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A SIMPLE EXAMPLE CONCERNING THE
UPPER BOX-COUNTING DIMENSION OF
A CARTESIAN PRODUCT

Abstract

We give a simple example of two countable sets X and Y of real num-
bers such that their upper box-counting dimension satisfies the strict
inequality dimp(X X Y) < dimg(X) + dimg(Y).

1 Introduction

The behaviour of any notion of ‘dimension’ under the action of taking products
is a fundamental property, and it is of particular interest to determine whether
(and when) equality holds in the formula

dim(X xY) =dimX + dimY-

In general, additional conditions are required to ensure equality; this is illus-
trated by what is perhaps the primary inequality for the dimension of products:
if A and B are Borel subsets of Euclidean space, then

dimg(A) + dimg(B) < dimp (A4 x B) < dimyg(A) + dimp(B),
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where dimy is the Hausdorff dimension and dimp the packing dimension (see
Falconer [2], for example).

Here we consider this property for the upper box-counting dimension,
which we denote by dimp. It was shown by Tricot [5] that, in general,

here we provide a very simple example of two countable subsets of the real
line, X and Y, such that the inequality in (1) is strict.

Robinson and Sharples [4] gave a significantly more involved example of
two generalised Cantor sets X and Y of real numbers for which the inequality
in (1) is strict. The more complicated construction there allows significantly
more flexibility: one can construct two sets X and Y such that their upper
and lower box-counting dimensions take any values allowed by the chain of
inequalities

dimpp(X) + dimpp(Y) < dimpp(X x Y)
< min(dimpp(X) + dimp(Y), dimp (X) + dimp5(Y))
< max(dimp,p(X) + dimp(Y), dimg (X) 4+ dimg,(Y))
< dimp(X xY)
< dimg(X) + dimp(Y).

While the existence of sets X and Y such that strict inequality holds in (1) is
thus a particular case of the result in [4], the example presented here is very
much more straightforward.

We now make some of the terminology used above and below more precise.

Given a metric space X with metric dx, the upper box-counting dimension
of X, dimg(X), is defined by

log N(X
dimp(X) = limsup log N(X, )
r—0 —logr

where N(X,r) denotes the minimum number of balls of radius r required to
cover X, see Falconer [2], Robinson [3], or Tricot [5], for example. (Note that
some authors refer to this as the ‘fractal dimension,” see [1], for example.)

If Y is another metric space with metric dy, then the metric space X x Y
is the Cartesian product of X and Y, along with a metric dxxy which we
assume to be equivalent to dx + dy.
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2 The example
For convenience, we use the notation
sllt = sinloglogt and cllt = cosloglogt.

We show that the two sets

X={f(n):ne€Nandn>25}U{0}, where f(t)=1t 55t
and

Y ={g(n):neNandn>25}U{0}, where g(t) =¢8It
satisfy dimp (X x Y) < dimp(X) + dimp(Y"). Specifically, we will show that

dimp(X) > 1/8, dimp(Y)>1/8, and dimp(X xY) < 1/4.

We begin with a preliminary lemma that gives upper and lower bounds for
certain coverings of subsets of X and Y.

Lemma 1. Choose r < 520 and let t, be such that r =t ° ' [f
B={f(n): 25<n<t},
then t; — 26 < N(B,r/2) < t; — 24.
PROOF. First note that ¢t; = r—1/(9tsllte) (520)1/(9+sml) > 52 = 25. Since
fl(t) = —t797M (8 1 sllt + cllt) <0, (2)

the sequence f(n) is decreasing. So we can bound the distance between points
in B by considering |f(n + 1) — f(n)|. To bound this, we write

[f(n+1) = f(n)| = |f'(n) + 5.£"(©)]
for some & € (n,n + 1), using Taylor’s Theorem. Since £ > n > 25, certainly

cug—sug}

£7(€) = - 10-slie {(9 Il + )8 +llE +allg) — g

S 1125—10—8115
< 557975115 < 5n797511n



452 E. J. OLsoN AND J. C. ROBINSON

since £ — £79711¢ is a decreasing function (see (2)) and f”(£) > 40 £~10-s1€ >
0. We therefore obtain the upper bound

[f(n+1) = f(n)] = |f'(n) + 5/"(€)] < 13n~"751",
Since f'(n) < —6n~27s!'" by (2), we also obtain the lower bound
|f’(n) + %f//(§)| > |fl(’I’L>| _ %f”(f) > 6n—9—slln _ 5n—9—slln _ n—9—slln.

It follows that exactly one r/2-ball is required to cover each of the points
in B. Therefore,

N(B,r/2) =card{n e N: 25 <n <t}
and the lemma follows. O

The slow fluctuation in these upper and lower bounds allows us to prove
our main result.

Theorem 2. dimp(X) > 1/8, dimp(Y) > 1/8, and dimp(X xY) < 1/4 <

PrROOF. First we bound the dimension of X; the bound for Y follows similarly.
Let r < 5720 and let #; be such that r = ¢ ° ' Let

B={f(n):25<n<t;} and C={f(n):n>t},

so that X = BU(C'. Taking r — 0 along a sequence such that sllt; = —1, we
can use the result of the lemma to obtain the lower bound

N(X,r/2) > N(B,r/2) > t; — 26 > r~V/OFt) _ 96 > p=1/8 _ 96,

and therefore, dimp(X) > 1/8. The lower bound on dimg(Y") follows similarly.
To deal with the product set X x Y, notice that since C' C [0, f(¢1)], it
follows that

f(t)
/2

N(C,r/2) < 9t — op—1/(OFsllt).

Lemma 1 provides an estimate on N(B,r/2) from above, so we obtain
N(X,r/2) < N(B,r/2) + N(C,r/2) < Kyr~1/Oslh),

Defining 5 so that r» = t5 9slltz y similar argument guarantees that

N(Y,r/2) < Kgrfl/(gfsutz)'
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Therefore,

1 1

N T o0

N(X xY,r/2) < N(Y,r/2)N(X,r/2) < K, K2<7)9 STE; 1 9FsiTts
'

(st — g9=sllt2 aking logarithms once yields

Now, since
log ty 9 —sllty

= <5/4
log ts 9+sllty — / ’

and taking logarithms again shows that |loglogt; — loglogts| < log(5/4). It
follows that N(X x Y,r/2) < K1K5(2/r)¢, where

1 n 1
9—sinf; 9+ sinfy

c=maX{ : \91—92|g10g(5/4)}<1/4:

clearly ¢ < 2 x 1/8 = 1/4, and equality cannot hold since this would require
sinf; = 1 and sinf; = —1, which is impossible since |61 — 02| < 7. It follows
that

dlmB(X X Y) <c< 1/4 < dlmB(X) + dlInB(Y),
which finishes the proof. O
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