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Quasi-similarity of contractions
having a 2 × 1 characteristic function

Sergio Bermudo, Carmen H. Mancera,

Pedro J. Paúl and Vasily Vasyunin

Abstract

Let T1 ∈ B(H1) be a completely non-unitary contraction having
a non-zero characteristic function Θ1 which is a 2 × 1 column vec-
tor of functions in H∞. As it is well-known, such a function Θ1 can
be written as Θ1 = w1m1

[
a1
b1

]
where w1,m1, a1, b1 ∈ H∞ are such

that w1 is an outer function with |w1| ≤ 1, m1 is an inner function,
|a1|2 + |b1|2 = 1, and a1 ∧ b1 = 1 (here ∧ stands for the greatest com-
mon inner divisor). Now consider a second completely non-unitary
contraction T2 ∈ B(H2) having also a 2 × 1 characteristic function
Θ2 = w2m2

[
a2
b2

]
. We prove that T1 is quasi-similar to T2 if, and only

if, the following conditions hold:

1. m1 = m2,

2. {z ∈ T : |w1(z)| < 1} = {z ∈ T : |w2(z)| < 1} a.e., and

3. the ideal generated by a1 and b1 in the Smirnov class N+ equals
the corresponding ideal generated by a2 and b2.

1. Statement of the main theorem

Can one characterize the quasi-similarity of contractions in terms of their
characteristic functions? Quasi-similarity is an equivalence relation between
Hilbert space bounded operators which, being weaker than similarity, still
preserves many interesting features as the eigenvalues, the spectral multiplic-
ity or the non-triviality of the lattice of invariant subspaces (see [1], [3], [6]
and references therein).
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Two Hilbert space bounded operators T1 : H1 → H1 and T2 : H2 → H2

are said to be quasi-similar if there exist two bounded operators X : H1 →
H2 and V : H2 → H1 such that

XT1 = T2X, clos{XH1} = H2, ker(X) = {0};
T1V = V T2, clos{VH2} = H1, ker(V ) = {0}.

Such operators X and V are called deformations or quasi-affinities.
There have been several very deep and interesting approaches towards

the description of quasi-similarity in terms of the characteristic functions
of the operators involved. Namely, the Jordan model for C0-contractions,
completed by Bercovici, Sz.-Nagy and Foiaş and, independently, Müller,
after pioneering work by Sz.-Nagy and Foiaş (see [6] and [1]); the Jordan
model for weak contractions due to Wu [7], [8]; and the classification, up to
quasi-similarity, of C10-contractions with finite defects and Fredholm index
equal to −1 due to Makarov and Vasyunin [2].

In particular, the theorem of Wu’s tells us that the quasi-similariry of
completely non-unitary contractions T1 and T2 with scalar (i.e., 1× 1) char-
acteristic functions Θ1,Θ2 ∈ H∞ can be expressed in terms of their inner-
outer factorizations, say Θ1 = m1w1 and Θ2 = m2w2, as follows: T1 is
quasi-similar to T2 if, and only if, m1 = m2 and {z ∈ T : |w1(z)| < 1} =
{z ∈T : |w2(z)| < 1} a.e. The purpose of this paper is to study, with the help
of the coordinate-free function model developed by Nikolski and Vasyunin [5]
(see also [3, Ch. 1]), the quasi-similarity of contractions having characteristic
functions which are 2 × 1 matrices of elements in H∞. As we shall see, this
case seems to be already somewhat difficult to manage, but we hope that
it will provide hints to tackle a more general case when the characteristic
functions are (n + 1) × n matrices.

So let T ∈ B(H) be a completely non-unitary contraction having a non-
zero characteristic function Θ which is a 2× 1 column vector of functions in
H∞. As it is well-known, such a function Θ can be factorized as Θ = wm

[
a
b

]
,

where w,m, a, b ∈ H∞ are such that (i) w is an outer function with |w| ≤ 1,
(ii) m is the greatest common inner divisor of the components of Θ (this
inner function m is unique up to a constant multiple of modulus one), (iii)
|a|2 + |b|2 = 1, and (iv) a and b are relatively prime inner functions, that is
a∧ b = 1 where ∧ stands for the greatest common inner divisor. Associated
to these functions we can consider the set

Ω
def
= {z ∈ T : |w(z)| < 1}

and the ideal N+{a, b} generated by a and b in the Smirnov class N+ def
=

{f/g : f, g ∈ H∞ and g is outer}, that is,

N+{a, b} def
=

{
νa+ µb : ν, µ ∈ N+

}
.
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We fix this notation (with subindices when appropriate) throughout the
paper.

The main result of this paper is the following.

Main Theorem Let Ti (i = 1, 2) be completely non-unitary contractions

having non-zero 2 × 1 characteristic functions Θi = wimi

[
ai

bi

]
.

Then T1 is quasi-similar to T2 if, and only if, the following conditions
hold:

1. m1 = m2,

2. Ω1 = Ω2 a.e., and

3. N+{a1, b1} = N+{a2, b2}.

Remarks. We would like to underline at this point that for characteristic

functions Θi = wi

[
ai

bi

]
without scalar inner factor mi, the assertion of the

Theorem follows from [2] and from the fact that such a contraction is quasi-
similar to the direct sum of its outer and inner parts (Proposition 6.1 below
gives a slightly more general result).

However, the presence of scalar inner factors makes the situation more
complicated in spite of the fact that the Main Theorem tells us that every
part in the canonical factorization of one operator has to be quasi-similar to
the corresponding part of the second operator. As a matter of fact, one could
try, a priori, to prove this result by, as in the proof of Wu for the 1× 1 case
mentioned above, showing firstly that the operators T1 with characteristic
function wm

[
a
b

]
and the operator T2 with characteristic function

⎡
⎣w 0 0

0 m 0
0 0 [ ab ]

⎤
⎦

are quasi-similar. On the contrary, even in a simpler case, this does not
hold; indeed, in Proposition 6.2 below we shall prove that the operators T1

with characteristic function m
[
a
b

]
and the operator T2 with characteristic

function [
m 0
0 [ ab ]

]

are quasi-similar if, and only if, there exist three functions f1, f2, f3 ∈ H∞

such that mf1 + af2 + bf3 is an outer function; a condition that not always
holds.
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Notations. In what follows, clos{·} stands for the closure of the linear
span of the set within the brackets. In particular, if T is a bounded operator
defined in a Hilbert space H and M is a linear subspace of H, we shall
frequently use that clos

{
T clos{M}} = clos{TM}. Whenever we write L2

or L2(H), our underlying measure space is assumed to be the unit circle T

of the complex plane endowed with the Lebesgue measure; in particular, for
two sets Ω1 and Ω2 we shall write Ω1 = Ω2 whenever these sets coincide up
to a set of Lebesgue measure zero.

Otherwise, our terminology and notations are standard. A label (m.n)
refers to the n-th formula of section m.

2. The coordinate-free function model

Since we shall make an intensive use of the properties and the notation of
the coordinate-free function model for completely non-unitary contractions
given in [5] (see also [3, Ch. 1]), we shall describe it briefly for the convenience
of the reader.

Given a completely non-unitary contraction T ∈ B(H), let

DT
def
= (I − T ∗T )1/2

be its defect operator and

DT
def
= clos{DTH}

be its defect subspace, and take two auxiliary Hilbert spaces E and E∗ such
that

dim(E) = dim(DT ) and dim(E∗) = dim(DT ∗).

Now, let U ∈ B(K) be the minimal unitary dilation of T . Then U has a
triangular matrix with respect to the canonical decomposition K = G∗ ⊕
H ⊕ G, where G and G∗ are the so-called outgoing and incoming subspace,
respectively, and there exists a functional operator

Π = (π∗, π) : L2(E∗) ⊕ L2(E) → K

where π and π∗ are isometries intertwining U and the operator Mz of multi-
plication by the independent variable and Π has dense range in K. Among
other properties, the operator defined by

Θ
def
= (π∗)∗π ∈ B

(
L2(E), L2(E∗)

)
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is the operator of multiplication by a contractive-valued analytic function
z → Θ(z) ∈ B(E,E∗), that is, (Θf)(z) = Θ(z)f(z), and this analytic func-
tion is equivalent to the characteristic function ΘT of T defined by

ΘT (z)
def
=

(−T + zDT ∗(I − zT ∗)−1DT

)|DT .

Moreover, T is unitarily equivalent to the model operator defined as the com-
pression of U to the subspace HΘ, the orthogonal complement of

(
πH2(E)⊕

π∗H2
−(E∗)

)
in K.

To describe the intertwining lifting theorem that we shall use, we need
to introduce some more operators appearing in this model.

Consider the function ∆
def
= (I − Θ∗Θ)1/2 defined a.e. on the unit circle.

Then ∆ is the positive part of the polar decomposition π − π∗Θ = τ∆
that also provides us with an isometry τ acting from the so-called residual

subspace L2(∆E)
def
= clos{∆L2(E)} to K. Similarly, for ∆∗

def
= (I − ΘΘ∗)1/2

there is an isometry τ∗ defined in L2(∆∗E). These operators satisfy a number
of relationships [5, p. 237] and some of them will be used time and again in
the sequel, namely

(2.1)
ττ ∗ + π∗π∗

∗ = I, τ ∗π = ∆, τ ∗π∗ = 0, τ ∗τ∗ = −Θ∗, π = π∗Θ + τ∆,

τ∗τ ∗∗ + ππ∗ = I, τ ∗∗π∗ = ∆∗, τ ∗∗π = 0, τ ∗∗ τ = −Θ, π∗ = πΘ∗ + τ∗∆∗.

We will also need the following equalities:

(2.2)
G = πH2(E) H ⊕ G = π∗H2(E∗) ⊕ τL2(∆E)
G∗ = π∗H2

−(E∗) H ⊕ G∗ = πH2
−(E) ⊕ τ∗L2(∆∗E∗).

Now let T1 ∈ B(H1) and T2 ∈ B(H2) be arbitrary completely non-
unitary contractions. Let X ∈ B(H1,H2) be a bounded operator intertwin-
ing T1 and T2, that is, T2X = XT1. Then the liftings Y ∈ B(K1,K2) of X
intertwining the minimal unitary dilations of T1 and T2 and preserving the
outgoing-incoming structure, in the sense that Y G1 ⊂ G2 and Y ∗G∗2 ⊂ G∗1,
can be parametrized in either of the following forms [5, p. 252–258]

Y = π∗2A∗π∗
∗1 + τ2∆2Aπ

∗
1 + τ2A0τ

∗
∗1

= π2Aπ
∗
1 + π∗2A∗∆∗1τ ∗∗1 + τ2A0τ

∗
∗1,

where the parameters z �→ A(z) ∈ B(E1,E2) and z �→ A∗(z) ∈ B(E∗1,E∗2)
are operator-valued, bounded analytic functions such that A∗Θ1 = Θ2A,
and z �→ A0(z) ∈ B(∆∗1E∗1,∆2E2) is an operator-valued, bounded measur-
able function, which can be regarded as a function in B(E∗1,∆2E2) equal
to zero on ker(∆∗1). This parametrization theorem will be essential in our
computations.
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3. Lifting quasi-affinities

The lemmas that we give in this section tell us how to relate the conditions
that define a quasi-affinity to the parameters of any of its liftings. These
lemmas are formulated in the general case.

Lemma 3.1 Let X : H1 → H2 be a bounded operator such that XT1 =
T2X and let

Y = π∗2A∗π∗
∗1 + τ2∆2Aπ

∗
1 + τ2A0τ

∗
∗1

be a lifting of X intertwining the minimal unitary dilations of T1 and T2.
Then clos{XH1} = H2 if, and only if,

(3.1)

clos

⎧⎨
⎩

[
A∗ Θ2 0

∆2AΘ∗
1 + A0∆∗1 ∆2 ∆2A∆1 −A0Θ1

]⎡
⎣ H2(E∗1)

H2(E2)
L2(∆1E1)

⎤
⎦
⎫⎬
⎭

=

[
H2(E∗2)
L2(∆2E2)

]
.

Moreover, in this case the operator
[
A∗ Θ2

]
defined onH2(E∗1)⊕H2(E2)

is outer, that is, its range is dense in H2(E∗2).

Proof. Since XH1 = P (H2)YH1 and G2 ⊥ H2, we have that

clos{XH1} = H2 ⇐⇒ clos{P (H2)YH1 ⊕ G2} = H2 ⊕ G2.

It follows from Y ∗G∗2 ⊂ G∗1 that Y (H1 ⊕ G1) ⊂ H2 ⊕ G2 and, using this, it
follows easily the equality

P (H2)YH1 ⊕ G2 = YH1 + G2.

Hence the equivalence above can be written as

clos{XH1} = H2 ⇐⇒ clos{YH1 + G2} = H2 ⊕ G2.

Since Y G1 ⊂ G2, we have

Y (H1 ⊕ G1) + G2 = YH1 + G2,

and therefore

clos{XH1} = H2 ⇐⇒ clos{Y (H1 ⊕ G1) + G2} = H2 ⊕ G2.

Now let us express the left hand side of the latter equality in terms of the
parameters of the lifting Y = π∗2A∗π∗

∗1 + τ2∆2Aπ
∗
1 + τ2A0τ

∗
∗1.
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Using (2.1) and (2.2) we obtain

clos{Y (H1 ⊕ G1) + G2}
= clos

{
(π∗2A∗π∗

∗1 + τ2∆2Aπ
∗
1 + τ2A0τ

∗
∗1) (π∗1H2(E∗1) ⊕ τ1L

2(∆1E1))
+π2H

2(E2)

}

= clos

⎧⎨
⎩

(
π∗2A∗ + τ2∆2AΘ∗

1 + τ2A0∆∗1
)
H2(E∗1)

+
(
π∗2Θ2 + τ2∆2

)
H2(E2)

+
(
τ2∆2A∆1 − τ2A0Θ1

)
L2(∆1E1)

⎫⎬
⎭

= clos

⎧⎨
⎩
[

π∗2A∗ π∗2Θ2 0
τ2(∆2AΘ∗

1+A0∆∗1) τ2∆2 τ2
(
∆2A∆1−A0Θ1

) ]⎡
⎣ H2(E∗1)

H2(E2)
L2(∆1E1)

⎤
⎦
⎫⎬
⎭

=

[
π∗2 0
0 τ2

]
clos

⎧⎨
⎩
[

A∗ Θ2 0
∆2AΘ∗

1+A0∆∗1 ∆2 ∆2A∆1−A0Θ1

]⎡⎣ H2(E∗1)
H2(E2)
L2(∆1E1)

⎤
⎦
⎫⎬
⎭

Since π∗2 and τ2 are isometries and, according to (2.2), we have H2 ⊕ G2 =
π∗2H2(E∗2) ⊕ τ2L

2(∆2E2), it follows from the above chain of equalities that
the identity clos{Y (H1 ⊕ G1) + G2} = H2 ⊕ G2 is equivalent to (3.1). (Note
that, in fact, the removing from the formula the operators π∗2 and τ2 is
equivalent to the choice of the standard Szőkefalvi-Nagy–Foiaş functional
model with π∗ =

[
I
0

]
and τ =

[
0
I

]
.)

This finishes the proof of the equivalence.

To prove that if clos{XH1} = H2 then
[
A∗ Θ2

]
is outer, it is sufficient

to look on the first line of (3.1)

clos
{
A∗H2(E∗1) + Θ2H

2(E2)
}

= H2(E∗2)

and this means that
[
A∗ Θ2

]
is outer. �

Our next result is a converse of the second part of Lemma 3.1.

Lemma 3.2 Let X : H1 → H2 be a bounded operator such that XT1 =
T2X and let Y = π∗2A∗π∗

∗1+τ2∆2Aπ
∗
1 +τ2A0τ

∗
∗1 be a lifting of X intertwining

the minimal unitary dilations of T1 and T2. If

(3.2) clos
{(

∆2A∆1 − A0Θ1

)
L2(∆1E1)

}
= L2(∆2E2),

then the claim clos{XH1} = H2 is equivalent to the assertion that the
function

[
A∗ Θ2

]
is outer.
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Proof. A straightforward computation shows that, under conjecture (3.2),
the criterion (3.1) of the fact that the operator X has a dense range is
equivalent to the equality

clos
{
A∗H2(E∗1) + Θ2H

2(E2)
}

= H2(E∗2),

what just means that the function
[
A∗ Θ2

]
is outer. �

Taking into account that ker(X) = {0} if, and only if, clos{X∗H2} = H1

and that X∗ is a compression of Y ∗, the following lemmas can be proved
analogously.

Lemma 3.3 Let X : H1 → H2 be a bounded operator such that XT1 =
T2X and let Y = π2Aπ

∗
1+π∗2A∗∆∗1τ ∗∗1+τ2A0τ

∗
∗1 be a lifting ofX intertwining

the minimal unitary dilations of T1 and T2. Then ker(X) = {0} if, and
only if,

clos

⎧⎨
⎩
[

A∗ Θ∗
1 0

∆∗1A∗
∗Θ2+A

∗
0∆2 ∆∗1 ∆∗1A∗

∗∆∗2−A∗
0Θ

∗
2

]⎡
⎣ H2

−(E2)
H2

−(E∗1)
L2(∆∗2E∗2)

⎤
⎦
⎫⎬
⎭=

[
H2

−(E1)
L2(∆∗1E∗1)

]
.

Moreover, in this case the operator
[
A
Θ1

]
defined on H2(E1) is ∗-outer,

that is, the range of its adjoint
[
A∗ Θ∗

1

]
defined on H2

−(E2) ⊕ H2
−(E∗1) is

dense in H2
−(E1).

Lemma 3.4 Let X : H1 → H2 be a bounded operator such that XT1 =
T2X and let Y = π2Aπ

∗
1+π∗2A∗∆∗1τ ∗∗1+τ2A0τ

∗
∗1 be a lifting ofX intertwining

the minimal unitary dilations of T1 and T2. If

clos
{(

∆∗1A∗
∗∆∗2 −A∗

0Θ
∗
2

)
L2(∆∗2E∗2)

}
= L2(∆∗1E∗1),

then the claim ker(X) = {0} is equivalent to the assertion that the function[
A
Θ1

]
is ∗-outer.

4. Features of the model for the case at hand

Let us introduce at this point the following notation: given the characteristic
function Θ = wm

[
a
b

]
, we define

θ
def
=

[
a
b

]
and η

def
=

[
b

−a
]
, so that θ∗ =

[
a b

]
and η∗ =

[
b −a] .

Note also, for later use, that θ∗θ = η∗η = 1 and θ∗η = η∗θ = 0.
Let us now describe some of the embeddings and subspaces of the coord-

inate-free functional model of our operator T with characteristic function
Θ = wmθ.
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If we consider the scalar outer function w as an 1×1 characteristic func-

tion, then we have ∆w=
√

1 − |w|2 and it is well-known that its residual sub-

space is L2(∆wC)=clos{∆wL
2}=χ

Ω
L2, where Ω

def
= {z ∈ T : |w(z)| < 1}.

Since Θ is a 2 × 1 vector with entries in H∞, we can take as auxiliary
spaces E = C and E∗ = C2.

Proposition 4.1 For Θ = wmθ and the auxiliary spaces E = C and
E∗ = C2, the corresponding functions ∆ and ∆∗ in the function model are

∆ = ∆w and ∆∗ = ηη∗ + ∆wθθ
∗,

and the corresponding residual subspaces are

L2(∆E) = L2(∆wC) = χ
Ω
L2 and L2(∆∗E∗) = ηL2 ⊕ θχ

Ω
L2.

Proof. On the one hand, we have

∆2 = 1 − Θ∗Θ = 1 − wmθ∗wmθ = 1 − |w|2,
therefore ∆ = ∆w and, consequently,

L2(∆E) = L2(∆C) = L2(∆wC) = χ
Ω
L2.

On the other hand,

∆2
∗

def
= I − ΘΘ∗ = I − wmθwmθ∗ = I − |w|2θθ∗.

Since

∆2
∗η = (I − |w|2θθ∗)η = η and ∆2

∗θ = (I − |w|2θθ∗)θ = (1 − |w|2)θ,
we have that the eigenvalues of ∆2

∗ are 1 and 1− |w|2 with respective ortho-
normal eigenvectors η and θ. Therefore,

∆∗ = ηη∗ +
√

1 − |w|2θθ∗ = ηη∗ + ∆wθθ
∗.

Now, the multiplication by the matrix
[
θ η

]
is a unitary operator on C2,

hence
L2(C2) =

[
θ η

]
L2(C2) = θL2 ⊕ ηL2.

Therefore,

clos
{
∆∗L2(C2)

}
= clos

{(
ηη∗ + ∆wθθ

∗) (
θL2 ⊕ ηL2

)}
= clos

{
ηL2 ⊕ θ∆wL

2
}

= ηL2 ⊕ θχ
Ω
L2,

So that, for the ∗-residual subspace L2(∆∗E∗) we finally have

L2(∆∗E∗) = ηL2 ⊕ θχ
Ω
L2.

�
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5. Proof of the main theorem

Main Theorem 5.1 Let Ti ∈ B(Hi) (i = 1, 2) be completely non-unitary

contractions having non-zero 2× 1 characteristic functions Θi = wimi

[
ai

bi

]
.

Then T1 is quasi-similar to T2 if, and only if, the following conditions
hold:

1. m1 = m2,

2. Ω1 = Ω2 a.e., and

3. N+{a1, b1} = N+{a2, b2}.

The proof of the Main Theorem has been decomposed in a series of
lemmas in order to make it more transparent the role of each condition in
the network of implications. First we prove two easy lemmas of general
character.

Lemma 5.2 Let a, b ∈ H∞ such that |a|2 + |b|2 = 1 and a ∧ b = 1. Then
for any pair of functions f, g ∈ H∞ satisfying af + bg = 0 there exists a
function ϕ ∈ H∞ such that f = ϕb and g = −ϕa.
Proof. We take two functions f, g ∈ H∞ satisfying af + bg = 0. Firstly,
we suppose that they also satisfy |f |2 + |g|2 = 1. Taking modulus in the
equality af = −bg we obtain |a|2|f |2 = |b|2|g|2 = |b|2(1 − |f |2), therefore
|b|2 = (|a|2+|b|2)|f |2 = |f |2, in consequence |b| = |f | and |a| = |g|. Using the
properties of inner-outer factorizations we have the equality of outer parts
(be = f e, ae = ge), and therefore, for inner parts we get aif i = −bigi. Since a
and b do not have a common inner divisor, bi divides f i, that is, there exists
an inner function ϕ such that f i = ϕbi and, consequently gi = −ϕai. Hence
we conclude that f = ϕb and g = −ϕa.

If we have now two functions f, g ∈ H∞ satisfying af + bg = 0, we
consider an outer function w ∈ H∞ such that |w|2 = |f |2 + |g|2. Then we
use the last result with f/w and g/w to obtain an inner function ψ such
that f = wψb and g = −wψa. �
Lemma 5.3 Let a, b, and m be three functions in N+. The following
properties hold:

1. If a ∧ b = 1, then there exists t0 ∈ [0, 1] such that (a+ t0b) ∧m = 1.

2. If b ∧m = 1, then there exists t0 ∈ [0, 1] such that (a + t0b) ∧m = 1.

Proof. We consider the function a + tb for every t ∈ [0, 1]. Firstly, if we
denote mt = a + tb, let us see that mt1 ∧ mt2 = 1 for every t1 �= t2. We
suppose that there exists a function ϕ which divides mt1 and mt2 , then ϕ
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divides (t1 − t2)b and, therefore, it divides b. As ϕ divides a + t1b and b,
it also divides a, in consequence, ϕ = 1. By using the nonexistence of an
uncountable number of pairwise relatively prime inner divisors of an inner
function [1, 2.14], we obtain that there exists a real number t0 ∈ [0, 1] such
that (a1 + t0b1) ∧m = 1. Analogously, we can prove the property (2). �

Notation. We denote by N+
2×2 the set of all 2 × 2 matrices with entries in

the Smirnov class N+ and by deti(Λ) the inner part of det(Λ); as usual, we
assume 0i = 0.

Lemma 5.4 Let θi =
[
ai

bi

]
be such that ai, bi ∈ H∞, |ai|2 + |bi|2 = 1 and

ai∧bi = 1 for i = 1, 2, and let m be an inner function. If a1, b1 ∈ N+{a2, b2},
then there exists a matrix Λ ∈ N+

2×2 such that

Λθ2 = θ1 and deti(Λ) ∧m = 1.

Proof. Since a1, b1∈N+{a2, b2}, there exist Λij∈N+ (i, j=1, 2) such that

Λ11a2 + Λ12b2 = a1 and Λ21a2 + Λ22b2 = b1,

that is, Λ
def
= [Λij] is in N+

2×2 and Λθ2 = θ1. If deti(Λ) ∧m = 1 then we are
done, so assume that deti(Λ) ∧m �= 1. We shall prove that there exists a
matrix Q ∈ H∞

2×2 such that Qθ2 = 0 and deti(Λ +Q) ∧m = 1; this matrix
Λ +Q does the job.

Since |a2|2 + |b2|2 = 1 and a2 ∧ b2 = 1, if Q ∈ H∞
2×2 is such that Qθ2 = 0,

from Lemma 5.2 we know that Q = φη∗2, where the entries of φ =
[
c
d

]
are in H∞ (we have used the notation introduced in the previous section:
η∗2 =

[
b2 −a2

]
). So we have to find c, d ∈ H∞ such that the matrix Q = φη∗2

satisfies deti(Λ +Q) ∧m = 1.

A straightforward computation shows that

det(Λ +Q) = det(Λ) + (cb1 − da1),

hence
deti(Λ +Q) =

[
det(Λ) + (cb1 − da1)

]i
.

Since a1 ∧ b1 = 1, we can use the first part of Lemma 5.3 to find a real
number t ∈ [0, 1] such that (a1 + tb1) ∧m = 1. Then, using the second part
of the same lemma, we can find another real number s ∈ [0, 1] such that

[
det(Λ) + s(a1 + tb1)

] ∧m = 1.

Then it suffices to take c = st and d = −s. �
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Lemma 5.5 Let Ti ∈ B(Hi) (i = 1, 2) be completely non-unitary contrac-

tions with 2 × 1 characteristic functions Θi = wimi

[
ai

bi

]
.

Then there exists an operator X : H1 → H2 such that

XT1 = T2X, and clos{XH1} = H2

if, and only if, the following conditions hold:

1. m2 divides m1,

2. Ω2 ⊆ Ω1 a.e., and

3. N+{a1, b1} ⊆ N+{a2, b2}.

Proof. We suppose that there exists an operator X : H1 → H2 such that
XT1 = T2X and clos{XH1} = H2. Let

Y = π∗2A∗π∗
∗1 + τ2∆2Aπ

∗
1 + τ2A0τ

∗
∗1 = π2Aπ

∗
1 + π∗2A∗∆∗1τ ∗∗1 + τ2A0τ

∗
∗1

be a lifting of X intertwining the minimal unitary dilations of T1 and T2.
Then A0 is a row vector with two entries in L∞, A is a function in H∞

(formally, a 1 × 1 matrix) and A∗ is in H∞
2×2, say

A∗ =

[
a∗11 a∗12
a∗21 a∗22

]
,

satisfying A∗Θ1 = Θ2A. Multiply this equality by η∗2, then

η∗2A∗Θ1 = η∗2Θ2A = w2m2η
∗
2θ2A = 0

because η∗2θ2 = 0. Since Θ1 = m1w1θ1, it follows that η∗2A∗θ1 = 0. It follows
from Lemma 5.2 that there exist functions f1 and f2 in H∞ such that

η∗2A∗ = f1η
∗
1 = f1

[
b1 −a1

]
and A∗θ1 = f2θ2.

Taking into account that
[
θ η

]
is a unitary matrix of determinant 1 we

have

det(A∗) = det

([
θ∗2
η∗2

]
A∗

[
θ1 η1

])
= det

[
f2 θ∗2A∗η1

0 f1

]
= f1f2.

Now, since clos{XH1} = H2, Lemma 3.1 tells us that

[
A∗ Θ2

]
=

[
a∗11 a∗12 m2w2a2

a∗21 a∗22 m2w2b2

]

is an outer operator.
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This implies that the three determinants of the 2× 2 minors that can be
extracted form this matrix are relatively prime, i.e., have no common proper
inner divisors (see [4]). That is, the three functions

det(A∗) = a∗11a∗22 − a∗21a∗12 = f1f2,

m2w2(a∗11b2 − a∗21a2) = m2w2η
∗
2

[
a∗11
a∗21

]
= m2w2η

∗
2A∗

[
1
0

]

= m2w2f1η
∗
1

[
1
0

]
= m2w2f1b1,

m2w2(a∗12b2 − a∗22a2) = m2w2η
∗
2

[
a∗12
a∗22

]
= m2w2η

∗
2A∗

[
0
1

]

= m2w2f1η
∗
1

[
0
1

]
= −m2w2f1a1,

have no common proper inner divisors, hence f1 must be an outer function
and f2 ∧m2 = 1.

Since

m2w2θ2A = Θ2A = A∗Θ1 = m1w1A∗θ1 = m1w1f2θ2,

we have m2w2A = m1w1f2 and, therefore m2 divides m1.
To prove that Ω2 ⊂ Ω1 a.e or, equivalently, that χ

Ω2
(1 − χ

Ω1
) = 0 a.e.,

we will use Lemma 3.1. Since clos{XH1} = H2 and, by applying Proposi-
tion 4.1, Ei = C, E∗i = C2, ∆i = ∆wi

and L2(∆iEi) = χ
Ωi
L2 for i = 1, 2;

Lemma 3.1 tells us that

(5.1)

clos

⎧⎨
⎩

[
A∗ Θ2 0

∆w2AΘ∗
1 + A0∆∗1 ∆w2 ∆w2A∆w1 −A0Θ1

]⎡
⎣H

2(C2)
H2

χ
Ω1
L2

⎤
⎦

⎫⎬
⎭

=

[
H2(C2)
χ

Ω2
L2

]
.

Now, since the orthogonal projection from the space χ
Ω2
L2 onto χ

Ω2
(1 −

χ
Ω1

)L2 is the multiplication by 1 − χ
Ω1

, the orthogonal projection from the
space H2(C2) ⊕ χ

Ω2
L2 onto its subspace H2(C2) ⊕ χ

Ω2
(1 − χ

Ω1
)L2 is the

operator I ⊕ (1− χ
Ω1

). Therefore, if we apply this orthogonal projection to
the equality (5.1), taking into account that(

∆w2A∆w1 − A0Θ1

)
χ

Ω1
L2 ⊂ χ

Ω1
χ

Ω2
L2 ⊥ χ

Ω2
(1 − χ

Ω1
)L2,

we obtain

clos

{[
I 0
0 1 − χ

Ω1

][
A∗ Θ2

∆w2AΘ∗
1 + A0∆∗1 ∆w2

][
H2(C2)
H2

]}
=

[
H2(C2)

(1 − χ
Ω1

)χ
Ω2
L2

]
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or, equivalently

clos

{[
A∗ Θ2

(1−χ
Ω1

)
(
∆w2AΘ∗

1+A0∆∗1
)

(1−χ
Ω1

)∆w2

][
H2(C2)
H2

]}
=

[
H2(C2)

(1−χ
Ω1

)χ
Ω2
L2

]
.

We claim now that the matrix[
A∗ Θ2

(1 − χ
Ω1

)
(
∆w2AΘ∗

1 + A0∆∗1
)

(1 − χ
Ω1

)∆w2

]

has rank 2 a.e., hence the preceding equality implies that for almost every

z ∈ T the evaluation at z of each of the vectors in

[
H2(C2)

(1 − χ
Ω1

)χ
Ω2
L2

]
is

two-dimensional, and this can only happen if (1 − χ
Ω1

)χ
Ω2

= 0 a.e.

To prove our claim, start by noting that, plainly, θ1θ
∗
1 + η1η

∗
1 = I so that

our matrix can be expressed as
[

A∗ Θ2

(1 − χ
Ω1

)
(
∆w2AΘ∗

1 + A0∆∗1
)

(1 − χ
Ω1

)∆w2

]

=

[
A∗θ1θ∗1 Θ2

(1 − χ
Ω1

)∆w2AΘ∗
1 (1 − χ

Ω1
)∆w2

]
+

[
A∗η1η

∗
1 0

(1 − χ
Ω1

)A0∆∗1 0

]
.

Let us see that these two matrices have rank 1 a.e. Concerning the first,
consider the function defined a.e. by ξ = Aw−1

1 m1θ
∗
1. It will be enough to

prove that the factorization
[

A∗θ1θ∗1 Θ2

(1 − χ
Ω1

)∆w2AΘ∗
1 (1 − χ

Ω1
)∆w2

]
=

[
Θ2

(1 − χ
Ω1

)∆w2

] [
ξ 1

]

holds; note that both factors on the right hand have rank 1. Indeed, using
that Θ2A = A∗Θ1 and that m1 is inner, we have

Θ2ξ = Θ2Aw
−1
1 m1θ

∗
1 = A∗Θ1w

−1
1 m1θ

∗
1 = A∗m1w1θ1w

−1
1 m1θ

∗
1 = A∗θ1θ∗1,

and, using that |w1(z)| = 1 for all z /∈ Ω1, also

(1 − χ
Ω1

)∆w2ξ = (1 − χ
Ω1

)∆w2Aw
−1
1 m1θ

∗
1

= (1 − χ
Ω1

)∆w2Aw1m1θ
∗
1 = (1 − χ

Ω1
)∆w2AΘ∗

1.

Concerning the second matrix, since ∆∗1 = η1η
∗
1 + ∆w1θ1θ

∗
1, by Proposi-

tion 4.1, and, on the other hand, (1 − χ
Ω1

)∆w1 = 0 by the definition of Ω1,
it follows

(1 − χ
Ω1

)A0∆∗1 = (1 − χ
Ω1

)A0(η1η
∗
1 + ∆w1θ1θ

∗
1) = (1 − χ

Ω1
)A0η1η

∗
1
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so that the following factorization holds[
A∗η1η

∗
1 0

(1 − χ
Ω1

)A0∆∗1 0

]
=

[
A∗η1

(1 − χ
Ω1

)A0η1

] [
η∗1 0

]

where both factors have rank 1.
This finishes the proof that χ

Ω2
(1 − χ

Ω1
) = 0 a.e. or, as we mentioned

above, that Ω2 ⊆ Ω1 a.e.
So, finally, take an arbitrary element µa1 + νb1 ∈ N+{a1, b1}, where

ν, µ ∈ N+. Then

µa1 + νb1 =
[
b1 −a1

] [
ν
−µ

]
= η∗1

[
ν
−µ

]
=

1

f1
η∗2A∗

[
ν
−µ

]

which is in N+{a2, b2} since the entries of A∗ are in H∞ and ν/f1, µ/f1 ∈ N+

because f1 is outer.

This finishes the proof that the conditions are necessary.

Now, assume thatm1 = hm2 for some inner function h, Ω2 ⊆ Ω1 a.e., and
N+{a1, b1} ⊆ N+{a2, b2}. We have to prove that there exists an operator
X : H1 → H2 such that

XT1 = T2X, and clos{XH1} = H2.

We will prove the existence of such an operator X by using an adequate
parametrization to produce a suitable lifting Y = π∗2A∗π∗

∗1 + τ2∆2Aπ
∗
1 +

τ2A0τ
∗
∗1 of X.

Start by taking A0 = 0. Using Lemma 3.2 with the descriptions of the
residual subspaces given in Proposition 4.1, it suffices to find a function

A ∈ H∞ and a matrix A∗ =

[
a∗11 a∗12
a∗21 a∗22

]
in H∞

2×2 such that the following

three conditions hold:

Θ2A = A∗Θ1, clos
{
∆w2A∆w1χΩ1

L2
}

= χ
Ω2
L2 and

[
A∗ Θ2

]
is outer.

Since a1, b1 ∈ N+{a2, b2}, Lemma 5.4 tells us that there exists a matrix
Λ ∈ N+

2×2 such that Λθ2 = θ1 and deti(Λ) ∧ m2 = 1. So fix an outer

function φ such that φΛ ∈ H∞
2×2 and call λ

def
= det(Λ). Then, we take

A
def
= hw1φ

2λ ∈ H∞; note that λ ∧ m2 = 1. Now, for Λ =

[
Λ11 Λ12

Λ21 Λ22

]

define

Λad def
=

[
Λ22 −Λ12

−Λ21 Λ11

]
.

Then ΛΛad = ΛadΛ = det(Λ)I = λI. We take A∗
def
= w2φ

2Λad.
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Proof that Θ2A = A∗Θ1. Since Λθ2 = θ1, multiplying by Λad we get

λθ2 = ΛadΛθ2 = Λadθ1

and, therefore,

Θ2A = (w2m2θ2)(hw1φ
2λ) = w2φ

2w1m1(λθ2)

= w2φ
2w1m1(Λ

adθ1) = (w2φ
2Λad)(w1m1θ1) = A∗Θ1.

Proof that clos
{
∆w2A∆w1χΩ1

L2
}

= χ
Ω2

L2. This is easy: simply
note that A never vanishes, that ∆wi

does not vanish on Ωi (i = 1, 2),
and that Ω2 ⊆ Ω1.

Proof that
[
A∗ Θ2

]
is outer . To prove that

[
A∗ Θ2

]
is outer, we need

to check that the three determinants of the 2× 2 minors of this matrix have
no common inner divisor. But, as we saw in the proof of the necessity part,
it follows from the equality Θ2A = A∗Θ1 that these three determinants are
det(A∗), m2w2f1b1, and −m2w2f1a1. It is easy to see that f1 = η∗2A∗η1 =
w2φ

2. Hence, these three functions

det(A∗) = w2
2φ

4λ, m2w
2
2φ

2b1, and −m2w
2
2φ

2a1.

have no common inner divisor because w2 and φ are outer, a1 ∧ b1 = 1 and
m2 ∧ λ = 1. This proves that

[
A∗ Θ2

]
is outer and the proof of the lemma

is completed. �

Lemma 5.6 Let Ti ∈ B(Hi) (i = 1, 2) be completely non-unitary contrac-

tions having 2 × 1 characteristic functions Θi = wimi

[
ai

bi

]
.

Then there exists an operator X : H1 → H2 such that

XT1 = T2X, and ker(X) = {0}
if, and only if, the following conditions hold:

1. m1 divides m2,

2. Ω1 ⊆ Ω2 a.e.

Proof. We suppose that there exists an operator X : H1 → H2 such that
XT1 = T2X and ker(X) = {0}. Let

Y = π∗2A∗π∗
∗1 + τ2∆2Aπ

∗
1 + τ2A0τ

∗
∗1 = π2Aπ

∗
1 + π∗2A∗∆∗1τ ∗∗1 + τ2A0τ

∗
∗1

be a lifting of X intertwining the minimal unitary dilations of T1 and T2.
Then A0 is a row vector with two entries in L∞, A is a function in H∞

and A∗ is in H∞
2×2, say

A∗ =

[
a∗11 a∗12
a∗21 a∗22

]
,

satisfying Θ2A = A∗Θ1.
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The last equality yields

m2w2Aa2 = m1w1(a∗11a1+a∗12b1) and m2w2Ab2 = m1w1(a∗21a1+a∗22b1).

Therefore, m1 divides both m2Aa2 and m2Ab2, and a2 ∧ b2 = 1 implies that
m1 divides m2A. Now, since ker(X) = {0}, Lemma 3.3 tells us that the

operator
[
A
Θ1

]
is ∗-outer and this implies that its entries A, m1w1a1 and

m1w1b1 must have no common inner divisor. Hence m1 ∧ A = 1 and since,
as we have just seen, m1 divides m2A, it follows that m1 divides m2.

To prove that Ω1 ⊆ Ω2 a.e. we will argue in the same way that in the
last lemma, we will prove that χ

Ω1
(1 − χ

Ω2
) = 0 a.e.. For that, as in that

lemma, we know that there exist functions f1 and f2 in H∞ such that

η∗2A∗ = f1η
∗
1 = f1

[
b1 −a1

]
, A∗θ1 = f2θ2 and det(A∗) = f1f2.

Since ker(X) = {0} and, by applying Proposition 4.1, Ei = C, E∗i = C2,
∆i = ∆wi

, ∆∗i = ηiη
∗
i +∆wi

θiθ
∗
i and L2(∆∗iE∗i) = ηiL

2⊕θiχΩi
L2 for i = 1, 2,

Lemma 3.3 tells us that

clos

⎧⎨
⎩
[

A Θ∗
1 0

∆∗1A∗
∗Θ2 + A∗

0∆w2 ∆∗1 ∆∗1A∗
∗∆∗2 − A∗

0Θ
∗
2

]⎡⎣ H2
−

H2
−(C2)

η2L
2 ⊕ θ2χΩ2

L2

⎤
⎦
⎫⎬
⎭

=

[
H2

−
η1L

2 ⊕ θ1χΩ1
L2

]
.

Now, since the orthogonal projection from the space η1L
2 ⊕ θ1χΩ1

L2 onto
θ1(1 − χ

Ω2
)χ

Ω1
L2 is the operator θ1(1 − χ

Ω2
)θ∗1, let us see that

θ1(1 − χ
Ω2

)θ∗1(∆∗1A∗
∗∆∗2 − A∗

0Θ
∗
2)(η2L

2 ⊕ θ2χΩ2
L2) = {0}.

Using that

(1 − χ
Ω2

)χ
Ω2

= 0, ∆∗iηi = ηi, θ∗i ηi = 0 and A∗
∗η2 = f 1η1,

we obtain

θ1(1 − χ
Ω2

)θ∗1(∆∗1A∗
∗∆∗2 − A∗

0Θ
∗
2)(η2L

2 ⊕ θ2χΩ2
L2)

= θ1(1 − χ
Ω2

)θ∗1(∆∗1A∗
∗∆∗2 − A∗

0Θ
∗
2)η2L

2

= θ1(1 − χ
Ω2

)θ∗1∆∗1A∗
∗∆∗2η2L

2

= θ1(1 − χ
Ω2

)θ∗1∆∗1f 1η1L
2

= θ1(1 − χ
Ω2

)θ∗1η1f 1L
2 = {0}.
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Therefore

clos

{[
1 0
0 θ1(1 − χ

Ω2
)θ∗1

] [
A Θ∗

1

∆∗1A∗
∗Θ2 + A∗

0∆w2 ∆∗1

] [
H2

−
H2

−(C2)

]}

= clos

{[
A Θ∗

1

θ1(1−χΩ2
)θ∗1(∆∗1A∗

∗Θ2+A
∗
0∆w2) θ1(1−χΩ2

)θ∗1∆∗1

][
H2

−
H2

−(C2)

]}

=

[
H2

−
θ1(1 − χ

Ω2
)χ

Ω1
L2

]
.

It remains to prove that the matrix

[
A Θ∗

1

θ1(1 − χ
Ω2

)θ∗1(∆∗1A∗
∗Θ2 + A∗

0∆w2) θ1(1 − χ
Ω2

)θ∗1∆∗1

]

has rank 1. Since

θ∗1∆∗1 = ∆w1θ
∗
1, θ∗1A

∗
∗ = f2θ

∗
2 and (1 − χ

Ω2
)∆w2 = 0,

we have

θ1(1 − χ
Ω2

)θ∗1(∆∗1A∗
∗Θ2 + A∗

0∆w2) = θ1(1 − χ
Ω2

)∆w1m2w2f 2.

Now, from the equality Θ2A = A∗Θ1 it follows that

m2w2θ2A = A∗m1w1θ1 = m1w1f2θ2,

consequently, A = m2w
−1
2 m1w1f2. Taking into account that (1 − χ

Ω2
)w2 =

(1 − χ
Ω2

)w−1
2 we can write the matrix above as

[
m1w1

θ1(1 − χ
Ω2

)∆w1

] [
m2w

−1
2 f 2 θ∗1

]
,

which is of rank 1. It follows from this fact that (1 − χ
Ω2

)χ
Ω1

= 0 a.e.
and, therefore, the inclusion Ω1 ⊆ Ω2 a.e. This finishes the proof that the
conditions are necessary.

Now, assume that m2 = hm1 for some inner function h and Ω1 ⊆ Ω2 a.e.
We have to prove that there exists an operators X : H1 → H2 such that

XT1 = T2X, and ker(X) = {0}.
We will prove the existence of such an operator X by using an adequate
parametrization to produce a suitable lifting Y = π∗2A∗π∗

∗1 + τ2∆2Aπ
∗
1 +

τ2A0τ
∗
∗1 of X.
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Start by taking A0 = 0. Using Lemma 3.4 together with the descriptions
of the residual subspaces given in Proposition 4.1, it suffices to find a function

A ∈ H∞ and a matrix A∗ =

[
a∗11 a∗12
a∗21 a∗22

]
in H∞

2×2 such that the following

three conditions hold:

1. Θ2A = A∗Θ1

2.
[
A
Θ1

]
is ∗-outer

3. clos
{
∆∗1A∗

∗∆∗2(η2L
2 ⊕ θ2χΩ2

L2)
}

= η1L
2 ⊕ θ1χΩ1

L2.

Since a1∧ b1 = 1, Lemma 5.3 tells us that there exists a number t ∈ [0, 1]
such that (a1 + tb1) ∧m1 = 1. We consider the matrices

B =

[
(1 + b1)a2 (t− a1)a2

b2 tb2

]
and Bad =

[
tb2 −(t− a1)a2

−b2 (1 + b1)a2

]
.

It is not difficult to check that

Bθ1 = (a1 + tb1)θ2, detB = a2b2(a1 + tb1) and Badθ2 = a2b2θ1.

Then, we take A
def
= w1(a1 + tb1) and A∗

def
= hw2B.

Proof that Θ2A = A∗Θ1. Since Bθ1 = (a1 + tb1)θ2 we have

Θ2A = (w2m2θ2)(w1(a1 + tb1)) = w2w1hm1((a1 + tb1)θ2)

= w2w1hm1Bθ1 = (hw2B)(w1m1θ1) = A∗Θ1.

Proof that
[

A

Θ1

]
is ∗-outer. Using that w1 is outer and (a1+tb1)∧m1 = 1,

we see that the components of

[
A
Θ1

]
=

⎡
⎣w1(a1 + tb1)

m1w1a1

m1w1b1

⎤
⎦

have no common inner divisor, in consequence,

[
A
Θ1

]
is ∗-outer.

Proof that clos
{
∆∗1A

∗
∗∆∗2(η2L

2 ⊕ θ2χΩ2
L2)

}
= η1L

2 ⊕ θ1χΩ1
L2.

The inclusion

clos
{
∆∗1A∗

∗∆∗2(η2L
2 ⊕ θ2χΩ2

L2)
} ⊆ η1L

2 ⊕ θ1χΩ1
L2

is clear because

η1L
2 ⊕ θ1χΩ1

L2 = clos
{
∆∗1L2(C2)

}
.
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A symmetrical relation η2L
2 ⊕ θ2χΩ2

L2 = clos {∆∗2L2(C2)} yields

clos
{
∆∗2(η2L

2 ⊕ θ2χΩ2
L2)

}
= η2L

2 ⊕ θ2χΩ2
L2,

whence,

clos
{
∆∗1A∗

∗∆∗2(η2L
2 ⊕ θ2χΩ2

L2)
}

= clos
{
∆∗1A∗

∗(η2L
2 ⊕ θ2χΩ2

L2)
}

= clos
{
(η1η

∗
1 + ∆w1θ1θ

∗
1)A

∗
∗(η2L

2 ⊕ θ2χΩ2
L2)

}
.

Now, on one hand, we have

(5.2)

clos
{
∆w1θ1θ

∗
1A

∗
∗θ2χΩ2

L2
}

= clos
{
∆w1θ1(A∗θ1)∗θ2χΩ2

L2
}

= clos
{
∆w1θ1(hw2Bθ1)

∗θ2χΩ2
L2

}
= clos

{
∆w1θ1(hw2(a1 + tb1)θ2)

∗θ2χΩ2
L2

}
= clos

{
∆w1θ1hw2(a1 + tb1)χΩ2

L2
}

= clos
{
θ1χΩ1

L2
}

= θ1χΩ1
L2.

We used here the following facts: the functions h, w2, and a1 + tb1 are
different from zero almost everywhere; θ1 is an isometry; ∆w1 is different
from zero on Ω1 and vanishes outside Ω1; and Ω1 ⊆ Ω2.

On the other hand, we have

η∗2B =
[
b2 −a2

] [
(1 + b1)a2 (t− a1)a2

b2 tb2

]
= a2b2

[
b1 −a1

]
= a2b2η

∗
1,

therefore,

clos
{
∆∗1A∗

∗η2L
2
}

= clos
{
∆∗1(η∗2A∗)∗L2

}
= clos

{
∆∗1(hw2η

∗
2B)∗L2

}
= clos

{
∆∗1(hw2a2b2η

∗
1)

∗L2
}

= clos
{
hw2a2b2∆∗1η1L

2
}

(5.3) = clos
{
hw2a2b2η1L

2
}

= η1L
2,

using that η1 is an isometry.

Recall that we need to prove that

η1L
2 ⊕ θ1χΩ1

L2 ⊂ clos
{
(η1η

∗
1 + ∆w1θ1θ

∗
1)A

∗
∗(η2L

2 ⊕ θ2χΩ2
L2)

}
.

If we take an arbitrary element u = η1u1+θ1χΩ1
u2 in η1L

2⊕θ1χΩ1
L2, by (5.2)

and (5.3) there exist two elements h1, h2 ∈ L2 such that

‖∆w1θ1θ
∗
1A

∗
∗θ2χΩ2

h1 − θ1χΩ1
u2‖ < ε

2
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and

‖∆∗1A∗
∗η2h2 − (η1u1 − η1η

∗
1A

∗
∗θ2χΩ2

h1)‖ < ε

2
,

therefore

‖∆∗1A∗
∗η2h2 + (η1η

∗
1 + ∆w1θ1θ

∗
1)A

∗
∗θ2χΩ2

h1 − (η1u1 + θ1χΩ1
u2)‖ < ε.

As the element ∆∗1A∗
∗η2h2 + (η1η

∗
1 + ∆w1θ1θ

∗
1)A

∗
∗θ2χΩ2

h1 = ∆∗1A∗
∗(η2h2 +

θ2χΩ2
h1) belongs to the space ∆∗1A∗

∗(η2L
2 ⊕ θ2χΩ2

L2), we get the required
inclusion and the lemma is proved. �

Lemma 5.7 Let Ti ∈ B(Hi) (i = 1, 2) be completely non-unitary contrac-

tions having 2 × 1 characteristic functions Θi = wimi

[
ai

bi

]
.

Then there exists an operator X : H1 → H2 such that

XT1 = T2X, and clos{XH1} = H2, ker(X) = {0}

if, and only if, the following conditions hold:

1. m1 = m2 = m,

2. Ω1 = Ω2 = Ω a.e., and

3. N+{a1, b1} ⊆ N+{a2, b2}.

Proof. The proof that the conditions are necessary follows from Lem-
mas 5.5 and 5.6. To prove that the conditions are sufficient it is necessary,
from Lemmas 3.2 and 3.4, to find the parameters A0, A, and A∗ of a lifting
of X satisfying the conditions

1. Θ2A = A∗Θ1

2.
[
A∗ Θ2

]
is outer

3. clos {(∆w2A∆w1 −A0Θ1)χΩ
L2} = χ

Ω
L2

4.
[
A
Θ1

]
is ∗-outer

5. clos {(∆∗1A∗
∗∆∗2 −A∗

0Θ
∗
2)(η2L

2 ⊕ θ2χΩ
L2)} = η1L

2 ⊕ θ1χΩ
L2.

We take the same parameters that we took in the proof of Lemma 5.5,
that is, A0 = 0, A = w1φ

2λ and A∗ = w2φ
2Λad, where Λ ∈ N+

2×2 satisfies
Λθ2 = θ1 and deti(Λ) ∧m = 1, φ is an outer function such that φΛ ∈ H∞

2×2

and the equality Λadθ1 = λθ2 is satisfied with λ = det(Λ). From that proof
we know the conditions (1), (2), and (3) are fulfilled.
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Proof that
[

A

Θ1

]
is ∗-outer. Using that w1 is outer, we see that the com-

ponents of [
A
Θ1

]
=

⎡
⎣w1φ

2λ
mw1a1

mw1b1

⎤
⎦

have no common inner divisor, in consequence,
[
A
Θ1

]
is ∗-outer.

Proof that clos
{
∆∗1A

∗
∗∆∗2(η2L

2 ⊕ θ2χΩ
L2)

}
= η1L

2 ⊕ θ1χΩ
L2.

As in the proof of Lemma 5.6, it is sufficient to check two identities

clos
{
∆w1θ1θ

∗
1A

∗
∗θ2χΩ

L2
}

= θ1χΩ
L2

and
clos

{
∆∗1A∗

∗η2L
2
}

= η1L
2.

For the first expression we have

clos
{
∆w1θ1θ

∗
1A

∗
∗θ2χΩ

L2
}

= clos
{
∆w1θ1(A∗θ1)∗θ2χΩ

L2
}

= clos
{
∆w1θ1(w2φ

2Λadθ1)
∗θ2χΩ

L2
}

= clos
{
∆w1θ1(w2φ

2ΛadΛθ2)
∗θ2χΩ

L2
}

= clos
{
∆w1θ1(w2φ

2λθ2)
∗θ2χΩ

L2
}

= clos
{

∆w1θ1w2φ
2
λχ

Ω
L2

}

= clos
{
θ1χΩ

L2
}

= θ1χΩ
L2,

using that w2 and φ2λ are not equal to zero almost everywhere, θ1 is an
isometry and ∆w1 vanishes only outside Ω.

On the other hand, as Λθ2 = θ1, we have

η∗2Λ
ad =

[
b2 −a2

] [
Λ22 −Λ12

−Λ21 Λ11

]
=

[
b1 −a1

]
= η∗1,

therefore, for the second expression we get

clos
{
∆∗1A∗

∗η2L
2
}

= clos
{
∆∗1(η∗2A∗)∗L2

}
= clos

{
∆∗1(w2φ

2η∗2Λ
ad)∗L2

}
= clos

{
∆∗1(w2φ

2η∗1)
∗L2

}
= clos

{
w2φ

2
∆∗1η1L

2
}

= clos
{
w2φ

2
η1L

2
}

= η1L
2,

and the lemma is proved. �
Finally, Lemma 5.7 directly implies the Main Theorem.
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6. Concluding remarks

First of all we would like to observe that it is possible to separate the in-
ner and outer factors of Θ = mwθ, i.e., to consider the quasi-similarity of
the operators with scalar outer and 2 × 1 inner characeristic function sepa-
rately. To see this, let us check that the contractions with the characteristic
functions

(6.1) Θ1 = mw

[
a
b

]
= mwθ and Θ2 =

[
w 0
0 [mamb ]

]
=

[
w 0
0 mθ

]
,

are quasi-similar.
For these characteristic functions we can take the auxiliary spaces as

E = C, E∗1 = E2 = C
2, and E∗2 = C

3. Then

∆1 = ∆w, ∆∗1 = ηη∗ + ∆wθθ
∗;

L2(∆1E1) = L2(∆wC) = χ
Ω
L2, L2(∆∗1E∗1) = ηL2 ⊕ θχ

Ω
L2;

∆2 =

[
∆w 0
0 0

]
, ∆∗2 =

[
∆w 0
0 ηη∗

]
;

L2(∆2E2) =

[
χ

Ω
L2

0

]
, L2(∆∗2E∗2) =

[
χ

Ω
L2

ηL2

]
.

Proposition 6.1 The operators T1 and T2 with respective characteristic
functions given in (6.1) are quasi-similar.

Proof. To prove the assertion we construct two bounded operators X :
H2 → H1 and X ′ : H1 → H2 such that

X ′T1 = T2X
′, clos{X ′H1} = H2, ker(X ′) = {0};

T1X = XT2, clos{XH2} = H1, ker(X) = {0}.
To do this we present two suitable liftings Y = π∗1A∗π∗

∗2+τ1∆1Aπ
∗
2 +τ1A0τ

∗
∗2

and Y ′ = π∗2A′
∗π

∗
∗1 + τ2∆2A

′π∗
1 + τ2A

′
0τ

∗
∗1 of X and X ′ respectively. We take

A0 = 0 and A′
0 = 0. According Lemmas 3.2 and 3.4 it is sufficient to find four

matrix-valued functions A′ ∈ H∞
2×1, A

′
∗ ∈ H∞

3×2, A ∈ H∞
1×2, and A∗ ∈ H∞

2×3

satisfying the following ten conditions

1. A′
∗Θ1 = Θ2A

′,

2.
[
A′
Θ1

]
is ∗-outer,

3.
[
A′

∗ Θ2

]
is outer,

4. clos{∆2A
′∆1L

2(∆1E1)} = L2(∆2E2),

5. clos{∆∗1A′
∗
∗∆∗2L2(∆∗2E∗2)} = L2(∆∗1E∗1), (6.2)
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6. Θ1A = A∗Θ2,

7.
[
A
Θ2

]
is ∗-outer,

8.
[
A∗ Θ1

]
is outer,

9. clos{∆1A∆2L
2(∆2E2)} = L2(∆1E1),

10. clos{∆∗2(A∗)∗∆∗1L2(∆∗1E∗1)} = L2(∆∗2E∗2).

It easy to check by direct calculation that all these conditions are verified
if we take

A′ =

[
ma
w

]
, A′

∗ =

⎡
⎣1 0

1 0
0 1

⎤
⎦ ,

A =
[
1 1

]
, A∗ =

[
ma w 0
mb 0 w

]
=

[
mθ wI2×2

]
.

Since this verification contains no specific difficulties we omit them. �
We will now see that, as we said in our remarks following the statement

of the Main Theorem, the situation is different if we try to split the inner
parts of the characteristic function and get quasi-similarity for the operators
with the characteristic functions

(6.3) Θ1 = m

[
a
b

]
= mθ and Θ2 =

[
m 0
0 [ ab ]

]
=

[
m 0
0 θ

]
,

Proposition 6.2 The operators T1 and T2 with respective characteristic
functions given in (6.3) are quasi-similar if, and only if, N+{m, a, b} = N+,
i.e., if there exist three functions f1, f2, f3 ∈ H∞ such that mf1 + af2 + bf3

is an outer function.

Proof. First we show that the necessity of the stated condition follows from
the density of the range of the intertwining operator X : H2 → H1, T1X =
XT2. Let Y = π∗1A∗π∗

∗2 + τ1∆1Aπ
∗
2 + τ1A0τ

∗
∗2 = π1Aπ

∗
2 + π∗1A∗∆∗2τ ∗∗2 +

τ1A0τ
∗
∗2 be the lifting of X with the parameter A being a matrix-valued

function from H∞
1×2 and A∗ from H∞

2×3, say

A =
[
a1 a2

]
and A∗ =

[
A∗1 A∗2

]
,

where A∗1 is the first column of A∗ and A∗2 is the square matrix consisting of
second and third columns of A∗. Then the intertwining relation Θ1A = A∗Θ2

yields

A∗1 = a1θ and A∗2θ = ma2θ.
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The second relation implies that η∗A∗2θ = 0 and therefore (see Lemma 5.2)
there exists an H∞-function ϕ such that η∗A∗2 = ϕη∗. Check that ϕ is a
common divisor of all minors of the matrix

[
A∗ Θ1

]
=

[
a1θ A∗2 mθ

]
.

The situation is the same as in the proof of Lemma 5.5, where all minors of
the corresponding matrix were divisible by f1. Indeed, the determinant of
A∗2 is divisible by ϕ (moreover, detA∗2 = ϕma2) because it is its eigenvalue
(and the second eigenvalue is ma2), and minors containing one collumn
from A∗2 and the second column being θ are just the entries of the row
η∗A∗2 = ϕη∗, therefore, they are also divisible by ϕ. Since

[
A∗ Θ1

]
has to

be outer (Lemma 3.1), the function ϕ is outer as well.

Using again Lemma 5.2, the identity (A∗2 −ma2I)θ = 0 guarantees the

existence of a vector ψ =
[
ψ1

ψ2

]
with H∞-entries such that A∗2−ma2I = ψη∗.

Therefore,

A∗2 = ma2I + ψη∗ =

[
ma2 + bψ1 −aψ1

bψ2 ma2 − aψ2

]
,

whence
ϕma2 = detA∗2 = (ma2)

2 +ma2(bψ1 − aψ2),

which gives us the required property: the function ma2 + bψ1 − aψ2 = ϕ is
outer.

To construct an intertwining operator X ′ : H1 → H2 we need no addi-
tional properties of the functions m, a, and b. We take a number t from the
first assertion of Lemma 5.3, i.e., such that m ∧ (a+ tb) = 1, and put

A′ =

[
a + tb

m(2 + b+ a)

]
, A′

∗ =

⎡
⎣ 1 t

2 + a a
b 2 + b

⎤
⎦ .

To show that the operator X ′ given as the compression of its lifting Y ′ with
these parameters and A′

0 = 0, is as required it is sufficient to check the
first five conditions of (6.2). The first can be verified by direct calculation,
the second is evident, because A′ itself is already ∗-outer. So, let us check
condition (3) of (6.2). The minors of the matrix

[
A′

∗ Θ2

]
=

⎡
⎣ 1 t m 0

2 + a a 0 a
b 2 + b 0 b

⎤
⎦

are the functions

2m(2 + a + b), 2(a + tb), −2mb, and 2ma

which are mutually prime due to the choice of t.
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Condition (4) is trivial because ∆i are zero operators. Finally, to see
that (5) is fulfilled we need to write down the expressions for ∆∗i:

∆∗1 = ηη∗, ∆∗2 =

[
0 0
0 ηη∗

]
.

And since

A′
∗
∗
[
0
η

]
= 2η,

we have

clos{∆∗1A′
∗
∗
L2(∆∗2E∗2)} = clos

{
ηη∗A′

∗
∗
[

0
ηL2

]}
= 2ηL2 = L2(∆∗1E∗1).

To construct intertwining operator X we shall use three H∞-functions
fi such that ϕ = mf1 + af2 + bf3 is outer. We check the conditions (6)–(10)
of (6.2) for

A =
[
1 −f1

]
and

A∗ =

[
a −mf1 − bf3 af3

b f2b −mwf1 − af2

]
=

[
θ

[−f3

f2

]
η∗−mf1I2×2

]
.

Again, condition (6) can be checked by direct calculation. The matrix

[
A
Θ2

]
=

⎡
⎢⎢⎣

1 −f1

mw 0
0 a
0 b

⎤
⎥⎥⎦

is ∗-outer because

det

[
1 −f1

0 a

]
= a and det

[
1 −f1

0 b

]
= b

are mutually prime, i.e., condition (7) is fulfilled. The matrix

[
A∗ Θ1

]
=

[
a −mf1 − bf3 af3 ma
b bf2 −mf1 − af2 mb

]

is outer because

det

[
a −mf1 − bf3

b bf2

]
= bϕ and det

[
a af3

b −mf1 − af2

]
= −aϕ

are mutually prime, i.e., condition (8) is fulfilled.
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Condition (9) is trivial because all spaces there are zero spaces. And
finally condition (10):

clos{∆∗2(A′
∗)

∗∆∗1L2(∆∗1E∗1)}

= clos

{[
0 0
0 ηη∗

] [
θ∗

η
[−f3 f2

] −mf1I2×2

]
ηL2

}

= clos

{[
0 0
0 η

] [
0[−f3 f2

]
η −mf1

]
L2

}

= clos

{[
0 0
0 η

] [
0

−ϕL2

]}
=

[
0
ηL2

]
= L2(∆∗2E∗2).

�

Conjecture

Concluding the paper we would like to conjecture that the same result could
be true for general contractions with (n + 1) × n characteristic function of
rank n. Namely, if we factor this function as a product of an inner ∗-outer
(n + 1) × n function and a square n × n characteristic function of a weak
contraction, then we have quasi-similar classification for both operators.
And in spite of the fact that initial operator is not quasi-similar in general
to the direct sum of these its parts, nevertheless the quasi-similarity of two
such operators occurs if, and only if, these parts of one operator are quasi-
similar to the corresponding parts of the other separately.
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ETS Ingenieros

Universidad de Sevilla
Camino de los Descubrimientos s/n, 41092-Sevilla, Spain

piti@us.es

Vasily Vasyunin
Petersburg Department of Steklov Institute of Mathematics

Russian Academy of Sciences
Fontanka 27, 191023 St. Petersburg, Russia

vasyunin@pdmi.ras.ru

This research has been partially supported by la Consejeŕıa de Educación y Ciencia de
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