

(A′∞) f(x) = (A0x, x)H/2 + g(x) where A0 : H → H is a self-adjoint linear

operator such that 0 is isolated in the spectrum of A0. The map g ∈
C1(H,R) is of class C2 in a neighbourhood of infinity and satisfies: there

exist α > 0 such that

∗(A0u, u)H ≥ 2α‖u‖2 for all u ∈ H∗, ∗ = +,−

and ‖g′′(u0 + u±)‖ < α, g′(u0 + u±)→ 0 as ‖u0‖ → ∞

where H0 = Ker(A0) and H+ (resp. H−) is the positive (resp. nega-

tive) definite subspace of A0. Moreover, g and g′ map bounded sets to

bounded sets.

Under the condition (A′∞), Proposition 3.3 in [10] stated the following slightly

different version of the splitting lemma of [2].

Theorem 3.3 ([10, Proposition 3.3]). For any M > 0 there exist R0 > 0,

δ > 0, a C1-diffeomorphism

ψ : CR0,M = {u = u0 + u± | ‖u0‖ > R0, ‖u±‖ < M} → CR0,2M

and a C1-map w : BH0(∞, R0)→W δ = {u± ∈ H± | ‖u±‖ ≤ δ} such that

f(ψ(u)) =
1

2
(A0w,w)H + h(u0) for all u ∈ CR0,M ,

where h(u0) = f(u0 + w(u0)), δ can be chosen as small as we please if we

choose R0 large, and w = w(u0) is the unique solution of P±f ′(u0 + w) = 0.

Furthermore, (h′(u0), ξ) = (g′(u0 + w(u0)), ξ) for any ξ ∈ H0.
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Note: It was stated in [10, p. 235] that one may refer to Lemma 4.3 and

its proof in [2] for the first part of this theorem. Carefully checking the proof

of its generalization in [6, Theorem 2.1] we believe that the diffeomorphism ψ

in this theorem and Theorem 3.5 below should actually be from CR0,M onto an

open subset V of CR0,2M (possibly satisfying V ⊇ CR0,r for some r > 0). In

fact, the equation (2.19) in [6] is solved on ball BE1
(0, 2M) for each fixed y ∈ Y

with ‖y‖ > R. The condition that ‖χtx,y‖E ≤ ‖x‖E/2 implies that for each

x ∈ BE1(0,M) the initial value problem

d

dt
η(t) = χtη(t),y, η(t) = x

has a unique C1-solution η : [0, 1] → η(t, x, y) ∈ BE1(0, 2M), which depends

C1-smoothly on the parameter (t, y) and initial value x. So BE1(0,M) 3 x 7→
η(1, x, y) ∈ BE1(0, 2M) is a C1-diffeomorphism from BE1(0,M) onto some open

neighbourhood of 0 in BE1
(0, 2M). The desired ψ given by ψ(x, y) = η(1, x, y)+

w(y) + y, is a C1-diffeomorphism from CR0,M onto an open subset V of CR0,2M

containing {y ∈ Y | ‖y‖ > R}. Since ‖w(y)‖ → 0 as ‖y‖ → ∞ it is possible to

prove that for sufficiently large R > 0 the image of ψ contains some CR0,r for

small r > 0.

Claim 3.4. Under the assumption (A′∞), suppose that A0 has the finite di-

mensional kernel and negative definite subspace. Then the conditions of Corol-

lary 1.7 are satisfied.

Proof. Following the notations in the proof of Claim 3.2, since ‖g′′(u0 +

u±)‖ < α for all u0+u±, as in the proof of Claim 3.2 we may prove that the condi-

tion (c) is satisfied. It remains to prove that the condition (d) holds in the present

case. Now B(∞) = A0 and H∗∞ = H∗, ∗ = 0,−,+. Since ∗(B(∞)u, u)H ≥
2α‖u‖2 for all u ∈ H∗∞, ∗ = +,−, the restrictions B(∞)|H∗∞ : H∗∞ → H∗∞ are

invertible and ‖(B(∞)|H∗∞)−1‖ ≤ 1/(2α). Write H±∞ = H+
∞ ⊕ H−∞ as before.

Then B(∞)|H±∞ : H±∞ → H±∞ is invertible and

(B(∞)|H±∞)−1(u+ + u−) = (B(∞)|H+
∞

)−1u+ + (B(∞)|H−∞)−1u−

for any u+ + u− ∈ H+
∞ +H−∞. This leads to

‖(B(∞)|H±∞)−1(u+ + u−)‖2 = ‖(B(∞)|H+
∞

)−1u+‖2 + ‖(B(∞)|H−∞)−1u−‖2

≤
(

1

2α

)2

(‖u+‖2 + ‖u−‖2)

and hence C∞1 = ‖(B(∞)|H±∞)−1‖L(H±∞) ≤ 1/(2α). Since B(x)−B(∞) = g′′(x),

‖B(z + y)|H±∞ −B(∞)|H±∞‖L(H±∞) = ‖g′′(z + y)|H±∞‖L(H±∞) < α ≤ 1

2C∞1
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for all y ∈ H±∞ and z ∈ H0
∞. Hence the condition (d) holds with ρA = ∞. But

M(A) = 0 because g′(u0 +u±)→ 0 as ‖u0‖ → ∞ (we here only need g′(u0)→ 0

as ‖u0‖ → ∞).

We can also take ρA to be any given δ > 0 so that the C1-map w in Theo-

rem 3.3 is assured to take values in W δ = {u± ∈ H± | ‖u±‖ ≤ δ}. Without the

condition that g′(u0)→ 0 as ‖u0‖ → ∞, we may also derive Theorem 3.3 except

claims that ψ is C1 and w takes values in W δ. �

Hence Claim 3.2 (and Note below Theorem 3.3) shows that Corollary 1.7 is

a generalization of Theorem 3.3. We only need that

sup ‖g′′(z + y)|H±∞‖L(H±∞) ≤
1

κC∞1
for some 1 < κ ≤ 2.

This is better than the condition that sup ‖g′′(z+y)|H±∞‖L(H±∞) ≤ α ≤ 1/(2C∞1 ).

Moreover, we do not use the condition that g and g′ map bounded sets to

bounded sets.

3.2. Relations to the generalization version in [5]. For convenience of

comparison with ours we briefly review it in our notations. Let L : H → H be

a bounded self-adjoint linear operator. Let H0
∞ = Ker(L) and H±∞ = (H0

∞)⊥. It

was assumed in [5] that L satisfies the condition

(L) The operator L|H±∞ : H±∞ → H±∞ is invertible and its inverse operator

(L|H±∞)−1 : H±∞ → H±∞ is bounded.

By Proposition 4.5 of [7] this condition is equivalent to our (C1∞), that is, 0 is at

most an isolated point of the spectrum σ(L). (See Proposition B.3 in [13], [14].)

Denote by P 0
∞ the orthogonal projection onto H0

∞. (Then I − P 0
∞ is such

a projection onto H±∞.) For a C2 functional F : H = H0
∞⊕H±∞ → R, let D2F(x)

be the Hessian operator of it at a critical point x. For z+u ∈ H, where z ∈ H0
∞

and u ∈ H±∞, let ∇2F(z, u) ∈ H±∞ be defined by (∇2F(z, u), v)H = duF(z, u)(v).

Then

(3.1) ∇2F(z, u) = (I − P 0
∞)∇F(z + u).

There exists a unique operator J (z, u) ∈ Ls(H±∞) such that

d2
uF(z, u)(v1, v2) = (J (z, u)v1, v2)H for all v1, v2 ∈ H±∞.

It is easily seen that

(3.2) J (z, u) = (I − P 0
∞)D(∇F)(z + u)|H±∞

because

d2
uF(z, u)(v1, v2) =

∂2

∂s1∂s2
F(z, u+ s1v1 + s2v2)

∣∣∣∣
s1=0,s2=0

=
d

ds2
(∇2F(z, u+ s2v2), v1)H

∣∣∣∣
s2=0
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=
d

ds2
((I − P 0

∞)∇F(z + u+ s2v2), v1)H

∣∣∣∣
s2=0

= ((I − P 0
∞)D(∇F)(z + u)(v2), v1)H .

Theorem 3.5 ([5, Theorem 2.1]). For the above functional F and operator L,

suppose that there exists some M > 0 such that as ‖z‖ → ∞ one has

(L1) ‖(I − P 0
∞)∇F(z + u)− Lu‖ → 0 uniformly for ‖u‖ ≤M ,

(L2) ‖(I−P 0
∞)D(∇F)(z+u)|H±∞−L|H±∞‖L(H±∞) → 0 uniformly for ‖u‖ ≤M .

Then there exist R > 0, a C1-homeomorphism

ψ : CR,M = {z + u | z ∈ H0
∞, u ∈ H±∞, ‖z‖ ≥ R, ‖u‖ ≤M} → CR,2M

and a C1-map h∞ : BH0
∞

(∞, R)→ BH±∞(θ,M) such that

(a) F(ψ(z + u)) = 1
2 (Lu, u)H + F(z + h∞(z)) for all z + u ∈ CR,M ,

(b) (I − P 0
∞)F(z + h∞(z)) = 0 for all z ∈ BH0

∞
(∞, R),

(c) ‖h∞(z)‖ → 0 as ‖z‖ → ∞.

The following condition is slightly stronger than (L2).

(L′2) ‖(I − P 0
∞)D(∇F)(z + u)− L‖L(H,H±∞) → 0 uniformly for ‖u‖ ≤M .

Take X = H, A(z + u) = ∇F(z + u) and B(∞) = L. By (L1) we get

M(A) = lim
R→∞

sup{‖(I − P 0
∞)A(z)‖ : z ∈ H0, ‖z‖ ≥ R} = 0.

Lemma 3.6.

(a) (L2) implies that (SE′∞) holds for ρA = M > 0 = C∞1 M(A).

(b) (L1) and (L′2) imply that (SE∞) holds for ρA = M > 0 = C∞1 M(A).

Proof. (a) For any z ∈ H0
∞ and ui ∈ H−∞ with ‖ui‖ ≤ M , i = 1, 2, using

the mean value theorem in inequality form we derive

‖(I − P 0
∞)A(z + u1)− Lu1 − (I − P 0

∞)A(z + u2) + Lu2‖

≤ sup
t∈[0,1]

‖(I − P 0
∞)DA(z + tu1 + (1− t)u2)(u1 − u2)− L(u1 − u2)‖

≤ sup
t∈[0,1]

‖(I − P 0
∞)DA(z + tu1 + (1− t)u2)|H±∞ − L|H±∞‖ · ‖u1 − u2‖.

From this it is easily seen that (L2) leads to (SE′∞) with ρA = M .

(b) For any given ε > 0, by (L1) and (L′2) there exists R > 3 such that

‖(I − P 0
∞)A(z + u)− Lu‖ < Mε,(3.3)

‖(I − P 0
∞)DA(z + u)− L‖L(H,H±∞) < ε(3.4)

for any u ∈ BH±∞(θ,M) and z ∈ BH0(∞, R). Hence for any ui ∈ BH±∞(θ,M)

and zi ∈ BH0(∞, R+ 4M), i = 1, 2, if ‖z1− z2‖ ≥ 3M then from (3.3) we derive

‖(I − P 0
∞)A(z1 + u1)− Lu1 − (I − P 0

∞)A(z2 + u2) + Lu2‖

≤ 2Mε ≤ 2ε‖z1 + u1 − z2 − u2‖
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because |z1 + u1 − z2 − u2‖ ≥ ‖z1 − z2‖ − ‖u1 − u2‖ ≥ ‖z1 − z2‖ − 2M ≥ M ;

and if ‖z1 − z2‖ < 3M using the mean value theorem we get a number t ∈ (0, 1)

such that

‖(I − P 0
∞)A(z1 + x1)− Lx1 − (I − P 0

∞)A(z2 + x2) + Lx2‖

≤‖(I − P 0
∞)DA(tz1 + (1− t)z2 + tx1 + (1− t)x2)(z1 + x1 − z2 − x2)

− L(z1 + x1 − z2 − x2)‖

≤‖(I − P 0
∞)DA(tz1 + (1− t)z2 + tx1 + (1− t)x2)− L‖ · ‖z1 + x1 − z2 − x2‖

≤ ε‖z1 + x1 − z2 − x2‖

by (3.4), because ‖tz1 + (1− t)z2‖ ≥ ‖z2‖−‖z1− z2‖ > R+ 4M −3M ≥ R+M ,

(b) follows. �

Take B(z + u) = F ′′(z + u) = DA(z + u). We have

Lemma 3.7. (L1) and (L′2) imply that (D′′∞) in Remark 1.4 holds for X = H.

Moreover, if M =∞ in (L1) and (L′2) then (D′∞) in Remark 1.2 holds for X = H.

Proof. Let B(x) = D(∇F)(x) and B(∞) = L. Since 0 is at most an

isolated point in σ(L), we have a positive number a∞ > 0 such that

(Lu, u)H ≥ 2a∞‖u‖2 for all u ∈ H+
∞,

(Lu, u)H ≤ −2a∞‖u‖2 for all u ∈ H−∞.

By (L′2) we have a number R0 > 0 such that

(3.5) ‖(I − P 0
∞)B(z + u)− L‖L(H,H±∞) < a∞ for all (z, u) ∈W∞,

where W∞ := BH0
∞

(∞, R0)×BH±∞(θ,M). Set

ω∞ : W∞ → [0,∞), x 7→ ‖(I − P 0
∞)B(x)− L‖L(H,H±∞).

Then (L′2) implies that ω∞(x)→ 0 as x ∈W∞ and ‖x‖ → ∞.

For x ∈W∞ and v ∈ H+
∞, we have

(B(x)v, v)H = (B(x)v, (I − P 0
∞)v)H = ((I − P 0

∞)B(x)v, v)H

= (Lv, v)H + ((I − P 0
∞)B(x)v − Lv, v)H

≥ 2a∞‖v‖2 − ‖(I − P 0
∞)B(x)− L‖ · ‖v‖2≥a∞‖v‖2

because (3.5). Similarly, for all x ∈W∞ and v ∈ H−∞ we have

(B(x)v, v)H = (B(x)v, (I − P 0
∞)v)H = ((I − P 0

∞)B(x)v, v)H ≤ −a∞‖v‖2.

Finally, for all x ∈W∞, u ∈ H and v ∈ H±∞, we get

|(B(x)u, v)H − (B(∞)u, v)H | = |(B(x)u−B(∞)u, (I − P 0
∞)v)H |

= |((I − P 0
∞)B(x)u− (I − P 0

∞)Lu, v)H |

= |((I − P 0
∞)[B(x)− L]u, v)H | ≤ ω∞(x)‖u‖ · ‖v‖
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since (I −P 0
∞)Lu = L(I −P 0

∞)u = Lu. The second claim is easily seen from the

proof above. �

By Lemmas 3.6 and 3.7, under the assumptions (L1) and (L′2), if L has the fi-

nite dimensional kernel and negative definite subspace, then Theorem 3.5 follows

from Theorem 1.3 with X = H by Remark 1.4 unless our homeomorphism is not

necessarily C1-smooth. Furthermore, if M =∞ in (L1) and (L′2) a stronger re-

sult follows from Remark 1.2, that is, there exist a positive number R, a (unique)

continuous map h∞ : BH0
∞

(∞, R)→ X±∞ satisfying (1.6), and a homeomorphism

φ : BH0
∞

(∞, R) ⊕ H±∞ → BH0
∞

(∞, R) ⊕ H±∞ of form (1.7) such that (1.8) and

(a)–(e) in Theorem 1.1 hold.

Note: (L1) + (L′2)= (L1) + (L2) + the following (3.6), where

(3.6)

‖(I − P 0
∞)D(∇F)(z + u)|H0

∞
‖L(H0

∞,H
±
∞) → 0

uniformly for ‖u‖ ≤M as z ∈ H0
∞ and ‖z‖ → ∞.

4. A simple application

To save the length of this paper we are only satisfied with a simple application

of generalizing Theorem 5.2 in [2]. Some of the results in [10], [12], [5] may be

generalized with the similar ideas. They shall be given in other places.

Let Ω ⊂ Rn be a bounded open domain with C2-boundary ∂Ω, and let

p : Ω×R→ R be a Carthéodory function satisfying p(x, 0) = 0 for all x ∈ Ω and

the following condition:

(p) a0 = lim
t→0

p(x, t)/t uniformly in x ∈ Ω, and a = lim
|t|→∞

p(x, t)/t uniformly

in x ∈ Ω.

Consider the BVP

(4.1) −4u = p( · , u) in Ω and u|∂Ω = 0.

It is called non-resonant at infinity if a is not an eigenvalue of −4 with 0 boun-

dary conditions. Let q(x, t) = p(x, t)− at, q0(x, t) = p(x, t)− a0t, and

Q(x, t) =

∫ t

0

q(x, τ) dτ, Q0(x, t) =

∫ t

0

q0(x, τ) dτ.

Here are the hypotheses on q given in [2].

(q1) There exist constants c1 > 0 and r ∈ (0, 1) such that

|q(x, t)| ≤ c1(1 + |t|r) for all (x, t) ∈ Ω× R;

(q2) There exist constants c2 > 0 and α > 1 such that either

Q(x, t)− 1

2
q(x, t)t ≥ c2(|t|α − 1) for all (x, t) ∈ Ω× R,
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or

1

2
q(x, t)t−Q(x, t) ≥ c2(|t|α − 1) for all (x, t) ∈ Ω× R;

(q3) q ∈ C1(Ω× R) and ∂
∂tq(x, t)→ 0 as |t| → ∞ uniformly in x ∈ Ω;

(q±4 ) ±Q0(x, t) > 0 for |t| > 0 small, x ∈ Ω;

Theorem 4.1 ([2, Theorem 5.2]). Let the assumptions (p) and (q1)–(q3) be

satisfied.

(a) If a0 is not an eigenvalue of −4 then (4.1) has at least one nontrivial

solution provided a0 < λm < a or a < λm < a0 for some m ∈ N.

(b) If a0 = λm is an eigenvalue but (q+
4 ) holds in addition, then (4.1) has at

least one nontrivial solution provided a < a0 or a0 < λk < a for some

k > m.

(c) If a0 = λm is an eigenvalue but (q−4 ) holds in addition, then (4.1) has at

least one nontrivial solution provided a0 < a or a < λk < a0 for some

k < m.

We wish to prove this theorem provided that the conditions (p) and (q1)–(q3)

are replaced by the following four respective weaker ones

(p∗) a0 = lim
t→0

p(x, t)/t for almost every x ∈ Ω and a = lim
|t|→∞

p(x, t)/t for

almost every x ∈ Ω.

(q∗1) There exist constants c1 > 0, r ∈ (0, 1) and a function E ∈ L1(Ω) such

that

|q(x, t)| ≤ E(x) + c1|t|r for all (x, t) ∈ Ω× R;

(q∗2) There exist constants c2 > 0, α > 1 and G ∈ L1(Ω) such that either

Q(x, t)− 1

2
q(x, t)t ≥ c2|t|α −G(x) for all (x, t) ∈ Ω× R,

or

1

2
q(x, t)t−Q(x, t) ≥ c2|t|α −G(x) for all (x, t) ∈ Ω× R;

(q∗3) For almost every x ∈ Ω the function R 3 t 7→ q(x, t) is differentiable

and Ω×R 3 (x, t) 7→ qt(x, t) is a Carthéodory function. Moreover, there

exist s ∈ (2n/(n+ 2), 2n/(n− 2)) in case n > 2 and s ∈ (2n/(n+ 2),∞)

in case n = 2, and ` ∈ Ls(Ω), a bounded measurable h : R → R such

that h(t) → ~ ∈ R as |t| → ∞ and |qt(x, t)| ≤ `(x)h(t) for almost every

x ∈ Ω and for almost all t ∈ R. (Clearly, h ≥ 0 and ~ ≥ 0.)

Since q(x, 0) = 0 and at+ q(x, t) = p(x, t) = a0t+ q0(x, t) by the definition,

(p∗) and (q∗3) imply that for almost every x ∈ Ω, the derivative qt(x, 0) exists

and a0 = a+ qt(x, 0).
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For q in (q3) let h(t) := max
xΩ

∣∣ ∂
∂tq(x, t)

∣∣ for each t ∈ R. It is easily proved

that h ∈ L∞(R) and h(t) → 0 as |t| → ∞. This shows that q satisfies (q∗3). On

the other hand, for q in (q∗3) we cannot deduce that ∂
∂tq(x, t) → 0 as |t| → ∞

uniformly in x ∈ Ω in case ~ = 0 (even if we also assume q ∈ C1(Ω×R).) Hence

the condition (q∗3) is much weaker than (q3).

Recall that the Laplacian−4 is a self-adjoint operator defined on L2(Ω), with

domain D(−4) = H2(Ω)∩H1
0 (Ω). By the standard theory of linear elliptic BDV

due to Agmon–Douglis–Nirenberg, for any 1 < s <∞ the Laplacian −4 can be

extended into a continuous Fredholm operator from W 2,s(Ω)∩W 1,s
0 (Ω) to Ls(Ω).

Moreover, −4 is invertible and K = (−4)−1 is a continuous linear operator from

Ls(Ω) to W 2,s(Ω) (see Brezis [3], Theorem 9.32). Clearly, K satisfies (u, v)L2 =

(Ku, v)H1
0

for any v ∈ H1
0 (Ω) and u ∈ L2(Ω), where (w, v)H1

0
=
∫

Ω
∇w · ∇v dx.

Note that K is also a positive, self-adjoint and completely continuous operator

from L2(Ω) to L2(Ω) (resp. from H1
0 (Ω) to H1

0 (Ω)). The eigenvalues of the

Laplacian −4 on Ω with 0 boundary conditions form an increasing sequence:

0 < λ1 ≤ λ2 ≤ . . ., and λn →∞. (Actually, λ1 < λ2). K : H1
0 (Ω)→ H1

0 (Ω) has

a countable set of eigenvalues {µn}∞n=1 = {1/λn}∞n=1 of finite multiplicity.

Let c(Ω) be the smallest positive constant such that

(4.2) ‖u‖C0 ≤ c(Ω)‖∇u‖2 = c(Ω)‖u‖H for all u ∈ H1
0 (Ω)

(because H1
0 (Ω) ↪→ C(Ω)). For the s ∈ R in (q∗3) we have the sequence of

operators

(4.3) H1
0 (Ω) ↪→ Ls(Ω)

K−→W 2,s(Ω) ∩W 1,s
0 (Ω) ↪→ H1

0 (Ω),

where the first and the last are two embedding operators and the second is

a bounded linear operator. By (q∗3), for any u, v ∈ H1
0 (Ω), the function

(4.4) Ω 3 x 7→ qt(x, u(x))v(x) belongs to Ls(Ω),

and for almost every x ∈ Ω the functions R 3 t 7→ q(x, t) and R 3 t 7→ qt(x, t)

are continuous. The calculus fundamental theorem leads to

(4.5) |q(x, t2)− q(x, t1)| =
∣∣∣∣ ∫ t2

t1

qτ (x, τ) dτ

∣∣∣∣ ≤ ‖h‖L∞`(x)|t2 − t1|

for all t1, t2 ∈ R, and hence

(4.6) |Q(x, t)| ≤ 1

2
‖h‖L∞`(x)t2 for a.e. x ∈ Ω, for all t ∈ R

because q(x, 0) = 0. Hereafter ‖h‖∞ = sup{|h(t)| : t ∈ R}.
Let H = H1

0 (Ω) for convenience. Consider the functional

J(u) =

∫
Ω

(
1

2
|∇u|2 − 1

2
au2 −Q(x, u(x))

)
dx for all u ∈ H,
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and the bounded linear self-adjoint operator

(4.7) B(∞) : H1
0 (Ω)→ H1

0 (Ω), u 7→ u− aKu.

Then J(u) = (B(∞)u, u)H/2 + g(u) for all u ∈ H, where the functional

(4.8) g : H → R, u 7→ −
∫

Ω

Q(x, u(x)) dx.

For u ∈ H define B(u) : H → H by

(4.9) B(u)v = v − aKv −K(qt(u)v) for all v ∈ H1
0 (Ω),

where qt(u)(x) = qt(x, u(x)) for all x ∈ Ω. Then for any v, w ∈ H it holds that

(B(u)v, w)H = (v, w)H − a(Kv,w)H − (K(qt(u)v), w)H

= (v, w)H − a
∫

Ω

v(x)w(x) dx−
∫

Ω

qt(x, u(x))v(x)w(x) dx.

It follows from (q∗3) that B(u) ∈ Ls(H) because∣∣∣∣ ∫
Ω

qt(x, u(x))v(x)w(x) dx

∣∣∣∣ ≤ (∫
Ω

`(x) dx

)
· ‖h‖L∞ · ‖v‖C0 · ‖w‖C0 .

Proposition 4.2. Suppose that the condition (p∗) is satisfied. Then:

(a) Under the assumption (q∗1) the functional J is C1, and

(4.10) g(u) = J(u)− 1

2
(B(∞)u, u)H = o(‖u‖2H) as ‖u‖H →∞.

Moreover, ∇J(u) = u − aKu + ∇g(u) = u − aKu − K(q(u)), where

q(u)(x) = q(x, u(x)) for u ∈ H.

(b) Under the assumption (q∗3), J is C2 and D(∇J)(u) = B(u) for all u ∈ H.

Moreover, if a = λm, for any z ∈ H0
∞ = Ker(B(∞)) and u ∈ H±∞ :=

(H0
∞)⊥ it holds that

(4.11) ‖g′′(z + u)‖L(H) ≤ c(Ω)2‖`‖s[‖h(z + u)− ~‖s1s/(s−s1) + ~|Ω|(s−s1)/(s1s)],

where |Ω| := mes(Ω), 2n/(n+ 2) < s1 < s and s1 < 2n/(n− 2) in case

n > 2, c(Ω) is as in (4.2).

(c) Under the assumptions (q∗1) and (q∗3),

‖∇J(u)−B(∞)u‖H = o(‖u‖H) as ‖u‖H →∞.(4.12)

(d) Under the assumptions (q∗1) and (q∗2) the functional J satisfies the Pa-

lais–Smale condition.

Its proof is almost standard. For completeness we shall give it at the end of

this section.

For simplicity we set

(4.13) s1 =
1

2

(
2n

n+ 2
+ min

{
s,

2n

n− 2

})
and ι(s) =

s− s1

s1s
.
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Lemma 4.3 ([1, Lemma 3.2]). Let V be a finite dimensional subspace of C(Ω)

such that every v ∈ V \ {0} is different from zero almost everywhere in Ω. Let

h ∈ L∞(R) such that h(t)→ 0 as |t| → ∞. Moreover, consider a compact subset

K of Lp(Ω) (p ≥ 1). Then

lim
|t|→∞

∫
Ω

|h(tv(x) + u(x))| dx = 0

uniformly as u ∈ K and v ∈ S, where S = {v ∈ V | ‖v‖C0 = 1}.

Since any two norms on a finite dimensional linear space are equivalent, and

any bounded set in H = H1
0 (Ω) is compact L1(Ω), using this lemma we easily

prove

Claim 4.4. For given numbers ρ > 0 and ε > 0 there exists a R0 > 0 such

that

sup
τ∈[0,1]

‖h(z + u)− ~‖s1s/(s−s1) + ~|Ω|ι(s) < ε+ ~|Ω|ι(s)

for any u ∈ BH±∞(θ, ρ) and z ∈ H0
∞ with ‖z‖H ≥ R0.

Clearly, the origin θ of H is a critical point of J , and J ′′(θ) : H → H is given

by J ′′(θ)v = v − a0Kv for v ∈ H = H1
0 (Ω). Denote by

H0
θ , H

+
θ , H

−
θ (resp. H0

∞, H
+
∞, H

−
∞)

the kernel, positive and negative definite subspaces of J ′′(θ) (resp. B(∞)). Then

H = H0
θ ⊕H

+
θ ⊕H

−
θ and H = H0

∞⊕H+
∞⊕H−∞. Both H0

θ ⊕H
+
θ and H0

∞⊕H+
∞

are finite dimensional. Let νθ = dimH0
θ , µθ = dimH−θ and ν∞ = dimH0

∞,

µ∞ = dimH−∞. They are the nullity and Morse index of J at θ (resp. ∞). For

m ∈ N let

m− = min{j ∈ N | λj = λm} and m+ = max{j ∈ N | λj = λm}.

Clearly, m− = m+ = 1 for m = 1, and m− = 2 for m = 2. Let {ϕj}∞j=1 be

a normal orthogonal basis of H = H1
0 (Ω) consisting of the eigenfunctions asso-

ciated with the eigenvalues {λj}∞j=1. (So λj
∫

Ω
|ϕj(x)|2 dx =

∫
Ω
|∇ϕj(x)|2 dx = 1

for all j ∈ N.) Note that

J ′′(θ)ϕj =
λj − a0

λj
ϕj , B(∞)ϕj =

λj − a
λj

ϕj for all j ∈ N.

Clearly, H0
θ 6= {θ} (resp. H0

∞ 6= {θ}) if and only if a0 ∈ {λm}∞m=1 (resp.

a ∈ {λm}∞m=1). If a0 = a = λm then H0
θ = H0

∞ = Span({ϕj | m− ≤ j ≤ m+})
and

H−θ = H−∞ = Span({ϕj | j < m−}) and H+
θ = H+

∞ = Span({ϕj | j > m+}).

If a0 = a > λ1 and a0 = a /∈ {λi}∞i=1, then there exists m ∈ N such that

a0 = a ∈ (λm+ , λm++1) because λn →∞. In the case

H−θ = H−∞ = Span({ϕj | j ≤ m+}) and H+
θ = H+

∞ = Span({ϕj | j > m+}).
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Hence we obtain

νθ = ν∞ = m+ −m− + 1,

µθ = µ∞ = m− − 1

}
if a0 = a = λm,

νθ = ν∞ = 0 and µθ = µ∞ = 0 if a0 = a < λ1,

νθ = ν∞ = 0 and µθ = µ∞ = m+ if a0 = a ∈ (λm+ , λm++1).

By the splitting theorem for C2 functionals on Hilbert spaces (cf. [4], [16])

we get

Proposition 4.5.

(a) If a0 < λ1, then Ck(J, θ;K) = δ0kK.

(b) If a0 ∈ (λm+ , λm++1) for some m ∈ N, then Ck(J, θ;K) = δm+kK.

(c) If a0 = λm, then Ck(J, θ;K) = 0 for all k /∈ [m− − 1,m+].

Under the assumptions of Proposition 4.2(d) the functional J satisfies the

Palais–Smale condition and hence the deformation condition (D)c at every c ∈ R.

Then the critical group of J at infinity, C∗(J,∞;K), is well-defined. The follow-

ing is a generalization of Theorem 3.9 in [2].

Proposition 4.6. Let the assumptions of Proposition 4.2 be satisfied.

(a) If a < λ1, then Ck(J,∞;K) = δ0kK.

(b) If a ∈ (λm+ , λm++1) for m ∈ N, then Ck(J,∞;K) = δm+kK.

(c) If a = λm, then Ck(J,∞;K) = 0 for all k /∈ [m− − 1,m+] provided that

(4.14) ~|Ω|ι(s)‖`‖s <


1

c(Ω)2

λ2 − λ1

λ2
, m = 1,

1

c(Ω)2
min

{
λm − λm−−1

λm−−1
,
λm++1 − λ2

λm++1

}
, m > 1,

and

(4.15) ‖`‖1 · ‖h‖L∞ <
1

c(Ω)2
.

Here ι(s) is given by (4.13).

Clearly, when ~ = 0 the condition (4.14) is naturally satisfied because the

left side of the inequality is always positive. If ~ > 0 the choice of s1 in (4.13)

shows that the upper bound of ~ given by (4.14) is not the biggest one.

Before proving it we point out that using Propositions 2.3, 3.6 in [2] and

Propositions 4.5, 4.6 and repeating the proof of [2, Proposition 5.2] may lead to

the following generalization for Theorem 4.1.

Theorem 4.7. Suppose that the assumptions (p∗) and (q∗1)–(q∗3) are satisfied.

(a) If a0 is not an eigenvalue of −4 then (4.1) has at least one nontrivial

solution provided that for some m ∈ N, (4.14)–(4.15) hold and either

a0 < λm < a or a < λm < a0.
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(b) If a0 = λm is an eigenvalue but (4.14)–(4.15) and (q+
4 ) hold in addition,

then (4.1) has at least one nontrivial solution provided that either a < a0

or a0 < λk < a for some k > m and (4.14)–(4.15) hold with m = k.

(c) If a0 = λm is an eigenvalue but (4.14)–(4.15) and (q−4 ) hold in addition,

then (4.1) has at least one nontrivial solution provided that either a0 < a

or a < λk < a0 for some k < m and (4.14) holds with m = k.

Indeed, the condition (q+
4 ) (resp. (q+

4 )) is used to assure that the local linking

condition in Propositions 2.3 of [2] holds with X− = H0
θ ⊕H

−
θ and X+ = H+

θ

(resp. X− = H−θ and X+ = H0
θ ⊕H

+
θ ) because

J(u) =
1

2
(B(θ)u, u)H −

∫
Ω

Q0(x, u(x)) dx for all u ∈ H.

They imply Cµθ+νθ (J, θ) 6= 0 and Cµθ (J, θ) 6= 0, respectively.

There exists a further possible improvement, that is, the limit a0 = lim
t→0

p(x,t)
t

in (p∗) is not required to be constant. For example, for Theorem 4.7(a), we

may assume that a0(x) = lim
t→0

p(x, t)/t exists for almost every x ∈ Ω. Then the

second condition in (p∗) and (q∗3) imply that a0(x) = a + qt(x, 0) for almost

every x ∈ Ω. Suppose that 1 is not an eigenvalue of the equation −4u = λa0u

in Ω with 0 boundary conditions. Then θ is a nondegenerate critical point of J

with finite Morse index µθ, and hence Ck(J, θ) = δkµθK. If θ is a unique critical

point of J then Ck(J,∞) = δkµθK by Proposition 3.6 of [2]. Proposition 4.6 shall

lead to a contradiction under the suitable condition on a. The corresponding

generalizations of Theorem 4.7(b)–(c) can be obtained similarly.

Proof of Proposition 4.6. Step 1. Carefully checking the proof of Lem-

ma 4.2 in [2] one easily sees that (4.10) and (4.12) imply the corresponding result:

For sufficiently large R > 0 and b� 0 the pair

(BH0
∞

(θ,R+ 1)⊕H±∞, Jb ∩ (BH0
∞

(θ,R+ 1)⊕H±∞))

is homotopy to the pair

(BH0
∞

(θ,R+ 1)⊕BH−∞(θ, 1), BH0
∞

(θ,R+ 1)⊕ ∂BH−∞(θ, 1)).

The homotopy equivalence leaves the H0
∞-component fixed. In particular, the

pair (H,Jb) is homotopy to the pair (BH−∞(θ, 1), ∂BH−∞(θ, 1)) provided that

ν∞ = 0 and µ∞ <∞.

The final claim immediately leads to (a) and (b).

Step 2. We begin to prove (c). In this case obverse that

(B(∞)|H±∞)−1

( ∑
λj 6=λm

xjϕj

)
=

∑
λj 6=λm

λj
λj − λm

xjϕj .
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For X = H, by the definitions of C∞1 and C∞2 above (1.2) we have

C∞1 = ‖(B(∞)|H±∞)−1‖L(H±∞,H
±
∞) and C∞2 = ‖I − P 0

∞‖L(H,H±∞).

From these ones easily derive

Lemma 4.8. C∞2 = 1 (because I − P 0
∞ = P±∞ 6= I). If a = λ1 then

C∞1 = ‖(B(∞)|H±∞)−1‖L(H±∞) =
λ2

λ2 − λ1
,

and if a = λm with m ≥ 2 then

C∞1 = ‖(B(∞)|H±∞)−1‖L(H±∞) = max

{
λm−−1

λm − λm−−1
,

λm++1

λm++1 − λ2

}
.

We wish to use Corollary 1.6. It suffices to check the conditions (c)–(d)

therein. Since Q(∞)v = −aKv, B(u)v −Q(∞)v = v −K(qt(x)v) and hence

(B(u)v −Q(∞)v, v)H = (v, v)H −
∫

Ω

qt(x, u(x))(v(x))2 dx

≥ (v, v)H −
(∫

Ω

`(x)dx

)
· ‖h‖L∞ · ‖u‖C0 · ‖v‖C0

≥ (1− c(Ω)2‖`‖1 · ‖h‖L∞)‖u‖2H .

This shows that the conditions (c) of Corollary 1.6 holds under (4.15).

By (4.12), ‖∇J(z)‖H = o(‖z‖H) as z ∈ H0
∞ and ‖u‖H →∞. Hence

M(A) = M(∇J) = lim
R→∞

sup{‖(I − P 0
∞)∇J(z)‖H : z ∈ H0

∞, ‖z‖H ≥ R} = 0.

By Lemma 4.8 and (4.14) we may take a small ε > 0 such that

c(Ω)2‖`‖s(ε+ ~|Ω|ι(s)) < 1/C∞1 .

For this ε > 0 and a given numbers ρ > 0, by Claim 4.4 there exist R0 > 0 such

that

sup
τ∈[0,1]

‖h(z + u)− ~‖s1s/(s−s1) + ~|Ω|ι(s) < ε+ ~|Ω|ι(s)

for any u ∈ BH±∞(θ, ρ) and z ∈ H0
∞ with ‖z‖H ≥ R0. This and (4.11) lead to

‖(I − P 0
∞)[B(z + u)−B(∞)]|H±∞‖L(H±∞) ≤ ‖B(z + u)−B(∞)‖L(H)

= ‖g′′(z + u)‖L(H) ≤ c(Ω)2‖`‖s(ε+ ~|Ω|(s−s1)/s1s) <
1

κC∞1

for any u ∈ BH±∞(θ, ρ) and z ∈ H0
∞ with ‖z‖H ≥ R0. Summarizing these we

obtain

Lemma 4.9. For a = λm, if either ~ = 0 or ~ > 0 and (4.14)–(4.15) are

satisfied, then taking ρ∇J as any positive number ρ there exist R1 > 0 such that

the conditions of Corollary 1.6 is satisfied.



330 G. Lu

Under the assumptions of Proposition 4.2 and Lemma 4.9, by Corollary 1.6

there exist a positive number R, a C1 map h∞ : BH0
∞

(∞, R) → BH±∞(θ, ρ∇J)

(satisfying (I − P 0
∞)A(z + h∞(z)) = 0 for all z ∈ BH0

∞
(∞, R)), and a homeo-

morphism Φ: BH0
∞

(∞, R)⊕H±∞ → BH0
∞

(∞, R)⊕H±∞ such that

J ◦ Φ(z + u+ + u−) = ‖u+‖2 − ‖u−‖2 + J(z + h∞(z))

for all (z, u++u−) ∈ BH0
∞

(∞, R)×H±∞. Using this we may repeat the arguments

on pages 432–433 of [2] to derive that Lemma 4.3 of [2] holds for J : There exist

a sufficiently large R > 0, b � 0 and a continuous map γ : BH0
∞

(∞, R) → [0, 1]

with γ(C) > 0 for C := BH0
∞

(θ,R+ 1) ∩BH0
∞

(∞, R) such that the pair

(BH0
∞

(∞, R)×H±∞, Jb ∩ (BH0
∞

(∞, R)×H±∞))

is homotopy equivalent to the pair (BH0
∞

(∞, R)×H−∞,Γ), where

Γ = {(z, u) ∈ BH0
∞

(∞, R)×H−∞ : ‖u‖ ≥ γ(z)} and

γ(z) =


0 if J(z + h∞(z)) ≤ a,
1 if J(z + h∞(z)) ≥ a+ 1,

J(z + h∞(z))− b elsewhere.

Moreover, the homotopy equivalence leaves the H0
∞-component fixed.

Combing this with Step 1 and repeating the proof of Theorem 3.9 in [2] we

get the claim in Proposition 4.6(c), i.e. Ck(J,∞;K) ∼= Hk(H,Jb;K) = 0 for

all k /∈ [m− − 1,m+] because [µ∞, µ∞ + ν∞] = [m− − 1,m+] by the list above

Proposition 4.5. �

Proof of Proposition 4.2. (a) Since the functional H 3 u 7→(B(∞)u, u)H
is smooth, we only need to prove that the functional g in (4.8) is C1. Clearly, it

suffices to prove that g is C1 under the assumption: there exist E ∈ L1(Ω) and

r ≥ 1 such that

(4.16) |q(x, t)| ≤ E(x) + |t|r for a.e. x ∈ Ω, for all t ∈ R.

Obverse that Q is also a Carthéodory function and that

|Q(x, u(x) + v(x))−Q(x, u(x))| =
∣∣∣∣ ∫ u(x)+v(x)

u(x)

q(x, τ) dτ

∣∣∣∣
= sup

τ∈[0,1]

|q(x, u(x) + τv(x))| · |u(x)− v(x)|

≤
(
E(x) + sup

τ∈[0,1]

|u(x) + τv(x)|r
)
· |u(x)− v(x)|

≤ (E(x) + (‖u‖C0 + ‖v(x)‖C0)r) · ‖u− v‖C0

for any u, v ∈ H. So g (and hence J) is continuous because

|g(u+ v)− g(u)| ≤ (‖E‖L1 + |Ω| · (‖u‖C0 + ‖v(x)‖C0)r) · ‖u− v‖C0 .
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In order to prove that g is C1, by the standard result in functional analysis

we only need to prove that g has a bounded linear Gâteaux derivative Dg(u) at

every point u ∈ H and that H 3 u 7→ Dg(u) ∈ H∗ is continuous.

For u, v ∈ H1
0 (Ω), τ ∈ (−1, 1) \ {0} and almost every x ∈ Ω, as above we get∣∣∣∣Q(x, u(x) + τv(x))−Q(x, u(x))

τ

∣∣∣∣ =

∣∣∣∣1τ
∫ u(x)+τv(x)

u(x)

q(x, τ) dτ

∣∣∣∣
≤ sup

0<θ<1
|q(x, u(x) + θτv(x))v(x)| · |v(x)|

≤ (E(x) + (‖u‖C0 + ‖v(x)‖C0)r) · ‖v‖C0

by (4.16). From this and the Lebesgue dominated convergence theorem we derive

Dg(u)[v] =
d

dτ

∣∣∣∣
τ=0

g(u+ τv) = −
∫

Ω

q(x, u(x)) · v(x) dx.

That is, g is Gâteaux differentiable. Clearly, Dg(u) ∈ H∗. Since H1
0 (Ω) ↪→

C(Ω) and |q(x, u(x))| ≤ E(x) + ‖u‖rC0 by (4.16), as above we deduce that H ×
H 3 (u, v) 7→ Dg(u)[v] is continuous. That is, g is continuously directional

differentiable.

Moreover, for u1, u2, v ∈ H1
0 (Ω), (4.5) leads to∣∣∣∣ ∫

Ω

[q(x, u2(x))− q(x, u1(x))] · v(x) dx

∣∣∣∣ ≤ ‖v‖C0

∫
Ω

|q(x, u2(x))− q(x, u1(x))| dx

and hence

‖Dg(u1)−Dg(u2)‖H∗ = sup
‖v‖H≤1

|Dg(u1)v −Dg(u2)v|

≤ c(Ω)

∫
Ω

|q(x, u2(x))− q(x, u1(x))| dx

where c(Ω) is as in (4.2). Let f(x) denote the sign function of q(x, u2(x)) −
q(x, u1(x)). It is measurable, and∫

Ω

|q(x, u2(x))− q(x, u1(x))| dx =

∫
Ω

[f(x)q(x, u2(x))− f(x)q(x, u1(x))] dx.

Obverse that Ω× R 3 (x, t) 7→ f(x)q(x, t) is a also a Carthéodory function and

that |f(x)q(x, t)| ≤ |q(x, t)| ≤ E(x)+|t|r for almost every x ∈ Ω and all t ∈ R. By

the standard properties of the Nemytski operator (cf. [8, Proposition 3.2.24]), the

map Lr(Ω) 3 u 7→ q(u) ∈ L1(Ω), where q(u)(x) = f(x)q(x, u(x)), is continuous.

From the continuity of the inclusion H ↪→ Lr(Ω) it follows that the functional

Dg is continuous. Hence g (and therefore J) is C1.

Finally, since |q(x, t)| ≤ E(x) + c1|t|r∀(x, t) ∈ Ω× R by (q∗1), we derive

|Q(x, t)| =
∣∣∣∣ ∫ t

0

q(x, τ) dx

∣∣∣∣ ≤ |t|E(x) + c1|t|r+1 for all (x, t) ∈ Ω× R.
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Hence for any u ∈ H we have

|g(u)| ≤
∫

Ω

|Q(x, u(x))| dx ≤
∫

Ω

(E(x)|u(x)|+ c1|u(x)|r+1) dx

≤ ‖u‖C0

∫
Ω

E(x) dx+ c1|Ω| · ‖u‖r+1
C0

≤ c(Ω)‖u‖H
∫

Ω

E(x) dx+ c1(c(Ω))r+1|Ω| · ‖u‖r+1
H ,

where c(Ω) is as in (4.2). (4.10) follows. The expression of ∇J is clear.

(b) For the integer s′ satisfying the equality 1/s+ 1/s′ = 1, by (4.5),

|q(x, t)| ≤
(

1

s
(`(x))s +

1

s′
|t|s
′
)
· ‖h‖L∞ for a.e. x ∈ Ω, for all t ∈ R.

So it follows from (a) that g and hence J is C1.

Let us prove that ∇J is C1. For u, v, w ∈ H and τ ∈ (−1, 1) \ {0}, we have∣∣∣∣(K(q(u+ τv))−K(q(u))

τ
, w

)
H

− (K(qt(u)v), w)H

∣∣∣∣
=

∣∣∣∣ ∫
Ω

[
q(x, u(x) + τv(x))− q(x, u(x))

τ
− qt(x, u(x))v(x)

]
· w(x) dx

∣∣∣∣
≤
∫

Ω

∣∣∣∣q(x, u(x) + τv(x))− q(x, u(x))

τ
− qt(x, u(x))v(x)

∣∣∣∣ · |w(x)| dx

and thus∥∥∥∥K(q(u+ τv))−K(q(u))

τ
−K(qt(u)v)

∥∥∥∥
H

≤ c(Ω)

∫
Ω

∣∣∣∣q(x, u(x) + τv(x))− q(x, u(x))

τ
− qt(x, u(x))v(x)

∣∣∣∣ dx.
Note that for almost every x ∈ Ω,∣∣∣∣q(x, u(x) + τv(x))− q(x, u(x))

τ
− qt(x, u(x))v(x)

∣∣∣∣ ≤ 2`(x)‖h‖L∞ · |v(x)|

by (q∗3). From the Lebesgue dominate convergence theorem we derive

lim
τ→0

∥∥∥∥K(q(u+ τv))−K(q(u))

τ
−K(qt(u)v)

∥∥∥∥
H

≤ lim
τ→0

∫
Ω

∣∣∣∣[q(x, u(x) + τv(x))− q(x, u(x))

τ
− qt(x, u(x))v(x)

]∣∣∣∣ dx = 0.

Hence ∇g is Gâteaux differentiable, and ∇J has the Gâteaux derivative B(u) at

any u ∈ H. Moreover, obverse that

(B(u1)v −B(u2)v, w)H =

∫
Ω

[qt(x, u2(x))− qt(x, u1(x))]v(x)w(x) dx
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and hence

‖B(u1)v −B(u2)v‖H ≤ c(Ω)‖v‖C0

∫
Ω

|qt(x, u2(x))− qt(x, u1(x))| dx

≤ c(Ω)2‖v‖H
∫

Ω

|qt(x, u2(x))− qt(x, u1(x))| dx.

We obtain

‖B(u1)−B(u2)‖L(H) ≤ c(Ω)2

∫
Ω

|qt(x, u2(x))− qt(x, u1(x))| dx.

Since t 7→ qt(x, t) is continuous, qt(x, u2(x))→ qt(x, u1(x)) as ‖u2 − u1‖C0 → 0.

It follows from (q∗3) that the map H 3 u 7→ B(u) ∈ L(H) is continuous. This

implies that ∇J has the Fréchlet derivative B(u) at u ∈ H, and therefore that

J is C2.

In order to prove (4.11), note that for z ∈ H0
∞ and u1 ∈ H±∞, u2 ∈ H we

have

‖g′′(z + u1)u2‖H = sup
‖w‖H≤1

|(g′′(z + u1)u2, w)H |

= sup
‖w‖H≤1

|(K(qt(z + u1)u2, w)H |

≤ sup
‖w‖H≤1

∫
Ω

|qt(x, z(x) + u1(x))u2(x)w(x)| dx

≤ sup
‖w‖H≤1

∫
Ω

`(x)h(z(x) + u1(x))|u2(x)w(x)| dx

≤‖u2‖C0

(
sup
‖w‖H≤1

‖w‖C0

)∫
Ω

`(x)h(z(x) + u1(x)) dx

≤‖`‖s
(∫

Ω

|h(z(x) + u1(x))|s1s/(s−s1) dx

)(s−s1)/(s1s)

· ‖u2‖C0

(
sup
‖w‖H≤1

‖w‖C0

)
≤‖`‖s‖h(z + u1)‖s1s/(s−s1) · ‖u2‖C0( sup

‖w‖H≤1

‖w‖C0)

≤ c(Ω)2‖`‖s[‖h(z + u1)− ~‖s1s/(s−s1)~|Ω|(s−s1)/(s1s)] · ‖u2‖H ,

where c(Ω) is as in (4.2). (4.11) follows from this.

(c) Since ∇J(u)−B(∞)u = ∇g(u), we may derive (4.12) as follows:

‖∇g(u)‖H = sup
‖v‖H≤1

|(∇g(u), v)H | ≤ sup
‖v‖H≤1

∫
Ω

|q(x, u(x))| · |v(x)| dx

≤
(

sup
‖v‖H≤1

‖v‖C0

)
·
∫

Ω

|q(x, u(x))| dx

≤ c(Ω)

∫
Ω

E(x) dx+ c1c(Ω)

∫
Ω

|u(x)|r dx
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≤ c(Ω)

∫
Ω

E(x) dx+ c1c(Ω)r+1|Ω| · ‖u‖rH .

(d) By (4.7), B(∞) = I−aK. Let H0
∞ := Ker(B(∞)). Note that the positive

(resp. negative) definite subspace of B(∞), H+
∞ (resp. H−∞), is spanned by the

eigenfunctions of−4 which correspond to the eigenvalues less than (resp. greater

than) a. Since H = H0
∞ ⊕H+

∞ ⊕H−∞ we may write u ∈ H as u = u0 + u+ + u−.

Hence (B(∞)u, u)H = (B(∞)u+, u+)H + (B(∞)u−, u−)H . It follows that

‖u‖∗ = (‖u0‖2L2 + (B(∞)u+, u+)H − (B(∞)u−, u−)H)1/2

defines an equivalent norm on H. Obverse that

‖u‖∗ =

(∫
Ω

‖u0‖2 dx+

∫
Ω

[|∇u+|2 − a|u+|2] dx−
∫

Ω

[|∇u−|2 − a|u−|2] dx

)1/2

.

Let (un) be a Palais–Smale sequence for J in H. That is, J ′(un) → 0 and

|J(un)| ≤M for some M > 0 and all n ∈ N. As in the proof of Lemma 5.5 in [2]

we have

(‖u±n ‖∗)2 ≤
∣∣∣∣ ∫

Ω

q(x, un)u±n dx

∣∣∣∣+ ‖u±n ‖∗

for n large. From (q∗1) we derive∣∣∣∣ ∫
Ω

q(x, un)u±n dx

∣∣∣∣ ≤ ∫
Ω

|q(x, un)| · |u±n | dx ≤ ‖u±n ‖C0

∫
Ω

(E(x) + c1|un(x)|r) dx.

Since H ↪→ C(Ω) and the norms ‖ · ‖H and ‖ · ‖∗ on H are equivalent, there

exists a constant only depending on Ω, CΩ > 0, such that ‖u‖C0 ≤ CΩ‖u‖∗ for

all u ∈ H. So∣∣∣∣ ∫
Ω

q(x, un)u±n dx

∣∣∣∣ ≤ CΩ‖u±n ‖∗ · (‖E‖L1 + c1C
r
Ω|Ω| · ‖un‖r∗).

These lead to ‖u±n ‖∗ ≤ 1 + CΩ · ‖E‖L1 + c1C
r+1
Ω |Ω| · ‖un‖r∗. By (q∗2) we may

assume

1

2
q(x, t)t−Q(x, t) ≥ c2|t|α −G(x) for all (x, t) ∈ Ω× R.

(Another case can be proved in the same way). As in [2] we have

M + ‖un‖∗ ≥
∣∣∣∣J(un)− 1

2
J ′(un)un

∣∣∣∣
=

∣∣∣∣ ∫
Ω

(
1

2
q(x, un(x))un(x)−Q(x, un(x))

)
dx

∣∣∣∣
≥
∣∣∣∣ ∫

Ω

(
1

2
q(x, un(x))un(x)−Q(x, un(x) +G(x))

)
dx

∣∣∣∣− ‖G‖L1

≥ c2
∫
ω

|un(x)|α dx− ‖G‖L1 .

Then repeating the remainder arguments in the proof of Lemma 5.5 in [2] give

the desired conclusion. �
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