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Percolation, Perimetry, Planarity

Gady Kozma

Abstract
Let G be a planar graph with polynomial growth and isoperimetric

dimension bigger than 1. Then the critical p for Bernoulli percolation
on G satisfies pc < 1.

This short note relates to a famous problem first posed in the seminal paper
of Benjamini and Schramm [1]: find some general conditions on a graph G
under which pc < 1. In particular they conjectured (question 2 ibid.) that
if the isoperimetric dimension is > 1 then this holds. The isoperimetric
dimension is defined for an infinite connected graph G by

dim(G) := sup

{
d ≥ 1 : inf

S

|∂S|
|S|(d−1)/d

> 0

}
where the infimum is over all finite non-empty sets of vertices S. ∂S is the
set of edges with one vertex in S and the other in G \ S.

A number of partial cases of this conjecture have been proved. In [1,
theorem 2] it was proved that a positive Cheeger constant (i.e. |∂S| > c|S|)
implies pc < 1. In [4] this was proved for graphs which satisfy some com-
plicated conditions on the geometry of the minimal cut-sets. Here we shall
show this under one technical condition (polynomial growth) and one more
essential condition (planarity).

Theorem. Let G be a planar graph with no vertex accumulation points such
that

1. There exist numbers K and D such that for all v ∈ G and any r ≥ 1
one has for the open ball B(v, r) that the number of vertices satisfies
|B(v, r)| ≤ KrD; and

2. There exist numbers k, ε > 0 such that for any finite non-empty set of
vertices S, |∂S| ≥ k|S|ε.

Let pc be the critical p for independent bond percolation on G. Then pc < 1.
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A vertex accumulation point is a point x ∈ R2 such that every neighbor-
hood of x contains infinitely many vertices of G. To be more precise, the
theorem holds whenever the abstract planar graph G has a plane represen-
tation Γ with no vertex accumulation points. We assume G has no loops or
multiple edges.

Proof. Let us first dispose of uninteresting cases resulting from stating the
theorem in too much generality. We may assume every vertex of G has
only finitely many neighbors since otherwise pc = 0. Further, By Wagner’s
theorem [8] a planar graph contains no more than a countable number of
vertices with degree ≥ 3. On the other hand, our graph G cannot contain a
component with all degrees ≤ 2 since that would be a finite or infinite line
and would violate the assumption that the isoperimetric dimension is > 1.
With Wagner’s theorem we get that G is countable. Hence the existence of
an infinite cluster is a measurable event, pc is well defined and our theorem
makes sense. This allows us to assume G is connected by restricting to any
infinite component.

We use Peierls argument, which states that pc <1 whenever the number of
minimal cut-sets of some vertex v ∈ G of size n is exponential (or less) in n.
See e.g. [3, page 16]. Here a cut-set of v is a set of edges S such that v is
in a finite component of G \ S. The cut-set is minimal if every S ′ � S is
not a cut-set. Since G is planar we can define its dual graph G∗ by making
any face of G to be a vertex of G∗ and matching any edge e of G to an
edge e∗ of G∗ between the two faces of G on the two sides of e. Note that G∗

may contain loops and multiple edges. Formally we require the following
from G∗:

1. There is a one-to-one onto correspondence between E(G), the edge set
of G and E(G∗), which we denote by ∗.

2. A minimal cut-set of G is carried by ∗ to a cycle (i.e. a simple closed
path) of G∗ and vice versa.

The existence of G∗ is well known for finite graphs but for infinite graphs I
was not able to find a completely suitable reference, hence we shall show the
existence of G∗ in the appendix.

Thus we need to show that the number of cycles of length n separating v∗

from infinity is ≤ Cn for some n. If, for example, G∗ happens to be a graph
with bounded degree (as in [4]) we could have finished here. In general,
however, G∗ could have unbounded degree and might not even be locally
finite (a graph is locally finite if every vertex has finite degree).

It will be easier to examine simple paths. Let us therefore fix two vertices
a∗ �= b∗ ∈ G∗ and examine the number p = p(a∗, b∗; n) of simple paths of
length n starting from a and ending at b.
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We shall now show that p(a∗, b∗; n) ≤ Cn and then we shall be mostly
finished. Let

p(n) := max
a∗ �=b∗∈G∗

p(a∗, b∗; n).

We wish to find an inequality connecting p(n) and p(2n).

Let therefore a∗ �= b∗ ∈ G∗ and let γ∗ be one simple path of length 2n
between a∗ and b∗ which we will use as a reference. Let δ∗ be a second
such path —we wish to bound the number of possibilities for δ∗. For every
edge e∗ of γ∗ there are two vertices of G adjacent to e —let {v1, . . . , v4n} be
the complete list. Let f ∗ be the n’th edge of δ∗, and let w1, w2 be the two
vertices of G on both sides of f . Since γ∗∪δ∗ is a closed path, either f ∗ ∈ γ∗

or there exists a cycle β∗ ⊂ γ∗∪δ∗ containing f ∗. Assume the second. Since β
is a minimal cut-set in G we have that it is the boundary of some finite
connected set Q and therefore one of the wj-s is in Q. Denote it by w. It is
not possible for β∗ ⊂ δ∗ (since δ∗ is simple) so there exists at least one of the
{v1, . . . , v4n} which is in Q. Denote it by v. Since |∂Q| = |β| ≤ |γ∗∪δ∗| ≤ 4n
then by the isoperimetric inequality we see that |Q| ≤ (4n/k)1/ε. Since Q
is connected the distance in G between v and w must be ≤ (4n/k)1/ε. We
think about this as w ∈ ⋃

i B(vi, (4n/k)1/ε) and we have also subsumed the
case that f ∗ ∈ γ∗ which wasn’t covered by the argument above (choose w
from w1, w2 arbitrarily in this case). Polynomial growth shows that w has
≤ 4nK(4n/k)D/ε possibilities. Using the polynomial growth inequality with
r = 2 we know that every vertex of G has no more than K2D adjacent edges,
so f has ≤ 4nK2(8n/k)D/ε possibilities and the same holds (with another
factor of 2) for the middle vertex of δ∗. Since this holds for every δ∗ we are
left with the inequality

p(2n) ≤ 8nK2(8n/k)D/εp(n)2.

An identical argument shows that p(1) ≤ (2/k)1/ε and from here a simple
induction shows that p(2n) ≤ exp(C2n) where C = C(k, K, ε, D) is indepen-
dent of n. This obviously implies p(n) ≤ Cn for some other C.

To finish the theorem, let v ∈ G and examine a minimal cut-set γ of
size n. Since γ is the boundary of the component of G \ γ containing v, we
see that this component has size ≤ (n/k)1/ε and in particular it is contained
in B(v, (n/k)1/ε). By polynomial growth we see that there are no more
than K(n/k)D/ε possible vertices in the component and hence no more than
K2(2n/k)D/ε edges which may participate in the cut-set. For each of these
edges e, a cut-set containing e is, viewed in G∗, e∗∪{an open simple path of
length n− 1}. Therefore the number of possibilities for a minimal cut-set is

≤ K2(2n/k)D/εp(n − 1) ≤ Cn

for some C. This proves the theorem. �
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Appendix: duality

Duality of infinite planar graphs was investigated by Thomassen [6, 7] and
recently by Bruhn and Diestel [2] but we cannot use either for the following

reason. Both define the dual (denote it by Ĝ to differentiate) such that a

cycle in Ĝ corresponds to a bond in G where a bond is a minimal set divid-
ing G into components but without requiring any one of them to be finite.
Take as an example G to be an infinite bi-directional line. G∗ (which is, in
this case, uniquely defined up to the addition of isolated vertices) is a graph

with two vertices connected by infinitely many edges, while Ĝ is a single ver-
tex with infinitely many loops. Hence our minimal cut-sets correspond in Ĝ
to a not-necessarily simple closed path and the proof does not go through.

It is quite likely that the condition that the graph has no accumulation
points is redundant (with the same proof structure). Condition (2) in the
definition of G∗ must be relaxed by removing the “vice versa” claim, but this
can be worked around in the proof of the theorem. Hence the only obstacle
is the existence of G∗. It would be interesting to show that G∗ exists under,
say, the condition (∗) of [2].

Lemma. Let G be a connected locally finite planar graph with no accumu-
lation points. Then a G∗ satisfying the requirements (1) and (2) exists.

Proof sketch. By [5, theorem 3] there exists a straight line triangulation ∆
such that G is a subgraph of ∆. Define two triangles of ∆ to neighbor if they
have a common edge and it is not in G. We will call the components of the
neighborhood graph on the triangles of ∆ “faces of G” and they will serve
as the vertex set for G∗. For every edge e of G we will define the edge e∗

to be adjacent to the faces containing its two neighboring triangles (which
may be the same). Hence we need only show the relation between minimal
cut-sets of G and cycles of G∗.

To show this we will construct G∗ as a geometric dual of G. In any face f
of G pick an arbitrary edge e in ∂f , let T be the triangle of f containing e
and let p ∈ R2 be the middle T . Now trace around ∂f starting from T and e
using the triangulation structure of ∆ i.e. at any vertex turn around until
hitting an edge of G and continue to the appropriate triangle. This process
reaches the entire boundary of f . To see this, use the tracing process to
construct a simple path ρ ⊂ R2 (∂f need not be simple) slightly inside f
(e.g. in every triangle S of ∆ participating in the tracing process make ρ go
through the third of S closest to G). If the resulting ρ is infinite it must go to
infinity (because G has no accumulation points) and we can add the point at
infinity to close it. Let now e′ ∈ ∂f be arbitrary and we wish to show that it
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participated in the tracing process. Let S1, . . . , Sn be a path of neighboring
triangles such that e′ ∈ ∂S1 and Sn = T . Let σ ⊂ R2 be a path starting in
the middle of e′, linear in every Si and passing through the middle of the
edge joining Si and Si+1, and finally ending in p. We use Jordan’s theorem
with ρ and get two components A and B and examining T it is easy to see
that p is in one (say A) while e (and therefore, by connectivity, of all G) is
in the other. Therefore ρ ∩ σ �= ∅. But by definition this can only happen
in S1 and therefore ρ passed through S1 and therefore e′ participated in the
tracing process.

The tracing process allows to connect p to the middle of any e′ ∈ ∂f
by disjoint curves. These curves will be “half edges”, the other half coming
from the other face. Hence we have completed a description of G∗ as a
planar graph. Further, e ∩ f ∗ �= ∅ iff e = f and then they intersect at a
single point and are transversal at that point. This immediately shows that
any cycle γ∗ in G∗ maps to a cut in G — Jordan’s theorem shows that the
set Q of vertices of G inside γ∗ is disjoint from the ones outside γ∗, and
the transversality shows that for every e∗ ∈ γ∗ exactly one of the vertices
adjacent to e is in Q, so Q �= ∅. The fact that there are no accumulation
points in G shows that Q is finite and hence γ is a cut.

On the other hand, if γ is a minimal cut then every vertex in γ∗ must
have degree at least 2. To see this take one e∗ ∈ γ∗ and let p∗ be an adjacent
face of G, and assume no other f ∗ ∈ γ∗ is adjacent to p∗. Let δ be the
boundary of p∗ which is either a closed path or a bi-directionally infinite
path in G (in neither case necessarily simple). If δ is finite then it forms a
path in G \ γ between the two ends of e, in contradiction of the minimality
of γ. If δ is infinite then both ends of e are connected to an infinite number
of vertices in G, in contradiction to the fact that one side must be finite.

Now, a graph γ∗ with minimal degree ≥ 2 must contain a cycle, δ∗.
By the previous argument, δ would be a cut. But since we assumed γ is
minimal, we must have γ = δ and hence γ∗ is a cycle. Conversely, if γ∗ is a
cycle then γ is a cut. If δ ⊂ γ is minimal then δ∗ ⊂ γ∗ is a cycle. But cycles
don’t contain subcycles so δ∗ = γ∗ and we have established both directions
of the correspondence between minimal cuts of G and cycles of G∗, and we
are done. �
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