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ON BAIRE CLASSIFICATION OF
STRONGLY SEPARATELY CONTINUOUS
FUNCTIONS

Abstract

We investigate strongly separately continuous functions on a product
of topological spaces and prove that if X is a countable product of
real lines, then there exists a strongly separately continuous function
f : X — R which is not Baire measurable. We show that if X is a
product of normed spaces X,, a € X and o(a) = {z € X : |{n €
N: z, # an}| < No} is a subspace of X equipped with the Tychonoff
topology, then for any open set G C o(a), there is a strongly separately
continuous function f : o(a) — R such that the discontinuity point set
of f is equal to G.

1 Introduction

In 1998 Omar Dzagnidze [2] introduced a notion of a strongly separately con-
tinuous function f : R™ — R. Namely, he calls a function f strongly separately

continuous at a point 20 = (29,...,20) € R™ if the equality
limo|f(a:1,...,xk,...,xn) — fx1,.. 20, )| =0
r—x

holds for every k = 1,...,n. Dzagnidze proved that a function f: R" — R is

strongly separately continuous at z° if and only if f is continuous at z°.
Extending these investigations, J. Cincura, T. Salat and T. Visnyai [1]

consider strongly separately continuous functions defined on the space £ of
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sequences = = ()52 of real numbers such that Y -, 22 < +oo, endowed
with the standard metric d(z,y) = (3 or;(zn — yn)?)'/2. In particular, the
authors gave an example of a strongly separately continuous everywhere dis-
continuous function f : /¢y — R.

Recently, T. Visnyai in [6] continued to study properties of strongly sepa-
rately continuous functions on /5 and constructed a strongly separately con-
tinuous function f : ¢ — R which belongs to the third Baire class and is
not quasi-continuous at every point. Moreover, T. Visnyai gave a sufficient
condition for a strongly separately continuous function to be continuous on
lo.

In this paper, we study strongly separately continuous functions defined
on a subspaces of a product [],., X; of topological spaces X; equipped with
the Tychonoff topology of pointwise convergence. We show that if X is a
product of a sequence (X,,)32; of topological spaces X,,, a € X and o(a) =
{r € X :|{n € N:a, # a,}| < Ng} is a subspace of X equipped with
the Tychonoff topology, then every strongly separately continuous function
f : o(a) = R belongs to the first stable Baire class. Moreover, we prove that
if X is a countable product of real lines, then there exists a strongly separately
continuous function f : X — R which is not Baire measurable. In the last
section we show that if X is a product of normed spaces, then for any open
set G C o(a), there is a strongly separately continuous function f : o(a) - R
such that the discontinuity point set of f is equal to G.

2 Strongly separately continuous functions and S-open
sets

Let X = [[,cr X¢ be a product of a family of sets X; with [X;| > 1 for all
teT. fSCS CT,a= (at)tET e X,z = ({Et)tesl S Htesl X;, then we
denote by a% a point (y;)ier, where

- T, tGS,
Y=\ an, teT\S.

In the case S = {s}, we shall write af instead of af .
If n € N, then we set

on(z) ={y = (W)ter € X : {t €T 1 ys # 24 }| <n}

and
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Each of the sets of the form o(z) for an x € X is called a o-product of the
space X.

We denote by 7 the Tychonoff topology on a product X = [],., X¢ of
topological spaces X;. If Xy C X, then the symbol (Xy, 7) means the subspace
X equipped with the Tychonoff topology induced from (X, 7).

If Xy =Y for all ¢ € T, then the product [[,. X; we also denote by Y™,
where m = |T].

A set B C [[,ep X¢ is called S-open if

o1(x) CE

for all x € E.

Let S(X) denote the collection of all S-open subsets of X. We notice that
S(X) is a topology on X. We will denote by (X, S) the product X = [[,cp X¢
equipped with the topology S(X).

The next properties follow easily from the definitions.

Proposition 2.1. Let X = [[,cp X, [X¢| > 1 for allt € T and E C X.
Then

1. E€S(X) if and only if X \ E € S(X);

2. E€S(X) if and only if E = J,cpo(x);

3. ifx € X, then o(x) is the smallest S-open set which contains x;

4. if E € §(X), then E is dense in (X,T);

5. there exists a non-trivial S-open subset of X if and only if |T| > Ng.

It follows from Proposition 2.1 that o-products of two distinct points of
[I,cr X: either coincide, or do not intersect. Consequently, the family of all
o-products of an arbitrary S-open set £ C [],., X; generates a partition of
FE on mutually disjoint S-open sets, which we will call S-components of E.

Definition 2.2. Let (X; : t € T) be a family of topological spaces, let YV
be a topological space, and let £ C [[,. X; be an S-open set. A mapping
f: E =Y issaid to be separately continuous at a point a = (at)ter € E with
respect to the t-th variable provided that the mapping g : Xy — Y defined by
the rule g(x) = f(a¥) for all z € X; is continuous at the point a; € X;.

Definition 2.3. Let E C J],., X: be an S-open set, let 7 be a topology
on E, and let (Y,d) be a metric space. A mapping f: (E,7) = Y is called
strongly separately continuous at a point a € E with respect to the t-th variable
if

lim d(f(x), f(22)) = 0.

r—a
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Definition 2.4. A mapping f: E —Y is

o (strongly) separately continuous at a point a € E if f is (strongly) sepa-
rately continuous at a with respect to each variable t € T,

o (strongly) separately continuous on the set E if f is (strongly) separately
continuous at every point a € E with respect to each variable t € T'.

Theorem 2.5. Let E C [[,o Xt be an S-open set, and let (Y, d) be a metric
space. A mapping f: (E,S) =Y is continuous if and only if f : (E,T) =Y
is strongly separately continuous for an arbitrary topology T on E.

PROOF. Necessity. Fix a topology T on E and consider the partition (o(x;) :
i € I) of the set E' on S-components o (z;). We notice that f|,(s,) = v:, where
y; € Y for all i € I, since f is continuous on (E,S). Let a = (at)ier € E
and t € T. If ¢ € E, then x € o(z;) for some ¢ € I. Moreover, z{ € o(x;).
Then f(z) = f(z}) = y;. Hence, d(f(z), f(z})) =0 for all z € E. Hence, f is
strongly separately continuous on (E,T).

Sufficiency. Put T = S. Fix zg € E and show that f is continuous at
xg on (E,S). Let xg € o(x;) for some i € I. Let us observe that x — z¢ in
(E,S) if and only if € o(xg). Since f is strongly separately continuous at z
and o(xg) = o(z;), we have d(f(x), f(z;°)) =0 for all € o(x;) and t € T.
Consequently, f(z) = f(zo) for all z € o(x;). Since the set o(x;) is open in
(E,S), f is continuous at xg. O

Let (0; : @ € I) be a partition of X = [[,.; Xy on S-components, and
let f: [[,er Xt = R be a function such that f|,, = const for all i € I.
Theorem 2.5 implies that f is strongly separately continuous on (X, 7), since
for every i € I, the set o, is clopen in (X,S). The next example shows that it
is not so in the case f|,, is a continuous function on (o;, 7) for every i € I.

Example 2.6. Let X = R® et (0; : i € I) be a partition of X on S-
components, and let o(m) = {x = (z,) € X : |[{n € N: z,, # m}| < No} for
all m € N. Consider a function f: X — R,

_fme(zi 4+ F ), ifz€o(m),
@)= { 0, 1 otherwise.

Then flo, : (0i,7) = R is continuous for every i € I, but f is not strongly
separately continuous at x = 0.

PRrROOF. For every m € N we put
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Then u™ € o(m) and v™ — 0in (X, 7). Note that f(u™) = mand f((u™)f) =
m—1. Therefore, |f(u™)— f((u™)7)| = 1 for all m € N. Consequently, f is not
strongly separately continuous at x = 0 with respect to the first variable. [

Theorem 2.7. Let E C [],. Xt be an S-open subset of a product of topo-
logical spaces Xy, let (Y,d) be a metric space, and let f : (E,7) = Y be a
strongly separately continuous mapping at the point a = (at)ier € E. Then f
is continuous at the point a if and only if

Ve >0 d7Ty CT, |T0| < Ng
U - a neighborhood of a in (E,T)]| (1)
d(f(a), f(e%,)) <& Vael.
PROOF. Necessity. Suppose f is continuous at the point a and £ > 0. Take a
basic neighborhood U of a such that d(f(x), f(a)) < € for all x € U, and put
To = 0. Then x%, = x, which implies condition (1).

Sufficiency. Fix € > 0. Using the condition of the theorem, we take a finite
set Ty C T and a neighborhood U of a in (F,7) such that

d(f(a), f(a%,)) < 5

for every x € U. If Ty = 0, then d(f(z), f(a)) < € for all z € U, which implies
the continuity of f at a. Now assume Ty = {t1,...,¢,}. Since f is strongly
separately continuous at a, for every k = 1,...,n, we choose a neighborhood
Vi of the point a such that

3

d ¢ —
(F@), () < o
for all x € V. We take a basic neighborhood W of a such that

W CuUn([) V)
k=1

Observe that x?tl it € W for every k = 1,...,n and for every x € W. Then
for all x € W, we have

d(f(x), f(a)) < d(f(x), f(2T,)) + d(f(27F,), f(a))
< d(f(2), f(2f,y) +d(f(@,y), F(@F, 1,0)
d(

{
f(l"({ltl,...,tn,l})a f(x?tl,...,t"})) + 3

ot c
2
<« n4+i=¢
o T T

Hence, f is continuous at the point a. O
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The following corollary generalizes the result of Dzagnidze [2, Theorem
2.1].

Corollary 2.8. Let E be an S-open subset of a product [ [,., X¢ of topological
spaces Xy, |T| < No, and let (Y,d) be a metric space. Then any strongly
separately continuous mapping f : (E,7) =Y is continuous.

PrOOF. Fix an arbitrary point a € E and a strongly separately continuous
mapping f: (E,7) = Y. For e > 0, we put Tp =T and U = E. Then for all
x € U, we have 27, = a, and consequently

d(f(a), f(27,)) =0 <e.
Hence, f is continuous at the point ¢ by Theorem 2.7. O

The proposition below shows that Corollary 2.8 is not valid for a product
of infinitely many topological spaces.

Proposition 2.9. Let X = [[,.p X¢ be a product of topological spaces X,
where | X¢| > 1 for every t € T, let |T| > Ng, and let (Y,d) be a metric space
with |Y| > 1. Then there exists a strongly separately continuous everywhere
discontinuous mapping f : (X,7) = Y.

PROOF. Fixzp € X and y1,y2 € Y, y1 # y2. According to Proposition 2.1(5),
o(xg) # 0 # X \ o(xg). Set f(z) = y1 if x € o(xo) and f(z) = yo if
x € X\ o(xg). We prove that f is everywhere discontinuous on X. Indeed, let
a € X and f(a) = y1. Take an open neighborhood V of y; such that y2 ¢ V.
If U is an arbitrary neighborhood of a in (X, 1), then there is € U \ o(xg)
by Proposition 2.1 (4). Then f(x) = yo ¢ V. Therefore, f is discontinuous at
a. Similarly one can show that f is discontinuous at a in the case f(a) = yo.

Since the set o(xg) is clopen in (X,S), the mapping f : (X,S) = Y is
continuous. It remains to apply Theorem 2.5. O

3 Baire measurable strongly separately continuous func-
tions

Let By(X,Y') be the collection of all continuous mappings f : X — Y. Assume
that the classes B¢(X,Y) are already defined for all 0 < § < «, where o < ws.
Then f: X — Y is said to be of the a-th Baire class, f € Bo(X,Y), if f is
a pointwise limit of a sequence of mappings f, € Be, (X,Y), where &, < a.
Denote

BX,Y)= |J Ba(X,Y)

0<a<ws
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We say that f: X — Y is a Baire measurable mapping if f € B(X,Y).

Let 0 < a < wq, let X be a metrizable space, let Y be a topological space
and let Z be a locally convex space. W. Rudin [5] proved that every mapping
f: X xY — Z which is continuous with respect to the first variable and is of
the a-th Baire class with respect to the second one belongs to the (a 4 1)-th
Baire class on X x Y. The following proposition is an easy corollary of the
Rudin Theorem.

Proposition 3.1. Let n € N, let X;,...,X,, be metrizable spaces, and let
Z be a locally convex space. Then every separately continuous mapping f :
[T, X; = Z belongs to the (n — 1)-th Baire class.

PROOF. The assertion of the proposition is evident if n = 1 and is exactly the
Rudin Theorem if n = 2. Now assume that the proposition is true for all 2 <
k < n and prove it for K = n. Denote X = H;:ll X;. Then f: X x X, = Z
belongs to the (n — 2)-th Baire class with respect to the first variable by the
inductive assumption, and f is continuous with respect to the second variable.
Applying the Rudin Theorem we have f € B,,_1(X x X, Z). O

The next result shows that the corollary of Rudin’s Theorem is not valid
for infinite products.

Proposition 3.2. There exists a strongly separately continuous function f :
(R®, 7) — R which is not Baire measurable.

PrOOF. Consider a partition (o; : i € I) of RY on S-components ;. It is
not hard to verify that |I| = ¢. Denote by F the collection of all functions
f : R¥ — R such that f|,, = const for all i € I. Then |F| = 2/l = 2¢,
Moreover, since (RY°,7) is separable, |Bo(R® R)| = ¢, and consequently,
|B(X,Y)| = ¢. Hence, there exists f € F\B(R®R). Since for every i € I the
set o; is clopen in (R¥,S), f is continuous on (R¥,S). Then f is strongly
separately continuous on (R®°, 7) according to Proposition 2.5. O

Let 1 < @ < wi. A mapping f: X — Y belongs to the a-th stable Baire
class, f € B4(X,Y), if there exists a sequence of mappings f, € B, (X,Y),
where «a, < «, such that for every x € X, there exists N € N such that
fu(x) = f(z) for all n > N.

Theorem 3.3. Let (X,,)22, be a sequence of topological spaces, a € [0, X,
E =o0(a), and let f : (E,7) — R be a function.

1. If f is strongly separately continuous, then f € BE(E,R).

2. If f is separately continuous and X,, is metrizable for every n € N, then
fe Bgo (E,R).
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PRrROOF. For every n € N, we put

B, =[x ][ fai},
=1

i=n+1

9n = flE,, and
fn(x) = g’ﬂ(m17-"axn7an+l7'-'>

for all x € E. Clearly, E = J,_, En, E,, C E,11, and every space (E,,T) is
homeomorphic to ([T;—, X;, 7).

If f is strongly separately continuous, then by Theorem 2.8, every g, is
continuous on E,,. Then f, : (E,7) — R is a continuous extension of g,.

In the second case, g, € B,,—1(FEn, Z) by Proposition 3.1 for every n. It is
not hard to verify that f,, € B, _1(E, Z).

Now if x € FE, then there is N € N such that x € E,, for all n > N.
Therefore, f,(z) = f(z) for all n > N. Hence, f € B{(E,R) in the first case
and f € BZ (E,R) in the second one. O

Proposition 3.4. Let a = (0,0,...) € RY, E = o(a) CRY and Y = [0,1].
Then there ezists a separately continuous function f: E — Y such that f &
U2, B.((E,7),Y).

n=1

PROOF. For every n € N, we take a function h,, € Bp,+1(R,Y)\B,(R,Y). Ac-
cording to the Lebesgue Theorem [4], for every n € N, there exists a separately
continuous function g, : R"*? — Y such that

gn(z,x,. .. ) = hy(x)
2
n+

for each x € R. Evidently, g,, is not of the n-th Baire class on R"*2,
Let ¢ : R — Y be any continuous function such that {0} = ¢~1(0). For
n € N, we consider a function f, : E =Y,

fn(xh sy Iy - ) = <P(33n+2) ' gn(xla cee axn+2)~

Then the function f,, : E — Y is separately continuous as the product of two
separately continuous functions. Moreover,

fn|En+2 € BH(ETL-FQ? Y)

for every n € N, where

E,=R"x {0} x {0} x....
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For every x € E, we put

F) =Y g dae).

Observe that f : E — R is separately continuous as the sum of the uni-
formly convergent series of separately continuous functions.

It remains to show that f & (J,~; Bn(E,Y). Assume to the contrary that
[ € B,(E,Y) for some n € N. Then f|g,,, € By(Eyy2,Y). Notice that

n
1
f|En+2 = E 27fk|En+27
k=1

since fx|g, ., = 0 for all k> n + 1. Denote

n—1 1
g= Z 27fk|En+2'
k=1
Then we have g € B, (E,+2,Y), since

felEnye € Bry1(Eny2,Y) € By(Epnyo,Y)

for every k =1,...,n — 1. Therefore,

fn E,i2 — (f

which implies a contradiction. O

Ent2 — g) € Bn(En+27 Y)7

4 Discontinuities of strongly separately continuous map-
pings

For a mapping f between spaces X and Y, we denote the set of all points of
continuity of f by C(f). Let D(f) = X \ C(f).

Theorem 4.1. Let X = [[° | X,, be a product of normed spaces (X, || - ||n),
and let a € X. Then for any open set G C (o(a),T), there exists a strongly
separately continuous function f : (o(a),7) = R such that D(f) = G.

PRrROOF. Without loss of generality we may assume that a = (0,0,...). For
every n € N, we consider a norm || - ||, on the space X,, which generates its
topological structure. Let d be a bounded metric on X which generates the
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Tychonoff topology 7. Denote Xy = (c(a),7) and F = Xy \ G. For every
T = (xn)nEN € XOa put

d(@,F), i#F£0
(p(x)_{l, ifF=0

= exp(— Z 25 ln)

f(@) = ¢(x) 'g(x)-

We prove that F' C C(f). Indeed, if 2° € F and (™)%°_; is a convergent
to ¥ sequence in Xy, then lim,, o @(z™)-g(x™) = 0, since lim,,, o0 @(z™) =
o(z%) = 0 and |g(z™)| < 1 for every m. Hence, lim,, o f(z™) = 0= f().

Fix an arbitrary 2° € G and show that 20 € D(f). For every m € N, we
choose ., € X, with ||z, || = In2 + ||22, ]],, and set

m _ (.0 0 0 0
™ = (27,2, Ty Ty Ty 1y )

Clearly, ™ — 2% in X. For every m € N, we have

oo 0
g(@™) — g(a”) = exp(— Z 25 12) (exp (D 125l = D I3 ln) = 1)
n=1 n=1

= g(fo)(exp(— In2) —1)

Therefore, g(z™) = g(2°) and

F™) — ) = pe™)g™) — ola)g(2”) = g (5 0l™) — o)
for all m € N. Then
Tim (f) — F(2) = ~ () - 9(a) < 0.

Hence, f is discontinuous at 2°. Consequently, D(f) = G.

It remains to check that f is strongly separately continuous on Xy. Evi-
dently, f is strongly separately continuous on the set C(f) = F. Fix 2° € G,
k € N and an arbitrary convergent to 2° sequence (z™)%°_; in X,. For every
m, we put y"" = (Jcm)ﬁfz . Since G is open and y™ — ¥, we may suppose that
™, y™ € G for every m. We note that

f@™) = Fy™) = g(@") (™) = e(y™)) + e(y™)(g(z™) = g(y™))
= g(@™)(p(=™) = o(y™) + e(y™)g(y™) (exp(lajllx — 27 [lx) = 1).
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It follows from the inequality
exp(—|lz}, — 2i[1) < exp(llallx — a7 llx) < exp(llag — 3[])
that
lim (exp(f|z} |k — 2} [lx) — 1) = 0.
m—o0
Taking into account that ¢ and g are bounded and that

lim p(z™) = lim ¢(y™) = ¢(z?),

m—o0 m— oo

we obtain that

lim (f(z™) = f(y™)) = 0.

m—roo

Hence, f is strongly separately continuous on Xj. O
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