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Quantitative uniqueness for
second order elliptic operators

with strongly singular coefficients

Ching-Lung Lin, Gen Nakamura and Jenn-Nan Wang

Abstract

In this paper we study the local behavior of a solution to second
order elliptic operators with sharp singular coefficients in lower order
terms. One of the main results is the bound on the vanishing order
of the solution, which is a quantitative estimate of the strong unique
continuation property. Our proof relies on Carleman estimates with
carefully chosen phases. A key strategy in the proof is to derive dou-
bling inequalities via three-sphere inequalities. Our method can also
be applied to certain elliptic systems with similar singular coefficients.

1. Introduction

Assume that Ω is a connected open set containing 0 in R
n for n ≥ 2. Let

P (x, D) =
∑
j,k

ajk(x)DjDk

be an elliptic differential operator in Ω such that ajk(0) is a real symmet-
ric matrix and ajk(x) is Lipschitz continuous in Ω, where Dj = ∂/∂xj ,
j = 1, . . . , n. Note that ajk(x) could be complex valued at x �= 0. In this
paper we consider the following second order differential inequality:

(1.1) |P (x, D)u| ≤ C1

|x|2 |u| +
C2

|x| |∇u| in Ω,

where C2 is sufficiently small. Before proceeding to the main discussion,
we want to point out that restrictions described above are necessary. It is
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well known that the Lipschitz smoothness requirement on aij is minimal for
the unique continuation to hold [14]. Counterexamples given by Alinhac [2]
show that the restriction of aij(0) being real is necessary for the strong
unique continuation. On the other hand, regarding the constant C2, the
strong unique continuation fails for (1.1) if C2 is not small, see [3] and [16].
Finally, simple counterexamples also show that the singular coefficients on
the right side of (1.1) are sharp for the strong unique continuation. Under
the same assumptions, the strong unique continuation property for (1.1)
was proved by Regbaoui [15]. But Regbaoui did not give any quantitative
estimate on the vanishing order of u satisfying (1.1). This is our main goal
in this work. The development of qualitative unique continuation property
has a long history. We do not intend to give a summary here. We refer to
the paper [10] and references therein for more details.

Concerning about the quantitative estimate of the uniqueness for partial
differential operators, we would like to mention several related works. Using
the frequency function, Garofala and Lin [5, 6] derived a quantitative version
of the strong unique continuation for strongly second order elliptic operators.
In [5], they also considered |x|−2 potentials but without first order terms.
In [6], they studied full lower order terms with certain singular coefficients,
but they are not sharp. Also in [11], Kukavica used the frequency function to
prove the maximal vanishing order of solutions to the strong second order
elliptic operator with essentially bounded potentials. Our method in this
paper is different from those in [5], [6], and [11]. Our key tools are Carleman
estimates. Besides of the difference in method, the differential operator
P (x, D) in (1.1) is only elliptic and the coefficients on the right hand side
of (1.1) are strongly singular. None of [5], [6], and [11] dealt with the
equation as (1.1).

On the other hand, Donnelly and Fefferman [4] applied Carleman’s tech-
nique to derive the maximal vanishing order of the eigenfunction with respect
to the corresponding eigenvalue on a compact smooth Riemannian mani-
fold. Also, in [12], Lin applied the Carleman estimate proved by Jerison and
Kenig [9] to derive a quantitative estimate of the strong unique continuation

property for the Schrödinger equation with L
n/2
loc potential. However, the

methods in [4] and [12] can not be applied to (1.1) with strongly singular
coefficients. The difficulty lies in the fact that all Carleman estimates used
to treat the strong unique continuation contain only polynomial weights,
which are not ”singular” enough to handle sharp singular coefficients in the
lower derivatives. In this work, we overcome this difficulty by deriving three-
sphere inequalities using slightly singular than polynomial weights. Then we
proceed to derive doubling inequalities and the bound on the vanishing order
of the solution to (1.1) by applying three-sphere inequalities recursively.
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In this paper, for brevity, we only consider the scalar second order elliptic
operator. But our method can also be applied to the case where P (x, D) is
an elliptic system as

P (x, D) = diag(P1(x, D), . . . , P�(x, D)),

where Pj(x, D), j = 1, . . . , �, are second order elliptic operators with Lips-
chitz coefficients and satisfy that Pj(0, D) = · · · = P�(0, D) with real sym-
metric coefficients. All methods mentioned above do not seem to work in
this general case. Finally, we would like to mention that quantitative esti-
mates of the strong unique continuation are useful in studying the nodal sets
of eigenfunctions [4], or solutions of second order elliptic equations [7], [13],
or the inverse problem [1]. The main results of the paper are summarized
as follows. Assume that BR0 ⊂ Ω.

Theorem 1.1 There exists a positive number R1 < 1 such that if 0 < r1 <
r2 < r3 ≤ R0 and r1/r3 < r2/r3 < R1, then

(1.2)

∫
|x|<r2

|u|2dx ≤ C

(∫
|x|<r1

|u|2dx

)τ (∫
|x|<r3

|u|2dx

)1−τ

for u ∈ H1(BR0) satisfying (1.1) in BR0, where C and 0 < τ < 1 depend on
r1/r3, r2/r3 and P (x, D).

Remark 1.1 From the proof, it suffices to take R1 ≤ 1/4. Moreover, the
constants C and τ can be explicitly written as C=max{C0(r2/r1)

n, exp(Bβ0)}
and τ = B/(A + B), where C0 > 1 and β0 are constants depending on
P (x, D) and

A = A(r1/r3, r2/r3) = (log(r1/r3) − 1)2 − (log(r2/r3))
2,

B = B(r2/r3) = −1 − 2 log(r2/r3).

The explicit forms of these constants are important in the proof of Theo-
rem 1.2.

Theorem 1.2 There exists a constant C depending on P (x, D) such that if
u ∈ H1

loc(Ω) is a nonzero solution to (1.1) with C2 < C, then we can find a
constant R2 depending on P (x, D) and a constant m1 depending on P (x, D)
and ‖u‖L2(|x|<R2

2)/‖u‖L2(|x|<R4
2)

satisfying

(1.3)

∫
|x|<R

|u|2dx ≥ KRm1 ,

where R is sufficiently small and the constant K depends on n, R2 and u.
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In view of the standard unique continuation property for (1.1) in a con-
nected domain containing the origin, if u vanishes in a neighborhood of the
origin then it vanishes identically in Ω. Theorem 1.2 provides an upper
bound on the vanishing order of a nontrivial solution to (1.1). The following
doubling inequality is another quantitative estimate of the strong unique
continuation for (1.1).

Theorem 1.3 Let u ∈ H1
loc(Ω) be a nonzero solution to (1.1). Then there

exist positive constants R3 and C3 depending on P (x, D), m1 such that if
0 < r ≤ R3, then

(1.4)

∫
|x|≤2r

|u|2dx ≤ C3

∫
|x|≤r

|u|2dx,

where m1 is the constant obtained in Theorem 1.2.

The rest of the paper is devoted to the proofs of Theorem 1.1-1.3.

2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. To begin, we recall
a Carleman estimate with weight ϕβ = ϕβ(|x|) = exp(β

2
(log |x|)2) derived

in [15].

Lemma 2.1 [15, Theorem1.2] For any β > 0 large enough. Let S be a
small neighborhood of 0 and u : S \ {0} ⊂ Ω → R, u ∈ C∞

0 (S \ {0}). Then
we have

β3

∫
ϕ2

β|x|−n|u|2dx +β

∫
ϕ2

β|x|−n+2|∇u|2dx ≤(2.1)

≤ C̃0

∫
ϕ2

β|x|−n+4|P (x, D)u|2dx,

for some positive constant C̃0 depending only on P (x, D).

Remark 2.1 The estimate (2.1) in Lemma 2.1 remains valid if we assume
u ∈ H2(S \ {0}) with compact support. This can be easily obtained by
cutting off u for small |x| and regularizing.

We now proceed to the main part of the proof. Using regularization,
Friedrich’s lemma, and ellipticity of P (x, D), we can see that if u ∈ H1

loc(Ω)
satisfies (1.1) then u ∈ H2

loc(Ω \ {0}). To begin, we first consider the case
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where 0 < r1 < r2 < R < 1 and BR ⊂ Ω. The constant R will be deter-
mined later. To use the Carleman estimate (2.1), we need to cut-off u. So
let ξ(x) ∈ C∞

0 (Rn) satisfy 0 ≤ ξ(x) ≤ 1 and

ξ(x) =

⎧⎪⎨⎪⎩
0, |x| ≤ r1/e,

1, r1/2 < |x| < er2,

0, |x| ≥ 3r2.

Here e = exp(1). It is easy to see that for all multiindex α

(2.2)

{|Dαξ| = O(r
−|α|
1 ) for all r1/e ≤ |x| ≤ r1/2

|Dαξ| = O(r
−|α|
2 ) for all er2 ≤ |x| ≤ 3r2.

On the other hand, repeating the proof of Corollary 17.1.4 in [8], we can
show that

(2.3)

∫
a1r<|x|<a2r

| |x||α|Dαu|2dx ≤ C ′
∫

a3r<|x|<a4r

|u|2dx, |α| ≤ 2,

for all 0 < a3 < a1 < a2 < a4 such that Ba4r ⊂ Ω, where the constant C ′ is
independent of r.

Noting that the commutator [P (x, D), ξ] is a first order differential op-
erator. Applying (2.1) to ξu and using (1.1), (2.2), (2.3) implies

β3

∫
r1/2<|x|<er2

ϕ2
β|x|−n|u|2dx + β

∫
r1/2<|x|<er2

ϕ2
β|x|−n+2|∇u|2dx ≤

≤ β3

∫
ϕ2

β|x|−n|ξu|2dx + β

∫
ϕ2

β|x|−n+2|∇(ξu)|2dx

≤ C̃0

∫
ϕ2

β|x|−n+4|P (x, D)(ξu)|2dx

≤ C̃0

∫
ϕ2

β(C2
1 |x|−n|ξu|2 + C2

2 |x|−n+2|ξ∇u|2)dx

+ C̃0

∫
ϕ2

β|x|−n+4
∣∣[P (x, D), ξ]u

∣∣2dx

≤ C̃1

{ ∫
r1/2<|x|<er2

ϕ2
β|x|−n|u|2dx +

∫
r1/2<|x|<er2

ϕ2
β|x|−n+2|∇u|2dx

+

∫
r1/e<|x|<r1/2

ϕ2
β|x|−n|u|2dx +

∫
r1/e<|x|<r1/2

ϕ2
β|x|−n+2|∇u|2dx

+

∫
er2<|x|<3r2

ϕ2
β|x|−n|u|2dx +

∫
er2<|x|<3r2

ϕ2
β|x|−n+2|∇u|2dx

}



480 C.-L. Lin, G. Nakamura and J.-N. Wang

≤ C̃2

{∫
r1/2<|x|<er2

ϕ2
β|x|−n|u|2dx +

∫
r1/2<|x|<er2

ϕ2
β|x|−n+2|∇u|2dx

+ r−n
1 ϕ2

β(r1/e)

∫
r1/e<|x|<r1/2

(|u|2 + ||x|2∇u|2)dx

+ r−n
2 ϕ2

β(er2)

∫
er2<|x|<3r2

(|u|2 + ||x|2∇u|2)dx

}

≤ C̃3

{∫
r1/2<|x|<er2

ϕ2
β|x|−n|u|2dx +

∫
r1/2<|x|<er2

ϕ2
β|x|−n+2|∇u|2dx

+ r−n
1 ϕ2

β(r1/e)

∫
r1/4<|x|<r1

|u|2dx + r−n
2 ϕ2

β(er2)

∫
2r2<|x|<4r2

|u|2dx

}
,(2.4)

where C̃1, C̃2, and C̃3 are independent of r1 and r2. Now letting β0 ≥ 1 and
β ≥ β0 ≥ 2C̃3 in (2.4), we immediately get that∫

r1/2<|x|<er2

ϕ2
β|x|−n|u|2dx +

∫
r1/2<|x|<er2

ϕ2
β|x|−n+2|∇u|2dx ≤

≤ C̃4

{
r−n
1 ϕ2

β(r1/e)

∫
r1/4<|x|<r1

|u|2dx + r−n
2 ϕ2

β(er2)

∫
2r2<|x|<4r2

|u|2dx
}
,(2.5)

where C̃4 = 1/C̃3. It follows easily from (2.5) that

r−n
2 ϕ2

β(r2)

∫
r1/2<|x|<r2

|u|2dx ≤

≤
∫

r1/2<|x|<er2

ϕ2
β|x|−n|u|2dx

≤ C̃4

{
r−n
1 ϕ2

β(r1/e)

∫
r1/4<|x|<r1

|u|2dx + r−n
2 ϕ2

β(er2)

∫
2r2<|x|<4r2

|u|2dx
}

.(2.6)

Dividing r−n
2 ϕ2

β(r2) on the both sides of (2.6) implies∫
r1/2<|x|<r2

|u|2dx ≤ C̃4

{
(r2/r1)

n[ϕ2
β(r1/e)/ϕ

2
β(r2)]

∫
r1/4<|x|<r1

|u|2dx

+ [ϕ2
β(er2)/ϕ

2
β(r2)]

∫
2r2<|x|<4r2

|u|2dx
}

≤ C̃5

{
(r2/r1)

n[ϕ2
β(r1/e)/ϕ

2
β(r2)]

∫
|x|<r1

|u|2dx

+ (r2/r1)
n[ϕ2

β(er2)/ϕ
2
β(r2)]

∫
|x|<4r2

|u|2dx
}
,(2.7)

where C̃5 = max{C̃4, 1}.
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With such choice of C̃5, we see that

C̃5(r2/r1)
n[ϕ2

β(r1/e)/ϕ
2
β(r2)] > 1

for all 0 < r1 < r2. Adding
∫
|x|<r1/2

|u|2dx to both sides of (2.7) and choosing

r2 ≤ 1/4, we obtain that∫
|x|<r2

|u|2dx ≤ 2C̃5(r2/r1)
n[ϕ2

β(r1/e)/ϕ
2
β(r2)]

∫
|x|<r1

|u|2dx

+ 2C̃5(r2/r1)
n[ϕ2

β(er2)/ϕ
2
β(r2)]

∫
|x|<1

|u|2dx.(2.8)

For simplicity, by denoting

A = β−1 log[ϕ2
β(r1/e)/ϕ

2
β(r2)] = (log r1 − 1)2 − (log r2)

2 > 0,

B = −β−1 log[ϕ2
β(er2)/ϕ

2
β(r2)] = −1 − 2 log r2 > 0,

(2.8) becomes∫
|x|<r2

|u|2dx ≤

≤ 2C̃5(r2/r1)
n
{

exp(Aβ)

∫
|x|<r1

|u|2dx + exp(−Bβ)

∫
|x|<1

|u|2dx
}

.(2.9)

To further simplify the terms on the right hand side of (2.9), we consider
two cases. If

exp (Aβ0)

∫
|x|<r1

|u|2dx < exp (−Bβ0)

∫
|x|<1

|u|2dx,

then we can pick a β > β0 such that

exp (Aβ)

∫
|x|<r1

|u|2dx = exp (−Bβ)

∫
|x|<1

|u|2dx.

Using such β, we obtain from (2.9) that∫
|x|<r2

|u|2dx ≤ 4C̃5(r2/r1)
n exp (Aβ)

∫
|x|<r1

|u|2dx =

= 4C̃5(r2/r1)
n

( ∫
|x|<r1

|u|2dx

) B
A+B

( ∫
|x|<1

|u|2dx

) A
A+B

.(2.10)

On the other hand, if

exp (−Bβ0)

∫
|x|<1

|u|2dx ≤ exp (Aβ0)

∫
|x|<r1

|u|2dx,



482 C.-L. Lin, G. Nakamura and J.-N. Wang

then we have∫
|x|<r2

|u|2dx ≤
(∫

|x|<1

|u|2dx

) B
A+B

(∫
|x|<1

|u|2dx

) A
A+B

≤ exp (Bβ0)

(∫
|x|<r1

|u|2dx

) B
A+B

(∫
|x|<1

|u|2dx

) A
A+B

.(2.11)

Putting together (2.10),(2.11), and setting C̃6 =max{4C̃5(r2/r1)
n, exp(Bβ0)},

we arrive at

(2.12)

∫
|x|<r2

|u|2dx ≤ C̃6

(∫
|x|<r1

|u|2dx

) B
A+B

(∫
|x|<1

|u|2dx

) A
A+B

.

Now for the general case, we take R1 ≤ 1/4 and consider 0 < r1 < r2 < r3

with r1/r3 < r2/r3 ≤ 1/4. By scaling, i.e. defining û(y) := u(r3y) and
âij(y) = aij(r3y), we derive from (2.12) that

(2.13)

∫
|y|<r2/r3

|û|2dy ≤ C
(∫

|y|<r1/r3

|û|2dy
)τ(∫

|y|<1

|û|2dy
)1−τ

,

where τ = B/(A + B) with

A = A(r1/r3, r2/r3) = (log(r1/r3) − 1)2 − (log(r2/r3))
2,

B = B(r2/r3) = −1 − 2 log(r2/r3),

and C = max{4C̃5(r2/r1)
n, exp(Bβ0)}. We want to remark that C̃5 can be

chosen independent of the scaling factor r3 provided r3 < 1. Restoring the
variable x = r3y in (2.13) gives∫

|x|<r2

|u|2dx ≤ C
(∫

|x|<r1

|u|2dx
)τ(∫

|x|<r3

|u|2dx
)1−τ

.

The proof now is complete. �

3. Proof of Theorem 1.2 and Theorem 1.3

In this section, we prove Theorem 1.2 and Theorem 1.3. Without loss of
generality, we assume P (0, D) = Δ by the change of coordinates. We begin
with another Carleman estimate derived in [15, Lemma 2.1]: for any u ∈
C∞

0 (Rn\{0}) and for any m ∈ {j + 1
2
, j ∈ N} we have

(3.1)
∑
|α|≤2

∫
m2−2|α||x|−2m+2|α|−n|Dαu|2dx ≤ C

∫
|x|−2m+4−n|Δu|2dx,

where C only depends on the dimension n.
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Remark 3.1 Using the cut-off function and regularization, estimate (3.1)
remains valid for any fixed m if u ∈ H2

loc(R
n\{0}) with compact support.

In view of Remark 3.1, we can apply (3.1) to the function χu with χ(x) ∈
C∞

0 (Rn\{0}). Therefore, we define χ(x) ∈ C∞
0 (Rn\{0}) such that

χ(x) =

⎧⎪⎨⎪⎩
0 if |x| ≤ δ/3,

1 in δ/2 ≤ |x| ≤ (R0 + 1)R0R/4 = r4R,

0 if 2r4R ≤ |x|,
where δ ≤ R2

0R/4, R0 > 0 is a small number which will be chosen later
and R is sufficiently small satisfying 0 < R ≤ R0. Here the number R is
not yet fixed and is given by R = (γm)−1, where γ > 0 is a large constant
which will be chosen later. Using the estimate (3.1) and the equation (1.1),
we can derive that∑
|α|≤2

m2−2|α|
∫

δ/2≤|x|≤r4R

|x|−2m+2|α|−n|Dαu|2dx

≤
∑
|α|≤2

m2−2|α|
∫

|x|−2m+2|α|−n|Dα(χu)|2dx ≤ C

∫
|x|−2m+4−n|Δ(χu)|2dx

≤ C

∫
δ/2≤|x|≤r4R

|x|−2m+4−n|Δu|2dx + C

∫
|x|>r4R

|x|−2m+4−n|Δ(χu)|2dx

+ C

∫
δ/3≤|x|≤δ/2

|x|−2m+4−n|Δ(χu)|2dx

≤ Ĉ ′
∫

δ/2≤|x|≤r4R

|x|−2m+4−n|Δu − P (x, D)u|2dx

+ Ĉ ′
∫

δ/2≤|x|≤r4R

|x|−2m+4−n|P (x, D)u|2dx

+ C

∫
|x|>r4R

|x|−2m+4−n|Δ(χu)|2dx + C

∫
δ/3≤|x|≤δ/2

|x|−2m+4−n|Δ(χu)|2dx

≤ C ′ ∑
|α|=2

r2
4R

2

∫
δ/2≤|x|≤r4R

|x|−2m+4−n|Dαu|2dx

+ C ′C2
1

∫
δ/2≤|x|≤r4R

|x|−2m−n|u|2dx+ C ′C2
2

∑
|α|=1

∫
δ/2≤|x|≤r4R

|x|−2m+2−n|Dαu|2dx

+ C

∫
|x|>r4R

|x|−2m+4−n|Δ(χu)|2dx + C

∫
δ/3≤|x|≤δ/2

|x|−2m+4−n|Δ(χu)|2dx,

(3.2)

where the constant C ′ depends on n.
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By carefully checking terms on both sides of (3.2), we now choose γ =√
C ′ and thus

R =
1

γm
=

1√
C ′m

and r2
4R

2 =
R2

0(R0 + 1)2

16m2C ′ .

Hence, choosing R0 < 1 (suffices to guarantee R2
0(R0 + 1)2/16 < 1/2),

m ≥ m̃0 = m̃0(R0), and C2 sufficiently small such that

1√
C ′m

≤ R0,
m2

2
> C ′C2

1 , and 1 − C ′C2
2 >

1

2
,

we can remove the first three terms on the right hand side of the last in-
equality in (3.2) and obtain∑

|α|≤2

m2−2|α|
∫

δ/2<|x|<r4R

|x|−2m+2|α|−n|Dαu|2dx ≤

≤ 2C

∫
δ/3<|x|<δ/2

|x|−2m+4−n|Δ(χu)|2dx

+ 2C

∫
r4R<|x|<2r4R

|x|−2m+4−n|Δ(χu)|2dx.(3.3)

In view of the definition of χ, it is easy to see that for all multiindex α

(3.4)

{
|Dαχ| = O(δ−|α|) for all δ/3 < |x| < δ/2,

|Dαχ| = O((r4R)−|α|) for all r4R < |x| < 2r4R.

Note that R2
0 ≤ r4 provided R0 ≤ 1/15. Therefore, using (3.4) and (2.3)

in (3.3), we derive

m2(2δ)−2m−n

∫
δ/2<|x|≤2δ

|u|2dx + m2(R2
0R)−2m−n

∫
2δ<|x|≤R2

0R

|u|2dx ≤

≤
∑
|α|≤2

m2−2|α|
∫

δ/2<|x|<r4R

|x|−2m+2|α|−n|Dαu|2dx

≤ C̃
∑
|α|≤2

δ−4+2|α|
∫

δ/3<|x|<δ/2

|x|−2m+4−n|Dαu|2dx

+ C ′′ ∑
|α|≤2

(r4R)−4+2|α|
∫

r4R<|x|<2r4R

|x|−2m+4−n|Dαu|2dx

≤ C̃ ′(δ/3)−2m−n

∫
|x|≤δ

|u|2dx + C ′′(r4R)−2m−n

∫
|x|≤R0R

|u|2dx,(3.5)

where C̃ ′ and C ′′ are independent of R0, R, and m.
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We then add m2(2δ)−2m−n
∫
|x|≤δ/2

|u|2dx to both sides of (3.5) and obtain

1

2
m2(2δ)−2m−n

∫
|x|≤2δ

|u|2dx + m2(R2
0R)−2m−n

∫
|x|≤R2

0R

|u|2dx =

=
1

2
m2(2δ)−2m−n

∫
|x|≤2δ

|u|2dx + m2(R2
0R)−2m−n

∫
|x|≤2δ

|u|2dx

+ m2(R2
0R)−2m−n

∫
2δ<|x|≤R2

0R

|u|2dx

≤ 1

2
m2(2δ)−2m−n

∫
|x|≤2δ

|u|2dx +
1

2
m2(2δ)−2m−n

∫
|x|≤2δ

|u|2dx

+ m2(R2
0R)−2m−n

∫
2δ<|x|≤R2

0R

|u|2dx

≤ (C̃ ′ + m2)(δ/3)−2m−n

∫
|x|≤δ

|u|2dx + C ′′(r4R)−2m−n

∫
|x|≤R0R

|u|2dx

= (C̃ ′ + m2)(δ/3)−2m−n

∫
|x|≤δ

|u|2dx

+ m2(R2
0R)−2m−nC ′′m−2

(R2
0

r4

)2m+n
∫
|x|≤R0R

|u|2dx.(3.6)

We first observe that

C ′′m−2
(R2

0

r4

)2m+n

= C ′′m−2

(
4R0

R0 + 1

)2m+n

≤ C ′′m−2(4R0)
2m+n ≤ exp(−2m)

for all R0 ≤ 1/16 and m2 ≥ C ′′. Thus, we obtain that

1

2
m2(2δ)−2m−n

∫
|x|≤2δ

|u|2dx + m2(R2
0R)−2m−n

∫
|x|≤R2

0R

|u|2dx ≤

≤ (C̃ ′ + m2)(δ/3)−2m−n

∫
|x|≤δ

|u|2dx

+ m2(R2
0R)−2m−n exp(−2m)

∫
|x|≤R0R

|u|2dx.(3.7)

It should be noted that (3.7) is valid for all m = j + 1
2

with j ∈ N and
j ≥ j0, where j0 depends on R0. Setting Rj = (γ(j + 1

2
))−1 and using the
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relation m = (γR)−1, we get from (3.7) that

1

2
m2(2δ)−2m−n

∫
|x|≤2δ

|u|2dx + m2(R2
0Rj)

−2m−n

∫
|x|≤R2

0Rj

|u|2dx ≤

≤ (C̃ ′ + m2)(δ/3)−2m−n

∫
|x|≤δ

|u|2dx

+ m2(R2
0Rj)

−2m−n exp(−2cR−1
j )

∫
|x|≤R0Rj

|u|2dx(3.8)

for all j ≥ j0 and c = γ−1. We now observe that

Rj+1 < Rj < 2Rj+1 for all j ∈ N.

Thus, if Rj+1 < R ≤ Rj , we can conclude that⎧⎪⎪⎨⎪⎪⎩
∫
|x|≤R2

0R

|u|2dx ≤
∫
|x|≤R2

0Rj

|u|2dx,

exp(−2cR−1
j )

∫
|x|≤R0Rj

|u|2dx ≤ exp(−cR−1)

∫
|x|≤R

|u|2dx,
(3.9)

where we have used the inequality R0Rj ≤ 2Rj+1/16 < Rj+1 to derive the
second inequality above. Namely, we have from (3.8) and (3.9) that

1

2
m2(2δ)−2m−n

∫
|x|≤2δ

|u|2dx + m2(R2
0Rj)

−2m−n

∫
|x|≤R2

0R

|u|2dx ≤

≤ (C̃ ′ + m2)(δ/3)−2m−n

∫
|x|≤δ

|u|2dx

+ m2(R2
0Rj)

−2m−n exp(−cR−1)

∫
|x|≤R

|u|2dx.(3.10)

If there exists s ∈ N such that

(3.11) Rj+1 < R2s
0 ≤ Rj for some j ≥ j0,

then replacing R by R2s
0 in (3.10) leads to

1

2
m2(2δ)−2m−n

∫
|x|≤2δ

|u|2dx + m2(R2
0Rj)

−2m−n

∫
|x|≤R2s+2

0

|u|2dx ≤

≤ (C̃ ′ + m2)(δ/3)−2m−n

∫
|x|≤δ

|u|2dx

+ m2(R2
0Rj)

−2m−n exp(−cR−2s
0 )

∫
|x|≤R2s

0

|u|2dx.(3.12)
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Here s and R0 are yet to be determined. The trick now is to find suitable s
and R0 satisfying (3.11) and the inequality

(3.13) exp(−cR−2s
0 )

∫
|x|≤R2s

0

|u|2dx ≤ 1

2

∫
|x|≤R2s+2

0

|u|2dx

holds with such choices of s and R0.

It is time to use the three-sphere inequality (1.2). To this end, we choose
r1 = R2k+2

0 , r2 = R2k
0 and r3 = R2k−2

0 for k ≥ 1. Note that r1/r3 < r2/r3 ≤
R2

0 ≤ 1/4. Thus (1.2) implies

(3.14)

∫
|x|<R2k

0

|u|2dx/

∫
|x|<R2k+2

0

|u|2dx ≤ C1/τ
(∫

|x|<R2k−2
0

|u|2dx/

∫
|x|<R2k

0

|u|2dx
)a

,

where

C = max{C0R
−2n
0 , exp(β0(−1 − 4 log R0))}

and

a =
1 − τ

τ
=

A

B
=

(log(r1/r3) − 1)2 − (log(r2/r3))
2

−1 − 2 log(r2/r3)

=
(4 logR0 − 1)2 − (2 log R0)

2

−1 − 4 log R0
.

It is not hard to see that

(3.15)

{
1 < C ≤ C0R

−β1
0 ,

2 < a ≤ −4 log R0,

where β1 = max{2n, 4β0}. Combining (3.15) and using (3.14) recursively,
we have that∫

|x|≤R2s
0

|u|2dx/

∫
|x|≤R2s+2

0

|u|2dx ≤ C1/τ
(∫

|x|<R2s−2
0

|u|2dx/

∫
|x|<R2s

0

|u|2dx
)a

≤ C
as−1−1
τ(a−1)

(∫
|x|<R2

0

|u|2dx/

∫
|x|<R4

0

|u|2dx
)as−1

(3.16)

for all s ≥ 1. Now from the definition of a, we have τ = 1/(a + 1) and thus

as−1 − 1

τ(a − 1)
=

a + 1

a − 1
(as−1 − 1) ≤ 3as−1.
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Then it follows from (3.16) that∫
|x|≤R2s

0

|u|2dx/

∫
|x|≤R2s+2

0

|u|2dx ≤

≤ C3(−4 log R0)s−1
(∫

|x|<R2
0

|u|2dx/

∫
|x|<R4

0

|u|2dx
)as−1

≤ (C3
0(R0)

−3β1)(−4 log R0)s−1
( ∫

|x|<R2
0

|u|2dx/

∫
|x|<R4

0

|u|2dx
)as−1

.(3.17)

Thus, by (3.17), we can get that

exp(−cR−2s
0 )

∫
|x|≤R2s

0

|u|2dx ≤ exp(−cR−2s
0 )(C3

0(R0)
−3β1)(−4 log R0)s−1

·
(∫

|x|<R2
0

|u|2dx/

∫
|x|<R4

0

|u|2dx
)as−1 ∫

|x|≤R2s+2
0

|u|2dx.(3.18)

Let μ = − log R0, then if R0 (≤ 1/16) is sufficiently small, i.e., μ is
sufficiently large, we can see that

2tμ > (t − 1) log(4μ) + log(log C3
0 + 3β1μ) − log(c/4)

for all t ∈ N. In other words, we have that for R0 small

(3.19) (C3
0R

−3β1
0 )(−4 log R0)t−1

< exp(cR−2t
0 /4) < (1/2) exp(cR−2t

0 /2)

for all t ∈ N. We now fix such R0 so that (3.19) holds. The constants m0(R0)
and j0(R0) are fixed as well. It is a key step in our proof that we can find a
universal constant R0. After fixing R0, we then define a number t0 as

t0 =inf

{
t∈R : t≥

(
log 2 − log(ac)+log log

( ∫
|x|<R2

0

|u|2dx/

∫
|x|<R4

0

|u|2dx
))

× (−2 log R0 − log a)−1

}
.

It should be noted that t0 depends on R0 and N , where

N =

( ∫
|x|<R2

0

|u|2dx/

∫
|x|<R4

0

|u|2dx

)
.

By (3.15), one can easily check that −2 log R0 − log a > 0 for all R0 ≤ 1/16.
With the choice of t0, we can see that

(3.20)

( ∫
|x|<R2

0

|u|2dx/

∫
|x|<R4

0

|u|2dx

)at−1

≤ exp(cR−2t
0 /2)

for all t ≥ t0.
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Let s1 be the smallest positive integer such that s1 ≥ t0. If

(3.21) R2s1
0 ≤ Rj0 = (γ(j0 + 1/2))−1,

then we can find a j1 ∈ N with j1 ≥ j0 such that (3.11) holds, i.e.,

Rj1+1 < R2s1
0 ≤ Rj1.

On the other hand, if

(3.22) R2s1
0 > Rj0 ,

then we pick the smallest positive integer s2 > s1 such that R2s2
0 ≤ Rj0 and

thus we can also find a j1 ∈ N with j1 ≥ j0 for which (3.11) holds. We now
define s, depending on P (x, D) and N , as

s =

{
s1 if (3.21) holds,

s2 if (3.22) holds.

It is important to note that with such s, (3.11) is satisfied for some j1

(depending on P (x, D) and N) and (3.19), (3.20) hold. Therefore, we set
m1 = n + 2(j1 + 1/2) and m = (m1 − n)/2, where m1 and m depend on
P (x, D) and N . Combining (3.18), (3.19) and (3.20) yields that

exp(−cR−2s
0 )

∫
|x|≤R2s

0

|u|2dx ≤

≤ exp(−cR−2s
0 )(C3

0(R0)
−3β1)(−3 log R0)s−1

·
(∫

|x|<R2
0

|u|2dx/

∫
|x|<R4

0

|u|2dx
)a(s−1) ∫

|x|≤R2s+2
0

|u|2dx

≤ 1

2

∫
|x|≤R2s+2

0

|u|2dx

which is (3.13). Using (3.13) in (3.12), we have that

1

2
m2(2δ)−2m−n

∫
|x|≤2δ

|u|2dx +
1

2
m2(R2

0Rj1)
−2m−n

∫
|x|≤R2s+2

0

|u|2dx ≤

≤ (C̃ ′ + m2)(δ/3)−2m−n

∫
|x|≤δ

|u|2dx.(3.23)

From (3.23), we get that

(m1 − n)2

8C̃ ′ + 2(m1 − n)2
(3R2

0Rj1)
−m1

∫
|x|≤R2s+2

0

|u|2dx ≤ δ−m1

∫
|x|≤δ

|u|2dx(3.24)
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and

1

2
m2(2δ)−2m−n

∫
|x|≤2δ

|u|2dx ≤ (C̃ ′ + m2)(δ/3)−2m−n

∫
|x|≤δ

|u|2dx

which implies∫
|x|≤2δ

|u|2dx ≤ 8C̃ ′ + 2(m1 − n)2

(m1 − n)2
6m1

∫
|x|≤δ

|u|2dx.(3.25)

The estimates (3.24) and (3.25) are valid for all δ ≤ R2s+2
0 /4. There-

fore, (1.3) holds with R2 = R0. (1.4) holds with R3 = R2s+2
0 /8 and C3 =

8C̃′+2(m1−n)2

(m1−n)2
6m1 and the proof is now complete. �
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