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Nonvariational layer potentials with
respect to Hölder continuous vector fields

Gregory C. Verchota

Abstract
Nontangential a.e. vanishing of the oblique derivative of a har-

monic function with respect to a Hölder continuous vector field on a
Lipschitz boundary is shown to imply that the harmonic function is
constant.

In this article we prove a uniqueness result for an oblique derivative problem
with respect to a transverse Hölder continuous vector field defined on the
boundary of a Lipschitz domain Ω ⊂ R

n. The result is for harmonic func-
tions when vanishing data is prescribed nontangentially almost everywhere,
with respect to surface measure, in Lp(∂Ω) rather than everywhere as in the
classical formulation. It is motivated in part by the following result due to
A.P. Calderón.

Theorem 0.1 ([1]). Let Ω ⊂ R
n (n ≥ 2) be a bounded Lipschitz domain with

connected complement. Let �α be a continuous transverse unit vector field
on ∂Ω. Then there exist a finite number of linearly independent functions
f1, . . . , fl ∈ L2(∂Ω) so that if g ∈ L2(∂Ω) satisfies

(0.1)

∫
∂Ω

gfj ds = 0 (j = 1, . . . , l)

then there exists a harmonic function u in Ω with ∇u nontangentially in
L2(∂Ω) such that

(0.2) n.t. lim
X→Q

�α(Q) · ∇u(X) = g(Q) a.e.(ds(Q))

Furthermore u will be unique up to the addition of l solutions to the
homogeneous oblique derivative problem, i.e. the dimension of the space of
solutions to the problem (0.2) for vanishing g equals the number of linear
conditions (0.1) imposed on (a nonvanishing) g for solvability.
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Moreover, Calderón shows that this theorem holds when L2 is replaced
by Lp for p in a (small) interval about 2 depending on the Lipschitz geometry
of Ω. I.e., given a Lipschitz domain Ω, there exists a positive number ε(Ω)
such that |p − 2| < ε(Ω) implies Calderón’s theorem holds for oblique data
in Lp(∂Ω).

By virtue of Theorem 2.6 below and Nadirashvili’s extension to Lipschitz
domains [12] of the Hopf boundary point lemma it follows, when �α is Hölder
continuous, that l = 1 in Calderón’s theorem. Thus the oblique derivative
problem for Hölder continuous vector fields in a bounded Lipschitz domain
for p near 2 is like the Neumann problem (a variational problem) where
data must meet one condition (mean value zero) and there is one nontrivial
solution to the homogeneous problem (the constant solution).

In [17] it is shown by a variety of examples that the uniqueness result here
cannot hold in general when p < 2, even for smooth vector fields. Given
p < 2 there exist Lipschitz domains and vector fields with nonconstant
solutions to the homogeneous problem. It is also shown, in the plane but
not in higher dimensions, that the uniqueness result here can be improved
to include any continuous transverse vector field.

Calderón proves his theorem by an integral equation method utilizing
the nonvariational layer potentials

(−1

2
�α · N + K∗

α)f(P ) =(0.3)

− 1

2
�α(P ) · NP f(P ) + p.v.

1

ωn

∫
∂Ω

�α(P ) · (P − Q)

|P − Q|n f(Q)ds(Q) .

Here NP denotes the outer unit normal vector defined at almost every P ∈
∂Ω. By the theorem of [2] K∗

α is bounded on Lp(∂Ω) for 1 < p < ∞.
As argued in [17] the operators (0.3) are not Fredholm in general for

p < 2 nor for p > 2 (see also [11]). The results here and in [17], how-
ever, show that Calderón’s operators can be as well behaved as the classical
layer potentials based on the normal vector field [14, 6] when p is near 2.
Combining Calderón’s proof of Theorem 0.1 with Corollary 2.7 below,

Theorem 0.2. Let Ω ⊂ R
n (n ≥ 2) be a bounded Lipschitz domain with

connected boundary and let |p − 2| < ε(Ω). Let the transverse unit vector
field �α be ( continuous when n = 2) Hölder continuous on ∂Ω. Then

−1

2
�α · N + K∗

α : Lp(∂Ω) → Lp(∂Ω)

is invertible from a codimension 1 subspace to a codimension 1 subspace.

(Corollary 2.7 does not require connected boundary. More generally it
is the range of −1

2
�α · N + K∗

α that must satisfy the same number of linear
conditions as there are components of the boundary.)



Nonvariational layer potentials 203

How well behaved boundary layer potentials for higher order equations
are, when smooth transverse fields are substituted for the normal field, is
a question which arises in [16]. That paper is an attempt to generalize
the Neumann problem and the corresponding variational potentials for the
biharmonic equation [15] to the general 4th order case. However, a difficulty
arises when attempting to prove the closed range of the variational potentials
in L2(∂Ω). It can be avoided by substituting a differentiable field for the
normal. Calderón’s potentials serve as a model for this kind of substitution.

In Section 1 a Lipschitz domain setup is described, results of Dahlberg
and Stein reviewed, and a localization lemma proved. In Section 2, after re-
calling results of Hunt-Wheeden and Dahlberg, two lemmas are proved and
then the main theorem. The theorem states that almost everywhere non-
tangential vanishing of the oblique derivative implies everywhere vanishing
of the classical oblique derivative. The hypotheses of Nadirashvili’s theorem
are thus satisfied and uniqueness follows as a corollary.

1. Preliminaries and a localization

Let Ω ⊂ R
n (n ≥ 2) be a bounded Lipschitz domain. Let �α denote a

continuous unit vector field defined on the boundary ∂Ω with the property
that �α · N taken over the boundary is uniformly bounded from below by a
positive constant

(1.1) �α · N ≥ c(�α) > 0

Here N denotes the outer unit normal vector to Ω defined a.e. with respect
to surface measure ds on ∂Ω. Consider a point P ∈ ∂Ω. By the definition
of Lipschitz domain and (1.1) �α(P ) can be taken to be the normal vector
to a hyperplane with respect to which ∂Ω, locally about P , is the graph of
a Lipschitz function ϕ = ϕP with Lipschitz constant M independent of P
depending only on Ω and �α. After a rotation of space the hyperplane can be
taken to be R

n−1, �α(P ) taken to be the basis vector �en, and, writing points
X = (X1, . . . , Xn) ∈ R

n in rectangular coordinates as X = (x, y) where
x ∈ R

n−1 and Xn = y ∈ R,

(1.2) |ϕ(x) − ϕ(x′)| ≤ M |x − x′|
for all x, x′ ∈ R

n−1.
Write P = (x0, y0). After a scaling of space (�α and N remain unit

vectors, M is scale invariant and the scaled ϕ still satisfy (1.2)) one obtains
the setup, uniform in P ∈ ∂Ω,

100ZP := {(x, y) : |x − x0| < 100
√

n, |y − y0| < 104nM} ∩ Ω(1.3)

= {(x, y) : |x − x0| < 100
√

n, −104nM + y0 < y ≤ ϕ(x)} ∩ Ω
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M will always be taken to be at least 1. More generally

θZP := {(x, y) : |x − x0| < θ
√

n, |y − y0| < 100θnM} ∩ Ω

for 0 < θ ≤ 100. Each θZP is a starlike Lipschitz domain with starcenter
(x0, y0−θ50nM) and with Lipschitz geomery uniform in θ and P . Moreover,
by the uniform continuity of �α, this scaling can be done so that for all
Q ∈ ∂Ω ∩ ZP

�α(P ) · �α(Q) >
100nM√

1 + (100nM)2

For any θ let n(θ, Ω, �α) be the smallest number of θZP needed to cover ∂Ω.
Scaling of space will not be used again.

Given a > 1 a nontangential cone Γa(P ) is defined using the above local
coordinate systems for each P = (x0, y0) ∈ ∂Ω by

Γa(P ) = {(x, y) : y0 − y > aM |x − x0|, y0 − y < 100M} .

The cone at P is right-circular with axis along the direction �α(P ). For each a
the collection of all such cones forms a regular family of nontangential cones
as in [5, p. 298].

Given an a > 1 and any function v defined in Ω the nontangential max-
imal function of v is defined by

Na(v)(Q) = sup
X∈Γa(Q)

|v(X)|

We will say that v is nontangentially in Lp(∂Ω) if Na(v) ∈ Lp(∂Ω).
When p > 1 and a < b, a geometric argument [8] shows that

‖Na(v)‖Lp(∂Ω) ≤ C‖Nb(v)‖Lp(∂Ω)

where C depends on a, b and p.
In the case v is harmonic in Ω Dahlberg [4] proved that there is an

ε(Ω) > 0 so that, given any p > 2 − ε(Ω), the condition Na(v) ∈ Lp(∂Ω)
implies that v has nontangential boundary values v(Q) for a.e.(ds) Q ∈ ∂Ω
and v ∈ Lp(∂Ω). In addition there is a constant depending only on p, a and
the Lipschitz geometry of Ω so that

(1.4) ‖Na(v)‖Lp(∂Ω) ≤ C‖v‖Lp(∂Ω)

In any Lipschitz domain D ⊂ R
n nontangential cones may be similarly

defined. A collection of domains that have comparable Lipschitz geometries,
e.g. the boundaries can be covered, up to a uniform scaling factor, by cylin-
ders in one-to-one correspondence described by the same Lipschitz constant
M of (1.2), will yield bounds (1.4) uniform over the collection.
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The Lusin area integral or square function for a C1(D) function v may
be defined as

Sa(v)(Q) =

(∫
Γa(Q)

|∇v(X)|2
|X − Q|n−2

dX

)1
2

When v is harmonic in D and 0 < p < ∞ Dahlberg proved [5] that there is a
constant C depending only on p, a and the Lipschitz geometry of D so that

(1.5) C−1

∫
∂D

Na(v)pds ≤
∫

∂D

Sa(v)pds ≤ C

∫
∂D

Na(v)pds

where the left-hand inequality also requires the normalization that all v
vanish at some fixed point in D.

Both the Lusin area integral and the nontangential maximal function are
lower semicontinuous functions.

Define nontangential cones that have been truncated by an amount h <
100M by

Γh
a(Q) = {X ∈ Γa(Q) : |X − Q| < h}

The following slightly more precise statement than either [13] or [14, p. 600]
can be proved by following the arguments of the former pp. 213-216.

Lemma 1.1 (E.M. Stein). Let v be harmonic in Ω. Let 1 < b < a < 100
and h < k < 100M . Fix any point P ∈ ∂Ω.

Then there exists a constant C, independent of P , depending only on a,
b, h

k
and M such that for every Q ∈ 100ZP ∩ ∂Ω

∫
Γh

a(Q)

|∇v(X)|2
|X − Q|n−2

dX ≤

C2

(∫
Γk

b (Q)

|�α(P ) · ∇v(X)|2
|X − Q|n−2

dX + h2 max
|X−Q|=h

|∇v(X)|2
)

This is used to prove the following localization lemma.

Lemma 1.2. Let p > 2−ε(Ω) and suppose u is harmonic in Ω with N2(∇u) ∈
Lp(∂Ω). Let λ > 0. Then there are constants A > 1 and C > 0 independent
of λ depending only on p, �α, and the Lipschitz geometry of Ω, there is a
positive integer n depending only on �α and the Lipschitz geometry of Ω, and
there is a sequence of Lipschitz cylinders θjZPj

with interiors Ωj so that if

(1.6) λ > C‖N2(∇u)‖p

then

(1.7)
⋃
j

∂Ωj ∩ ∂Ω ⊂ {Q ∈ ∂Ω : N2(∇u) + S2(∇u) > λ},
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no point of ∂Ω is contained in more than n of the ∂Ωj, and

(1.8) |{Q ∈ ∂Ω : S40(∇u) > Aλ}| ≤ C

λp

∑
j

∫
∂Ωj

|�α(Pj) · ∇u(Q)|pds(Q)

Proof. By (1.5) and the Chebychev inequality there is a constant large
enough depending only on p and the Lipschitz geometry of Ω such that (1.6)
implies {N2 + S2 > λ} := {N2(∇u) + S2(∇u) > λ} ⊂ ∂Ω has measure
less than 1. Consider any Lipschitz cylinder 100Z(x0,y0) together with its
associated Lipschitz function ϕ and coordinate system. Consider the open
set G = {x ∈ R

n−1 : |x− x0| < 100
√

n and (x, ϕ(x)) ∈ {N2 + S2 > λ}}. Let
G = ∪jKj be a dyadic Whitney decomposition [13, p. 167] with the property
that if a cube Kj has side length lj then

(1.9) Kj ∩ {x : 2lj
√

n − 1 ≤ dist(x, Gc) ≤ 4lj
√

n − 1} �= ∅

For each Kj let Pj be the projection of its center into ∂Ω and consider
the collection of Lipschitz cylinders ljZPj

such that ljZj ∩ 1Z(x0,y0) �= ∅.
Because λ is large lj < 1 and all cylinders retained are in 3Z(x0,y0).

For A > 1, {S40(∇u) > Aλ} ⊂ {N2 + S2 > λ}.
Denote the interiors of the retained ljZPj

by Ωj . Define Ej = {Q =
(x, ϕ(x)) : S40(∇u) > Aλ and x ∈ Kj}. By (1.9) there is a boundary
point Q∗

j /∈ {N2 +S2 > λ} with distance to ∂Ωj ∩∂Ω less than 4Mlj
√

n − 1.

Consequently for h = 15ljM
√

n − 1 and every Q ∈ ∂Ωj ∩ ∂Ω

∫
Γ40(Q)\Γh

40(Q)

|∇∇u(X)|2
|X − Q|n−2

dX ≤

C

∫
Γ40(Q)\Γh

40(Q)

|∇∇u(X)|2
|X − Q∗

j |n−2
dX ≤ CS2

2(∇u)(Q∗
j) ≤ Cλ2

where C depends only on the Lipschitz geometry of Ω. Thus for A large
enough depending on C, and for Q ∈ Ej

(1.10) S40,h(∇u)(Q) :=

(∫
Γh

40(Q)

|∇∇u(X)|2
|X − Q|n−2

dX

)1
2

>
A

2
λ

The cones Γh
40 are also defined on the projection of Kj into ∂Ωj . From there

they can be extended to be a regular family for the Lipschitz domains Ωj

uniformly in j and the square function (1.10) likewise extended. The in-
equalities (1.5) for the corresponding nontangential maximal function will
be uniform in j and independent of the point (x0, y0).
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For each Ωj recall the vector �α(Pj). The functions Hj(X) = �α(Pj) ·
∇u(X) are harmonic in the original domain Ω for all j and

∂

∂Xi
Hj = �α(Pj) · ∇ ∂

∂Xi
u

for i = 1, . . . , n. For every Q ∈ Ej , Lemma 1.1 applies to v = ∂
∂Xi

u over the

cones Γh
40(Q). In addition, by interior estimates and the fact that |∇u| ≤ λ

in Γ40(Q)\Γh
40(Q) since N2(∇u)(Q∗

j) ≤ λ, it follows that

h max
|X−Q|=h

|∇ ∂u

∂Xi
| ≤ C ′λ .

Thus by (1.10), applying Lemma 1.1 for some k > h and utilizing the con-
stant there

|Ej | ≤ 2p

Apλp

∫
Ej

Sp
40,h(∇u)ds ≤ 2pCp

Apλp

∫
Ej

Sp
30,k(Hj)ds +

2pCpC ′p

Ap
|Ej | .

Consequently for A again large enough and by the right side of (1.5) followed
by (1.4)

|Ej | ≤ C ′′

λp

∫
Ej

Sp
30,h(Hj)ds ≤ C ′′′

λp

∫
∂Ωj

|Hj|pds .

Because
{S40 > Aλ} ∩ 1Z(x0,y0) ⊂ ∪Ej

and a finite number n(1, Ω, �α) of 1Z(x0,y0) cover ∂Ω,and because of (1.9), the
conclusions of the lemma follow by summing over j and n. �

2. Uniqueness for the almost everywhere oblique deriv-

ative problem

In this section it will first be assumed that the vector field �α is itself Lipschitz
continuous, i.e. there is a constant Mα so that for all P, Q ∈ ∂Ω

(2.1) |�α(P ) − �α(Q)| ≤ Mα|P − Q|
Following the exposition of [10] let ω denote harmonic measure on ∂Ω

with respect to some fixed point of Ω. Harmonic measure of a set E ⊂ ∂Ω
with respect to an arbitrary point X ∈ Ω is then

∫
E

K(X, Q)dω(Q) where
K(X, Q) ≥ 0 is the kernel function.

Given a point Q ∈ ∂Ω the surface ball of radius r is defined by ∆(Q, r) =
{Q′ : |Q′ − Q| < r} ∩ ∂Ω. The kernel function satisfies the following lemma
(formulated as in Lemma 5.13 of [10]) of Hunt and Wheeden [9, p. 315].
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Lemma 2.1. (Hunt and Wheeden) Let dist(X, ∂Ω) = r < 1 and suppose
X ∈ Γ2(Q). Define ∆j = ∆(Q, 2jr) and dyadic surface rings Rj = ∆j\∆j−1,
j = 1, 2, . . .

Then there is a constant C and an exponent β > 0 depending only on
the Lipschitz geometry of Ω so that

sup
Q∈Rj

K(X, Q) ≤ C2−βj

ω(∆j)
, j = 1, 2, . . .

The Hardy-Littlewood maximal function with respect to harmonic mea-
sure ω on ∂Ω of a function f is defined with respect to surface balls

Mωf(Q) = sup
∆�Q

1

ω(∆)

∫
∆

|f |dω, Q ∈ ∂Ω

Dahlberg’s reverse Hölder inequality for the density of harmonic measure [3]
shows that

(2.2) Mp̃
ωf(Q) ≤ Cp̃Ms|f |p̃(Q)

for any p̃ > 2−ε(Ω), where on the right side is the Hardy-Littlewood maximal
function of |f |p̃ with respect to surface measure ds, and the constant depends
also on the Lipschitz geometry of Ω.

Dahlberg also showed [4] that if H is a harmonic function in Ω with
nontangential maximal function in Lp for some p > 2− ε(Ω) then it has the
Poisson representation

(2.3) H(X) =

∫
∂Ω

H(Q)K(X, Q)dω(Q)

Nontangentially vanishing oblique derivative means

lim
Γa(P )�X→P

�α(P ) · ∇u(X) = 0

for almost every P ∈ ∂Ω. The vanishing is independent of a > 1 when the
gradient is nontangentially in Lp.

Lemma 2.2. Let p > 2 − ε(Ω) and u be as in Lemma 1.2. Suppose u has
oblique derivative with respect to �α nontangentially vanishing a.e.(ds) on ∂Ω
and suppose �α is Lipschitz continuous satisfying (2.1). Let δ > 0 be given.
Fix any point P ∈ ∂Ω and define H(X) = �α(P ) · ∇u(X).

Then there are constants c > 0 and C < ∞ that depend only on the

Lipschitz geometry of Ω so that if |X − P | < cδ1+ 1
β where β > 0 is from

Lemma 2.1 and if X ∈ Γ2(Q0) with dist(X, ∂Ω) = r, then

(2.4) |H(X)| ≤ CδMα max
j

1

ω(∆j)

∫
∆j

|∇u|dω ≤ CδMαMω(∇u)(Q0)

where ∆j = ∆(Q0, 2
jr) as in Lemma 2.1 (Hunt and Wheeden).
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Proof. Because β can be assumed close to 0, given any 1 > δ > 0 there is
a J = Jδ so that

(2.5) δ ≤
∞∑

j=J

2−βj ≤ 2δ

or equivalently

(2.6) δ−
1
β 2−

1
β (1 − 2−β)−

1
β ≤ 2J ≤ δ−

1
β (1 − 2−β)−

1
β

Take c = (1 − 2−β)
1
β .

By (2.3), Lemma 2.1 and the right-hand inequality (2.5)

|H(X)| ≤ Cδ max
j

1

ω(∆j)

∫
∆j

|∇u|dω + C
J−1∑
j=0

2−βj 1

ω(∆j)

∫
∆j

|H(Q)|dω(Q)

Now |H(Q)| = |(�α(P ) − �α(Q)) · ∇u(Q)| a.e.(ds). By the choice of c, the
right-hand inequality (2.6) and the fact that r ≤ |X−P |, every Q contained
in the surface balls under the finite sum satisfies |Q − Q0| < δ. In addition
|Q0 − P | ≤ Cr because X ∈ Γ2(Q0). Consequently |Q − P | ≤ Cδ and thus
by (2.1) |H(Q)| ≤ CδMα|∇u(Q)| for every Q contained in the surface balls
under the finite sum. �
Lemma 2.3. Let p, u and �α be as in Lemma 2.2. Then N2(∇u) ∈ Lq(∂Ω)
for all q < ∞.

Proof. Let λ satisfying (1.6) and Ωj be as in Lemma 1.2. Because N2(∇u) ∈
L1 and because it suffices to take the L1-norm less than or equal to 1,

it follows from (1.7) that diamΩj ≤ Cλ− 1
n−1 for all j. By choosing δ =

(C
c
)

β
β+1λ− 1

n−1
β

β+1 , the diameter of every Ωj is bounded by the amount cδ1+ 1
β

from Lemma 2.2. Points on the sides ∂Ωj ∩Ω are contained in cones Γ2(Q0)
for Q0 ∈ ∂Ωj ∩ ∂Ω. Thus by Lemma 1.2 followed by Lemma 2.2 and a
geometric argument

|{S40(∇u) > Aλ}| ≤ C

λp

∑
j

∫
∂Ωj

|�α(Pj) · ∇u(Q)|pds(Q)

≤ C ′

λp(1+ 1
n−1

β
β+1

)

∑
j

∫
∂Ωj∩∂Ω

Mp
ω(∇u)(Q)ds(Q) .

By choosing 2 − ε(Ω) < p̃ < p, utilizing (2.2) and the theorem of Hardy
and Littlewood, the summation is controlled by ‖∇u‖p

p on the boundary

of Ω. Consequently S40(∇u) is in Lq(∂Ω) for every q < p(1 + 1
n−1

β
β+1

) and

so are N40(∇u) and then N2(∇u). The same statement follows for any given
q < ∞ by a finite number of repetitions of the argument. �
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Remark 2.4. It is only at the end of the above proof that the left side of (1.5)
is used, and then the required normalization plays no rôle.

Remark 2.5. Replacing (2.1) with a Hölder condition

(2.7) |�α(P ) − �α(Q)| ≤ Mα|P − Q|γ

for some 0 < γ ≤ 1, yields (2.4) of Lemma 2.2 with δ replaced by δγ.
Lemma 2.3 remains true under the Hölder condition, the proof altered only
by γ

n−1
β

β+1
replacing 1

n−1
β

β+1
.

Theorem 2.6. Let p > 2 − ε(Ω) and let �α be a Hölder continuous unit
vector field defined on ∂Ω and satisfying (2.7). If u is harmonic in Ω with
gradient nontangentially in Lp(∂Ω) and with oblique derivative with respect
to �α vanishing nontangentially a.e.(ds), then

(i) u ∈ C(Ω) and

(ii) for each Q ∈ ∂Ω the classical directional derivative

lim
t↑0

u(Q) − u(Q + t�α(Q))

−t

exists and is equal to zero.

Proof. The first conclusion follows by Sobolev embedding from Lemma 2.3.
(See Remark 2.5.)

Fix a point on the boundary. By translation it may be taken to be the
origin. Define H(X) = �α(0) · ∇u(X) harmonic in Ω. By the mean value
theorem for differentiable functions on an interval, the second conclusion will
follow if limX→0 H(X) = 0 where X denotes the points t�α(0). In Lemma 2.2

take both P and Q0 to be the origin and |X| = c
2
δ1+ 1

β . Because X ∈ Γ2(0)

this last quantity is also equivalent to r = dist(X, ∂Ω). By Dahlberg’s
reverse Hölder inequality (e.g. see (2.2)) followed by Jensen’s inequality

1

ω(∆j)

∫
∆j

|∇u|dω ≤ C(
1

|∆j|
∫

∆j

|∇u|2ds)
1
2 ≤ C(

1

|∆j|
∫

∆j

|∇u|qds)
1
q

so that C depends only on the Lipschitz geometry of Ω.

Choose q > (1+ 1
β
) (n−1)

γ
. The right-hand side of the above inequality is fi-

nite by Lemma 2.3. Since |∆j| ≥ cnrn−1 for every surface ball of Lemma 2.2,

while rn−1 is equivalent to δ(1+ 1
β

)(n−1), it follows from Lemma 2.2 and Re-
mark 2.5 that

|H(X)| ≤ Cδγ−(1+ 1
β

)
(n−1)

q ‖∇u‖Lq(∂Ω)

which proves the theorem. �
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Under conditions on Ω and �α more general than those here, N. S. Nadi-
rashvili showed that a harmonic function, which is continuous up to the
boundary and which has vanishing classical oblique derivative everywhere
on the boundary, is constant.

Corollary 2.7. (Theorem 2.6 and [12, Theorem 1]) Let Ω ⊂ R
n be a bounded

Lipschitz domain and let p > 2 − ε(Ω). A harmonic function having gradi-
ent nontangentially in Lp(∂Ω) and having oblique derivative, with respect to
a unit transverse Hölder continuous vector field, vanishing nontangentially
a.e.(ds) on on the boundary is constant.

Remark 2.8. Because the Lp-Dirichlet problem (1.4) is solvable in a C1 do-
main for the range 1 < p [7, 4], both Lemmas 1.2 and 2.2 hold for C1 do-
mains and p > 1. Lemma 2.3 also follows in this setting because harmonic
measure satisfies a reverse Hölder inequality for all q < ∞ [4] thereby yield-
ing (2.2) for all p̃ > 1. Both Theorem 2.6 and Corollary 2.7 hold for p > 1
when Ω is C1.
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