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Regularity for solutions of the total
variation denoising problem

Vicent Caselles, Antonin Chambolle and Matteo Novaga

Abstract
The main purpose of this paper is to prove a local Hölder regu-

larity result for the solutions of the total variation based denoising
problem assuming that the datum is locally Hölder continuous. We
also prove a global estimate on the modulus of continuity of the solu-
tion in convex domains of R

N and some extensions of this result for
the total variation minimization flow.

1. Introduction

We study the local regularity properties of a local minimizer of the functional

(1.1)

∫
Ω

|Du| +
λ

2

∫
Ω

|u(x) − f(x)|2 dx

where Ω is an open set in R
N , λ > 0, and f : Ω → R is locally Hölder

continuous. Our main purpose is to prove that u is also locally Hölder
continuous (with the same exponent).

The previous functional was introduced as a model for image denoising
by Rudin, Osher, and Fatemi in [22]. In that context, Ω is a bounded domain
and f represents the observed image which we assume to be related to the
undistorted image by

(1.2) f = u + n,

where n represents a Gaussian white noise of zero mean and standard de-
viation σ. The parameter λ > 0 may be interpreted as a regularization
parameter or as a Lagrange multiplier in order to adjust the constraint∫

Ω
(u− f)2 dx ≤ |Ω|σ2 determined by (1.2).
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One of the main features of total variation denoising (1.1), confirmed
by numerical experiments, is its ability to restore the discontinuities of the
image [22, 13, 14]. The underlying a priori assumption is that functions of
bounded variation (the BV model [3]) are a reasonable functional model
for many problems in image processing, in particular, for denoising and
restoration problems. Typically, functions of bounded variation admit a
set of discontinuities which is countably rectifiable [3], being continuous in
some sense (in the measure theoretic sense) away from discontinuities. The
discontinuities could be identified with edges. The ability of total variation
regularization to recover edges is one of the main features which advocates
for the use of this model which had a strong influence in image processing
(its ability to describe textures is less clear, even if some textures can be
recovered, up to a certain scale of oscillation).

Motivated by the experimental evidence in image processing, we initiated
the study of the local regularity properties of (1.1) in [12] where we proved
that for any f ∈ BV (Ω) ∩ L∞(Ω) the set of jumps of u (in the BV sense)
is contained in the set of jumps of f . In other words, model (1.1) does
not create any new discontinuity besides the existing ones. This has to
be combined with results describing which discontinuities are preserved. No
general statement in this sense exists but many examples are described in the
papers [8, 9, 2] and the book [5]. The preservation of a jump discontinuity
depends on the curvature of the level line at the given point, the size of
the jump and the regularization parameter λ. The examples support the
idea that total variation may be a reasonable model in order to restore
discontinuities.

In the present work we continue our analysis of the local regularity prop-
erties of (1.1) by proving that if the datum f is locally Hölder continuous
with exponent β ∈ (0, 1] in some region Ω′ ⊂ Ω, then its local minimizer u
is also locally Hölder continuous in Ω′ with the same exponent.

Recall that a function u ∈ BV (Ω) is a local minimizer of (1.1) if for any
v ∈ BV (Ω) such that u − v has support in a compact subset K ⊂ Ω, we
have

(1.3)

∫
K

|Du| + λ

2

∫
K

|u(x)−f(x)|2 dx ≤
∫

K

|Dv| + λ

2

∫
K

|v(x)−f(x)|2 dx.

It follows [11] that u satisfies the equation

(1.4) −1

λ
div z + u = f

with z ∈ L∞(Ω,RN) with ‖z‖∞ ≤ 1, and z ·Du = |Du| (see Section 2).

As in [12], our analysis of the regularity of the local minimizers of u will
be based on the following observation: for any t ∈ R, the level sets {u > t}
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(resp., {u ≥ t}) are the minimal (resp., the maximal) solutions to the pre-
scribed curvature problem

(1.5) min
E⊆Ω

Per(E,Ω) + λ

∫
E

(t− f(x)) dx

(whose solution is defined in the class of finite-perimeter sets and hence up
to a Lebesgue-negligible set). The local regularity of u can be described
in terms of the distance of any two of its level sets. This is the main idea
in [12] which is further refined here. We proved in [12] that, outside the
jump discontinuities of f (modulo an HN−1-null set), any two level sets at
different heights cannot touch and hence the function u is continuous there.
To be able to assert a Hölder type regularity property for u we need to prove
a local estimate of the distance of the boundaries of two level sets. This will
be done here under the assumption of local Hölder regularity for f .

Let us describe the plan of the paper. In Section 2 we recall some basic
facts about functions of bounded variation. In Section 3 we collect some
basic regularity results when f ∈ LN (Ω). In Section 4 we prove the main
result of the paper, namely the local Hölder regularity of the local minimizers
of (1.1) in any subdomain Ω′ of Ω when the datum f is locally Hölder
continuous in Ω′. We also consider in Section 5 the case of global regularity
of solutions of (1.4) with Neumann boundary conditions in convex domains
of R

N and we then extend this result to the case of the total variation flow.

2. Notation and preliminaries on BV functions

Let Ω be an open subset of R
N . A function u ∈ L1(Ω) whose gradient Du

in the sense of distributions is a (vector-valued) Radon measure with finite
total variation in Ω is called a function of bounded variation. The class of
such functions will be denoted by BV (Ω). The total variation of Du on Ω
turns out to be

(2.1) sup

{∫
Ω

u div z dx : z ∈ C∞
0 (Ω; RN ), |z(x)| ≤ 1 ∀x ∈ Ω

}
,

where for a vector v = (v1, . . . , vN) ∈ R
N we set |v|2 :=

∑N
i=1 v

2
i , and will be

denoted by |Du|(Ω) or by
∫

Ω
|Du|. The map u → |Du|(Ω) is L1

loc(Ω)-lower
semicontinuous. BV (Ω) is a Banach space when endowed with the norm
‖u‖ :=

∫
Ω
|u| dx+ |Du|(Ω).

A measurable set E ⊆ Ω is said to be of finite perimeter in Ω if (2.1)
is finite when u is substituted with the characteristic function χE of E.
The perimeter of E in Ω is defined as Per(E,Ω) := |DχE|(Ω). We denote
by LN and HN−1, respectively, the N -dimensional Lebesgue measure and
the (N − 1)-dimensional Hausdorff measure in R

N .
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In case E is a set with finite perimeter, one can define its “reduced
boundary” ∂∗E as the set of points where there exists the limit

lim
ρ→0

DχE(Bρ(x))

|DχE(Bρ(x))| = νE(x) ∈ S
N−1

and it has norm one. Then, one has the representation

DχE = νE(x)|DχE| and |DχE| = HN−1 ∂∗E .

The first equality just follows from Besicovitch’s derivation theorem for
Radon measures, while the second from a careful study of the reduced bound-
ary, see [16] and Section 3 in [3]. In particular, it follows that for any open
set A ⊂ Ω,

Per(E,A) = HN−1(∂∗E ∩ A) .

If E ⊆ R
N is a measurable set and x ∈ R

N , we define the (Lebesgue)
upper density of E at x by

D(E, x) := lim sup
ρ→0

|E ∩Bρ(x)|
|Bρ(x)| ,

while the density, when it exists, is simply the limit limρ→0|E∩Bρ(x)|/|Bρ(x)|.
Then it can also be shown that up to HN−1-negligible sets, the reduced
boundary ∂∗E of a set with finite perimeter coincides with the set of points
where E has density exactly 1/2, and with the set of points where E has
density neither 0 nor 1.

Given u ∈ BV (Ω), we define

u+(x) :=inf{t : D({u > t}, x) = 0} and u−(x) :=sup{t : D({u < t}, x) = 0}.
Then, we say that u is approximately continuous at x ∈ Ω if and only if
u+(x) = u−(x). The set of points where u is not approximately continuous
is called the singular set of u and denoted by Su. If u is the characteristic
χE of a set with finite perimeter, then ∂∗E ⊂ JχE

and HN−1(JχE
\∂∗E) = 0.

On the other hand, almost any level {u > t} of a BV function has finite
perimeter, and there holds the co-area formula

(2.2) |Du|(Ω) =

∫ +∞

−∞
Per({u > t},Ω) dt .

The property, mentioned in the introduction of this note, that the level sets
{u > t} of a minimizer of (1.1) are themselves minimizers of (1.5) is a
relatively easy consequence of formula (2.2), and can be easily adapted to
the local setting (to show that local minimizers which satisfy (1.3) satisfy a
local version of (1.5), with perturbations with compact support).

For a comprehensive treatment of functions of bounded variation, we
refer the reader to [3].
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If z ∈ L∞
loc(Ω,R

N) with div z ∈ Lp
loc(Ω), and w ∈ BVloc(Ω)∩Lq

loc(Ω) (with
1
p

+ 1
q

= 1), we define the functional z ·Dw : C∞
0 (Ω) → R by the formula

(2.3) 〈z ·Dw,ϕ〉 := −
∫

Ω

wϕ div z dx−
∫

Ω

w z · ∇ϕdx ∀ϕ ∈ C∞
0 (Ω).

It is a Radon measure in Ω, which is of course finite if z ∈ L∞(Ω,RN),
div z ∈ Lp(Ω) and w ∈ BV (Ω)∩Lq(Ω). Moreover, we have z ·Dw = z ·∇w dx
for all w ∈W 1,1(Ω) ∩ L∞(Ω)

Let Ω ⊂ R
N be a bounded open set with Lipschitz boundary. We denote

by νΩ(x) the outer unit normal to a point x ∈ ∂Ω. The following integration
by parts formula can be found in [6]. Let z ∈ L∞(Ω,RN) with div z ∈ Lp(Ω).
Then there exists a function [z · νΩ] ∈ L∞(∂Ω) satisfying ‖[z · νΩ]‖L∞(∂Ω) ≤
‖z‖L∞(Ω;RN ), and such that for any u ∈ BV (Ω) ∩ Lq(Ω) we have

∫
Ω

u div z dx+

∫
Ω

z ·Du =

∫
∂Ω

[z · νΩ]u dHN−1.

3. Basic regularity

We recall the following density estimate, which is classical for prescribed
curvature problems such as (1.5) (see for instance [1]). To simplify, in the
remaining of the paper, we assume that λ = 1, as this parameter plays no
role in the general regularity analysis.

Proposition 3.1. Assume f ∈ LN (Ω). Then there exists δ > 0 and ρ0 > 0
such that if ρ < ρ0 and Bρ(x) ⊂ Ω, then, for almost any t ∈ R,

(3.1) |{u > t} ∩ Bs(x)| > 0 ∀s > 0 ⇒ |{u > t} ∩Bρ(x)| ≥ δρN .

The same holds for the sets {u < t}, {u ≥ t}, and {u ≤ t}.
Remark 3.2. The assumption that f ∈ LN (Ω) is essential, as otherwise
we cannot expect any regularity of the boundary of a prescribed curvature
set which minimizes (1.5). In fact, as long as f ∈ LN (Ω), one sees that
if x is on the essential boundary of a set E which minimizes Per(E,Ω) +∫

E
f dx, then as ρ → 0,

∫
Bρ(x)

f dx << Per(E,Bρ(x)) (thanks to Hölder’s

inequality and the relative isoperimetric inequality) so that the perimeter
term dominates and tends to provide some regularity of the minimizing set,
see [21]. On the other hand, if f �∈ LN (Ω), one cannot hope to obtain any
regularity of ∂E near the points where limρ→0(1/ρ

N)
∫

Bρ(x)
|f |N dx → ∞,

that is, where the field term is much larger than the perimeter, as shows
the following example. Let (xn)n≥1 be the sequence of all rational points
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in Ω = (0, 1)2 and fε(x) = 1 − ε(
∑

n 2−n|x− xn|−(1+δ)) �∈ L2(Ω) (while f ∈
Lp(Ω) for any p < 2/(1 + δ)), where ε > 0 and δ > 0 are small parameters.
As fε → 1 when ε → 0, the minimizers Eε of Per(E,Ω)+

∫
E
fε dx go to the

emptyset (|Eε| → 0) as ε → 0. On the other hand, the sets Eε must remain
dense. Indeed, since

∫
Bρ(xn)

fε dx ∼ −Cn,ερ
1−δ as ρ → 0 (for some constant

Cn,ε > 0 depending on xn and ε), no point xn can be at a positive distance
from Eε, otherwise the set Eε ∪ Bρ(xn) for ρ small enough would have a
lower energy and we would reach a contradiction. It is clear that these sets
Eε, dense and with low volume, can have no kind of regularity. We refer
to [7] for other examples of singular minimizers with f �∈ LN(Ω).

Proof. The idea of the proof is as follows: comparing {u > t} with {u > t}\
Bs(x), by minimality we have (for a.e. s > 0 small)

HN−1(Bs(x) ∩ ∂∗{u > t}) ≤
≤ HN−1(∂Bs(x) ∩ {u > t}) +

∫
Bs(x)∩{u>t}

f(x) − t dx .(3.2)

Let h(s) = |Bs(x) ∩ {u > t}| =
∫ s

0
HN−1(∂Bτ (x) ∩ {u > t}) dτ : then

h ∈ W 1,1(0, ρ) for some ρ > 0, with h′(s) = HN−1(∂Bs(x) ∩ {u > t})
for a.e. s.

Now, adding HN−1(∂Bs(x) ∩ {u > t}) to both sides of (3.2), we find for
a.e. s > 0 small:

Per(Bs(x) ∩ {u > t}) = HN−1(Bs(x) ∩ ∂∗{u > t})
+ HN−1(∂Bs(x) ∩ {u > t})

≤ 2h′(s) + ‖f − t‖LN (Bs(x))h(s)
1−1/N .

By equiintegrability there exists ρ0 > 0 such that if s < ρ0, ‖f − t‖LN (Bs(x))

is less than half the isoperimetric constant in R
N so that

ch(s)1−1/N ≤ h′(s) .

We get the thesis by integrating from 0 to ρ. �
As a consequence of Proposition 3.1, if we identify the set Et = {u > t}

with the set of points where it has density one, then Et is an open set and

(3.3) HN−1 (∂Et \ ∂∗Et) = 0.

Indeed, if x ∈ ∂Et, then it may be approximated by points in Et and points
in R

N \Et. Then, by Proposition 3.1, both the upper density of x in Et and
in R

N \ Et is positive. We deduce that x belongs to the measure theoretic
boundary of Et, which is the set where Et has Lebesgue density neither 0
nor 1. As this set is HN−1-equivalent to ∂∗Et, (3.3) follows.
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Corollary 3.3. u− is l.s.c. and u+ is u.s.c.

Proof. If x ∈ {u− > t} for some t ∈ R, then there exists t′ > t such that
u−(x) ≥ t′. Hence,

lim
ρ→0

|{u < t′} ∩ Bρ(x)|
ρN

= 0,

which implies by the previous result that there exists ρ > 0 small such that
Bρ(x) ⊂ {u ≥ t′}, up to a negligible set. Hence, u− ≥ t′ > t on Bρ(x), so
that {u− > t} is open, and u− is l.s.c.. The statement for u+ follows at once,
since u+ = −(−u)−. �

In particular, it follows that u is continuous out of Su = {x ∈ Ω :
u−(x) < u+(x)}. We can give a more precise statement:

Proposition 3.4. For any β ∈ [0, 1), let Aβ be the set of points where u is
not β-Hölder continuous at x. Then, it holds

dimH(Aβ) ≤ N − 1 + β.

Proof. Let B2ρ(x)⊂Ω, with ρ<ρ0. For almost any s∈(infBρ(x)u, supBρ(x)u),
there is some y ∈ Bρ(x) such that |{u > s}∩Br(y)| > 0 for all r > 0. Then,
by Proposition 3.1, we have that |{u > s} ∩ Br(y)| ≥ δrN for all r > 0.
Hence |{u > s} ∩ B2ρ(y)| ≥ δρN and we deduce that

oscBρ(x)(u) ≤ 1

δρN

∫ supBρ(x) u

infBρ(x) u

min{|B2ρ(x) ∩ {u > s}|, |B2ρ(x) ∩ {u < s}|} ds

≤ C

ρN−1

∫ supBρ(x) u

infBρ(x) u

Per(B2ρ(x) ∩ {u > s}) ds ≤ C|Du|(B2ρ(x))

ρN−1
.(3.4)

where the relative isoperimetric inequality was used in the second inequality.
The thesis follows from (3.4) and [3, Th. 2.56]. �

In particular, it follows again from (3.4) that u is continuous at each x
such that |Du|(B2ρ(x))

ρN−1
→ 0

as ρ→ 0.
We recall that in [12], it is proven that in dimension N ≤ 7, if f is

continuous in Ω, then also u is. We will try now to extend this result
to slightly higher regularity. It is clear, though, that the highest possible
regularity is Lipschitz. This can be shown by trivial examples, for instance
in 1D if Ω = [−1, 1], f = γ|x|2/2, γ large enough, and u is the global
minimizer of (1.1).
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4. Interior regularity of solutions

We will now show the local regularity of the function u, at least in dimension
N ≤ 7, whenever f is regular. By regular, we mean either Hölder with some
exponent β, or Lipschitz-continuous (β = 1). Our proofs could be adapted
to more general moduli of continuity.

The proof relies on an “exclusion” principle for the level sets of u, which
is valid near any sufficiently regular level line. However, in order to make
this argument uniform, we need quite strong results of regularity for solu-
tions of the prescribed curvature problem (i.e., the problem which our level
lines satisfy). The restriction on the dimension is due to these results and
the existence of singular minimal cones in dimension 8 or more. We be-
lieve, however, that this is technical and that the regularity of u should be
preserved near the possible singular points of the level lines.

4.1. Local regularity of the level sets of u

Let us first quote the following theorem of I. Tamanini, which is shown
in [23] and relies on the previous works of Massari [18, 19], and Massari and
Pepe [20]:

Theorem 4.1. [23, Theorem 1] Let Ω be an open subset of R
N , N ≥ 2, and

let E be a set with finite perimeter satisfying for α ∈ (0, 1):

(4.1) ψ(E,Bρ(x)) := |DχE|(Bρ(x)) − inf
F	E�Bρ(x)

|DχF |(Bρ(x)) ≤ cρN−1+2α

for every x ∈ Ω and every ρ ∈ (0, R) with c and R local positive constants.

Then the reduced boundary ∂∗E is a C1,α-hypersurface in Ω, and Hs((∂E\
∂∗E) ∩ Ω) = 0 for any s > N − 8.

Moreover, assuming that (4.1) holds uniformly for any Eh, with (Eh)h≥1

locally convergent in Ω to some limit set E∞ as h → ∞, we have that if
xh ∈ ∂Eh for every h, with (xh)h≥1 convergent to some point x∞ ∈ Ω, then
x ∈ ∂E∞; while, if x∞ ∈ ∂∗E∞, then there exists h̄ such that xh ∈ ∂∗Eh for
every h ≥ h̄, and the unit outward normal to ∂Eh at xh converges to the
unit outward normal to ∂E∞ at x∞.

Here, “locally convergent” means that χEh
→ χE∞ in L1

loc(Ω).

Consider now a solution u of (1.4) and assume f ∈ Lp(Ω) with p > N .
Let t ∈ R, Et = {u > t} and let x ∈ Ω. If ρ > 0 and F�Et � Bρ(x), then

|DχEt|(Bρ(x)) +

∫
Et

(t− f(x)) dx ≤ |DχF |(Bρ(x)) +

∫
F

(t− f(x)) dx ,
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and we deduce easily

ψ(Et, Bρ(x)) ≤
∫

Bρ(x)

|t− f(x)| dx ≤ ‖t− f‖Lp(Bρ(x))|Bρ(x)|1−1/p.

Hence, (4.1) holds for Et in Bρ(x), for α = (1 − N/p)/2. Moreover, this
estimate is uniform in x. We deduce the following corollary:

Corollary 4.2. Let f ∈ Lp(Ω), p > N , and let α = (1 − N/p)/2. Let u
solve (1.4) and, for any t ∈ R, let Et = {u > t}. Let x̄ ∈ ∂∗Et. Then, there
exists an open neigborhood A of x̄ such that for any s ∈ R, ∂Es ∩ A is a
C1,α hypersurface, moreover, one may assume that νEs(x) · νEt(x̄) ≥ √

2/2
for any x ∈ ∂Es ∩A.

Proof. If the corollary were not true, there would exist a sequence xh,
xh → x̄, such that either xh ∈ ∂Et \ ∂∗Et (the singular set) for all h large, or
such that νEu(xh)

(xh) · νEt(x̄) <
√

2/2 for all h large. This would contradict
Theorem 4.1. �
Corollary 4.3. Let t ∈ R, x̄ ∈ ∂∗Et and A be the set given by Corollary 4.2.
Choose a system of coordinates such that the last component xN is along the
vector νEt(x̄). Then, for any R, and x0 ∈ A, if we let CR be the cylinder
CR = B′

R × (−R,R) = {x :
∑N−1

i=1 (xi − x0
i )

2 ≤ R2,−R ≤ xN − x0
N ≤ R},

then if CR ⊂ A, Eu(x0) ∩ CR is the supergraph {xN > v(x1, . . . , xN−1)} of a
1-Lipschitz (and C1,α) function v : B′

R → [−R,R].

Proof. We just need to observe that νEu(x0)
is given by (∇v,−1)/

√
1 +|∇v|2.

Hence, the condition νEu(x0)
(x) · νEt(x̄) ≥

√
2/2, which holds in A thanks to

Corollary 4.2, becomes 1/
√

1 + |∇v|2 ≥ √
2/2, that is, |∇v| ≤ 1. �

Corollary 4.4. Under the same assumptions, assume also that f is Hölder-
continuous with exponent β > 0 in Ω (hence, in particular, bounded, so
that the above holds with any α < 1). Then, in addition, we have that the
function v in Corollary 4.3 is C2,β, with a norm which does not depend
on x0 ∈ A.

Proof. Since the graph of v satisfies a mean curvature type equation with
Hölder continuous right hand side, the corollary follows as a consequence of
Corollary 4.3 and standard regularity results [17]. �

4.2. Local regularity of u

We consider here the case f ∈ C0,β(Ω), with 0 ≤ β ≤ 1 (we include the
Lipschitz case for β = 1).

Theorem 4.5. Let N ≤ 7 and let u be a solution of (1.4). Assume f ∈ C0,β

locally in Ω, for some β ∈ [0, 1]. Then u is also C0,β locally in Ω.
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Proof. The idea of the proof of Theorem 4.5 is to show that two level
surfaces corresponding to different values of u cannot be too close one from
another, because their curvature are different. In order to do so, given a
level surface we build a “calibrating” vector field σ whose flux will estimate
the energy of all neighboring surfaces (and yield a contradiction whenever
they come too close to the initial surface). We divide the proof into four
Steps.

Step 1. The case β = 0 has been treated in [12, Theorem 1 and Remark 3.4].
We therefore consider here the case where β > 0. Since N ≤ 7, all points
of any level set are regular. From Corollaries 4.3 and 4.4 we know that,
uniformly in the neighborhood of any regular point x0 ⊂ {u = t1} (as
long as the neighborhood is inside Ω), and after an appropriate change of
coordinates, the set {u > t1} is the supergraph xN > v1(x

′), in a suitable
cylinder

CR = B′
R × (−R,R) =

{
x :

N−1∑
i=1

(xi − x0
i )

2 ≤ R2,−R ≤ xN − x0
N ≤ R

}
,

where we have denoted x′ = (x1, . . . , xN−1). We can also assume that

‖∇′v1‖∞ ≤ 1 in B′
R, and ‖D′2v1‖∞ ≤ κ <∞.

We have denoted the derivatives with respect to the first N − 1 variables
with a prime (“ ’ ”). To simplify, we assume that x0 = 0.

We denote, for p ∈ R
N−1,

F (p) =
√

1 + |p|2

(and F ∗(q) = supp q ·p−F (p) its Legendre-Fenchel conjugate), and consider,
for γ ∈ (0, 1), the function

wγ = v1 + (γ/2)(R2 − |x′|2).
Then

(4.2) −div ′∇F (∇′wγ) ≤ t1 − f(x′, v1(x
′)) + Cγ in B′

R,

where C is an absolute constant (it is a bound on the second and third
derivatives of F (p) =

√
1 + |p|2). Indeed, we have

div ′∇F (∇′wγ) = div ′∇F (∇′v1) − γ div ′
∫ 1

0

D2F (∇′v1 − γsx′) · x′ ds
= −t1 + f(x′, v1(x

′)) − γ(R)
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where the rest (R) is given by (the sums range from 1 to N − 1):

(R) =

∫ 1

0

∂i(∂
2
i,jF (∇′v1 − γsx′)xj ds

=

∫ 1

0

TrD2F (∇′v1 − γsx′) ds

+

∫ 1

0

∂3
i,j,kF (∇′v1 − γsx′)(∂2

i,kv1 − γsδi,k)xj ds

≤
∫ 1

0

TrD2F (∇′v1 − γsx′) ds + CR‖D′2v1‖L∞(B′
R)

+

∫ 1

0

s∂s[TrD2F (∇′v1 − γsx′)] ds

= CR‖D′2v1‖L∞(B′
R) + TrD2F (∇′v1 − γx′)

≤ C(R‖D′2v1‖L∞(B′
R) + 1).

Hence, using |D′2v1| ≤ κ in B′
R, we get a uniform bound for (R), and we

obtain (4.2).

Step 2. Now we build, in C+
R = {x ∈ CR : xN > v1(x

′)} the vector field

(4.3) σ(x′, wγ(x
′)) =

( ∇F (∇′wγ(x
′))

F ∗(∇F (∇′wγ(x
′)))

)

which is Lipschitz-continuous and has everywhere norm equal to 1. We show
that, in C+

R ,

(4.4) divσ(x) ≥ −t1 + f(x′, v1(x
′)) − Cγ(x)

where γ(x) is the unique value of γ such that wγ(x
′) = xN , that is, γ(x) =

2(xN − v1(x
′))/(R2 − |x′|2).

Let σ = (σi)
N
i=1 and σ′ denote the first N − 1 coordinates of σ. For fixed

γ > 0, we have using (4.2)

div ′[σ′(x′, wγ(x
′))] = div ′∇F (∇′wγ) ≥ −t1 + f(x′, v1(x

′)) − Cγ.(4.5)

Observe that

div ′[σ′(x′, wγ(x
′))] =

N−1∑
i=1

(∂iσi)(x
′, wγ(x

′)) +
N−1∑
i=1

(∂Nσi)(x
′, wγ(x

′))∂iwγ(x
′).

(4.6)

Now, for fixed x′ ∈ B′
R, we have for i = 1, . . . , N , using the chain rule:

(4.7) ∂γ[σi(x
′, wγ(x

′))] = (∂Nσi)(x
′, wγ(x

′))
R2 − |x′|2

2
.
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On the other hand, using ∇F ∗(∇F (p)) = p for any p ∈ R
N−1, we have

∂γ[σN (x′, wγ(x
′))] = ∇F ∗(∇F (∇′wγ(x

′))) · ∂γ [∇F (∇′wγ(x
′))]

=
N−1∑
i=1

∂iwγ(x
′)∂γ [σi(x

′, wγ(x
′))]

=

N−1∑
i=1

∂iwγ(x
′)(∂Nσi)(x

′, wγ(x
′))
R2 − |x′|2

2
,

where we have used (4.7) in the last equality. Then, dividing by (R2 −
|x′|2)/2, we find from (4.7) (with i = N) and the last equation that

(∂NσN )(x′, wγ(x
′)) =

N−1∑
i=1

∂iwγ(x
′)(∂Nσi)(x

′, wγ(x
′)).

Combining this with (4.5) and (4.6), we obtain

(div σ)(x′, wγ(x
′)) ≥ −t1 + f(x′, v1(x

′)) − Cγ ,

which yields (4.4).

Step 3. Let t2 > t1 and consider the set E2 = {u > t2}. Let Cf be the
Hölder constant of f , γ ≤ 1 and 1 − β ≥ 0. Let

Wγ = {v1(x
′) < xN < wγ(x

′)}.
Then, we claim that E2∩Wγ = ∅ as soon as γβ ≤ (t2−t1)/(C+Cf(R

2/2)β).

Observe that E2 ∩CR ⊂ C+
R . Assume that γ is such that E2 ∩Wγ is not

empty. Then, by minimality of E2, we have

HN−1(∂E2 ∩Wγ) +

∫
E2∩Wγ

(t2 − f(x)) dx ≤ HN−1(∂Wγ ∩ E2).

Using the fact that, by construction, σ is the inner normal to Wγ , from
Gauss-Green’s formula and (4.4) we deduce

HN−1(∂Wγ ∩ E2) −HN−1(∂E2 ∩Wγ) ≤
≤

∫
∂Wγ∩E2

(−σ · ν) dHN−1 +

∫
Wγ∩∂E2

(−σ · ν) dHN−1

=

∫
∂(Wγ∩E2)

(−σ · ν) dHN−1

≤
∫

Wγ∩E2

(t1 − f(x′, v1(x
′)) + Cγ) dx.



Regularity for solutions of the total variation denoising problem 245

Hence ∫
Wγ∩E2

(t2 − f(x) − t1 + f(x′, v1(x
′)) − Cγ) dx ≤ 0

and, since |f(x′, v1(x
′)) − f(x)| ≤ Cf(γR

2/2)β, this is impossible as soon as

(
Cγ1−β + Cf

(R2

2

)β)
γβ < t2 − t1 .

By continuity, and using γ ≤ 1 and 1− β ≥ 0, we deduce that E2 ∩Wγ = ∅
as soon as γβ ≤ (t2 − t1)/(C + Cf(R

2/2)β).

Step 4. Conclusion. For any for any x ∈ CR/2, x̄ ∈ {u = t1}∩CR/2, we have

(4.8) |u(x) − u(x̄)| ≤
(

8

3R2

)β

(C + Cf(R
2/2)β)|x− x̄|β.

Assume that u(x) = t2 > t1 (a symmetric construction can be done
below the graph of v1). By Step 3 we have that x ∈ {u > t′2} \Wγ where
t′2 = t2 − ε and γβ = (t′2 − t1)/(C + Cf(R

2/2)β). Then

|x− x̄| ≥ wγ(x
′) ≥ 3

8
γR2.

Hence

|x− x̄|β ≥
(

3R2

8

)β |t′2 − t1|
C + Cf(R2/2)β

.

Letting t′2 → t2, this shows that in CR/2, the distance between {u = t1} and
{u = t2} is bounded from below by (3/8)R2[(t2 − t1)/(C + Cf(R

2/2)β)]1/β ,
i.e., (4.8) holds.

Since R and C can be chosen uniform in the neighborhood A′ � Ω of
any open set A � Ω, this yields that u is β-Hölder (Lipschitz, when β = 1)
in {x ∈ A′ : dist(x, ∂A) >

√
2R}, which contains A if R was chosen small

enough. �

We are able to extend the above result to the total variation flow in case
that we have a uniform convergence of the implicit in time Euler scheme.
This can be proved for instance for the total variation flow with Neumann
boundary conditions in convex domains and this is the purpose of our next
Section. We expect the local regularity result for the total variation flow to
be true in general.
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5. Global minimizers on convex domains

In this section we assume that Ω ⊂ R
N is a convex domain.

Let f : Ω → R be a uniformly continuous function, with modulus of
continuity ωf : [0,+∞) → [0,+∞). We consider the solution u of (1.4) with
homogeneous Neumann boundary condition, that is, such that (1.3) for any
compact set K ⊂ Ω and any v ∈ BV (Ω) such that v = u out of K. This
solution is unique, as can be shown adapting the proof of [11, Cor. C.2.] (see
also [4] for the required adaptations to deal with the boundary condition),
which deals with the case Ω = R

N .

Then, the following result holds true:

Theorem 5.1. Assume N ≤ 7. Then, the function u is uniformly continu-
ous in Ω, with modulus ωu ≤ ωf .

Again, is quite likely here that the assumption N ≤ 7 is not necessary
for this result.

Proof. We first assume that Ω is bounded, smooth and uniformly convex.
Let us also assume that f is smooth up to the boundary. Let a ∈ R and
consider the set Ea = {u > a}. Then, we now have that

(5.1) Per(Ea,Ω) +

∫
Ea

(a− f(x)) dx ≤ Per(E,Ω) +

∫
E

(a− f(x)) dx

for any finite-perimeter set E ⊂ Ω. In particular, ∂Ea is smooth up to the
boundary, and orthogonal to ∂Ω at the contact points. Then ∂Ea satisfies
the prescribed mean curvature equation

(5.2) H∂Ea = f − a on ∂Ea

where H∂Ea is the mean curvature of ∂Ea with the convention that we ori-
ented the surface with the outer unit normal.

Choose now t > s and consider the sets Et ⊆ Es. For simplicity, let us
write

∂̃Et = ∂Et ∩ Ω, ∂̃Es = ∂Es ∩ Ω.

Let
δ = dist(∂̃Et, ∂̃Es) = min{|x− y| : x ∈ ∂̃Et, y ∈ ∂̃Et} ≥ 0,

and choose xt ∈ ∂̃Et and xs ∈ ∂̃Es such that |xt − xs| = δ. We let e be the
outer normal to ∂̃Et, at xt, which is also the outer normal to ∂̃Es at xs and
is given by e = (xs − xt)/δ whenever δ > 0.

Since we already know that u is continuous inside Ω [12], then the equal-
ity xs = xt could only happen in ∂Ω. But this cannot happen since both
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∂Es and ∂Et satisfy the prescribed mean curvature equation (5.2) classically
up to the boundary, with Neumann boundary condition, and t > s. Thus
we have that δ > 0. Notice also that, since Ω is strictly convex, none of the
points xs, xt can lie on its boundary: indeed if, for instance, we had xs ∈ ∂Ω
(and xt ∈ Ω), we would have (xt − xs) · νΩ(xs) < 0, and since −νΩ(xs)
is tangent to ∂̃Es, pointing towards its interior, we would contradict the
minimality of ‖xt − xs‖ with respect to xs.

Let C be the connected component of (∂̃Et+δe)∩∂̃Es containing xs. Since
Ω is strictly convex, we have that C is a compact subset of (xs + e⊥)∩Ω. In
particular, if ε > 0 is small enough, then the open set (Et +(δ+ε)e)\Es has
a connected component Wε with C ⊂ ∂Wε and which is strictly contained
in Ω.

We use (5.1), comparing Et with Et\(Wε−(δ+ε)e) and Es with Es∪Wε:

(5.3)

Per(Et,Ω) +

∫
Et

(t− f(x)) dx ≤ Per(Et \ (Wε − (δ + ε)e),Ω)

+

∫
Et\(Wε−(δ+ε)e)

(t− f(x)) dx

Per(Es,Ω) +

∫
Es

(s− f(x)) dx ≤ Per(Es ∪Wε,Ω)

+

∫
Es∪Wε

(s− f(x)) dx.

Now, if we let

Lt = HN−1(∂Wε \ ∂̃Es) and Ls = HN−1(∂Wε ∩ ∂̃Es),

we have that

Per(Et \ (Wε − (δ + ε)e),Ω) = Per(Et,Ω) − Lt + Ls

and

Per(Es ∪Wε,Ω) = Per(Es,Ω) + Lt − Ls ,

so that, summing both equations in (5.3), we deduce

∫
Wε−(δ+ε)e

(t− f(x)) dx ≤
∫

Wε

(s− f(x)) dx.

Hence,

(t− s)|Wε| ≤
∫

Wε

(f(x+ (δ + ε)e) − f(x)) dx ≤ |Wε|ωf(δ + ε) .
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Dividing both sides by |Wε| > 0 and sending then ε to zero, we deduce

t− s ≤ ωf(δ) .

The regularity of u follows, that is, ωu ≤ ωf . Now, if f is continuous in Ω
we may approximate it uniformly by smooth functions fε ∈ C∞(Ω). If uε

is the corresponding solution of (1.4) with Neumann boundary condition,
then we already proved that ωuε ≤ ωfε. In particular, this gives us the
equicontinuity of uε. By uniqueness of solutions of the problem (1.4) with
Neumann boundary condition, we have that uε → u in C(Ω) where u is the
solution corresponding to f and we get that ωu ≤ ωf .

Finally, if Ω is an arbitrary convex subset of R
N , we can approximate Ω

by a sequence of smooth, strictly bounded uniformly convex sets Ωn and
consider un the solution of (1.4) with homogeneous Neumann boundary
condition in Ωn. Then, each un is uniformly continuous with ωun ≤ ωf .
Passing to the limit and recalling the uniqueness of the Neumann solution u
of (1.4), we get the thesis. �

Let us recall some basic definitions in order to state the analogous of
Theorem 5.1 for the total variation flow. For brevity, we shall only sketch
the results. As above, we assume that Ω is an open convex set in R

N . Let
us consider the minimizing total variation flow

(5.4)

∂u

∂t
= div

(
Du

|Du|
)

in QT = ]0, T [ × Ω,

Du

|Du| · νΩ = 0 in QT = ]0, T [ × ∂Ω

with the initial condition

(5.5) u(0, x) = f(x), x ∈ Ω.

Here equation (5.4) is formal and should not, for instance, be interpreted
in the sense of viscosity solutions, but rather as the semigroup of an ap-
propriately defined subgradient of the total variation. In particular, in the
Hilbertian framework (in L2), it is simply the gradient flow of the total vari-
ation, as defined in [10]. In the general case we shall follow [5, 8, 11] (where
the case of the total variation flow in unbounded domains is considered).

We define the operator Ap in Lp(Ω), N
N−1

≤ p ≤ ∞, by

v ∈ Apu if and only if u, v ∈ Lp(Ω), u ∈ BV (Ω), and

there exists z ∈ X(Ω)p with ‖z‖∞ ≤ 1 such that

(z ·Du) = |Du|, [z · νΩ] = 0, and v = −div (z) in D′(Ω).
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Proposition 5.2. [5, 8, 11] The operator Ap is m-accretive in Lp(Ω); that
is, for any f ∈ Lp(Ω) and any δ > 0 there is a unique solution u ∈ Lp(Ω) of
the problem

(5.6) u+ δApu � f.

Moreover, if u1, u2 ∈ Lp(Ω) are the solutions of (5.6) corresponding to the
right-hand sides f1, f2 ∈ Lp(Ω), then

‖u1 − u2‖p ≤ ‖f1 − f2‖p.

Moreover, the domain of Ap is dense in Lp(Ω) when p <∞ and its closure
contains BUC(Ω) (the space of bounded uniformly continuous functions)
when p = ∞.

We denote by Rδf the solution of (5.6), and by Rk
δf its k-iterate, for

any k ≥ 1. By Proposition 5.2 and Crandall-Ligget’s semigroup generation
theorem [15], the following limit exists

S(t)f := lim
δ↓0, kδ→t

Rk
δf ∈ C([0, T ], Lp(Ω))

and is the semigroup solution of (5.4). Let us recall is characterization it in
more classical terms.

By L1
w(]0, T [;BV (Ω)) we denote the space of weakly∗ measurable func-

tions w : [0, T ] → BV (Ω) (i.e., t ∈ [0, T ] → 〈w(t), φ〉 is measurable for any φ

in the predual of BV (Ω)) such that
∫ T

0
‖w(t)‖ dt <∞.

Definition 5.3. A function u ∈ C([0, T ];Lp(Ω)) is a strong solution of (5.4)
if

u ∈W 1,1
loc (0, T ;Lp(Ω)) ∩ L1

w(]0, T [;BV (Ω))

and there exists z ∈ L∞ (
]0, T [ × Ω; RN

)
with ‖z‖∞ ≤ 1 such that

∫
Ω

(z(t) ·Du(t)) =

∫
Ω

|Du(t)| for a.e. t > 0,(5.7)

[z(t) · νΩ] = 0 in ∂Ω for a.e. t > 0,(5.8)

and

ut = div z in D′ (]0, T [ × Ω) .

We use the same definition if we replace Lp(Ω) by BUC(Ω).
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Theorem 5.4. [5, 8] Let f ∈ Lp(Ω) if N
N−1

≤ p < ∞, or let f ∈ BUC(Ω)
if p = ∞. Then

u(t) = S(t)f := lim
δ↓0, kδ→t

Rk
δf ∈ C([0, T ], Lp(Ω))

is a strong solution of (5.4). Moreover, strong solutions are unique.

In particular, strong and semigroup solutions of (5.4) coincide.

Remark 5.5. Notice that given p ∈ [ N
N−1

,∞] the limit limδ↓0, kδ→t Rk
δf is

taken in Lp(Ω).

Let us point out that a more general existence and uniqueness result of
solutions of (5.4) for initial data in Lp

loc(Ω) for any p ∈ [1,∞] holds [8, 11].
Indeed, it is proved in R

N in [8, 11] but it can be easily adapted to the case
of Neumann boundary condition in Ω using the techniques in [4].

As a consequence of Theorems 5.1 and 5.4, we deduce:

Corollary 5.6. Let f be a uniformly continuous function in Ω and u(t, x) be
the Total Variation flow starting from f , with Neumann boundary condition.
Then, for any t ≥ 0, u(t, ·) is uniformly continuous with modulus ωu(t,·) ≤ ωf .

Proof. If f ∈ BUC(Ω), this is a consequence of Theorem 5.1 and Theo-
rem 5.4. If we only assume that f is uniformly continuous in Ω, we may
approximate it by functions in BUC(Ω), apply the result in this case, and
use the uniqueness result for data in L∞

loc(Ω) mentioned before the statement
of the corollary. �

References

[1] Almgren, F., Taylor, J. and Wang, L.-H.: Curvature-driven flows: a
variational approach. SIAM J. Control Optim. 31 (1993), no. 2, 387–438.

[2] Alter, F., Caselles, V. and Chambolle, A.: A characterization of
convex calibrable sets in R

N . Math. Ann. 332 (2005), no. 2, 329–366.
[3] Ambrosio, L., Fusco, N. and Pallara, D.: Functions of bounded vari-

ation and free discontinuity problems. Oxford Mathematical Monographs.
The Clarendon Press Oxford University Press, New York, 2000.

[4] Andreu, F., Ballester, C., Caselles, V. and Mazón, J.M.: The
Dirichlet problem for the total variation flow. J. Funct. Anal. 180 (2001),
no. 2, 347–403.

[5] Andreu, F., Caselles, V. and Mazón, J.M.: Parabolic quasilinear
equations minimizing linear growth functionals. Progress in Mathemat-
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