Bruce H. Hanson,<sup>\*</sup> Department of Mathematics, Statistics and Computer Science, St. Olaf College, Northfield, MN 55057, U.S.A. email: hansonb@stolaf.edu

# SETS OF NON-DIFFERENTIABILITY FOR FUNCTIONS WITH FINITE LOWER SCALED OSCILLATION

### Abstract

Up to a set of measure zero we characterize the sets of non-differentiability of functions with everywhere finite lower scaled oscillation.

## **1** Introduction and statement of results

We are interested in characterizing sets of non-differentiability for real-valued functions satisfying various Lipschitz-like conditions.

We begin by setting notation. Let  $f : \mathbb{R} \to \mathbb{R}$  be a continuous function, and define  $N_f = \{x \in \mathbb{R} \mid f \text{ is not differentiable at } x\}$ . What can be said about the set  $N_f$ ? First, an elementary argument using the continuity of f implies that  $N_f$  is a  $G_{\delta\sigma}$  set. (A  $G_{\delta}$  is a countable intersection of open sets; a  $G_{\delta\sigma}$  is a countable union of  $G_{\delta}$ 's.) By a theorem of Lebesgue,  $N_f$  has measure zero for any Lipschitz function f.

Lebesgue's result can be generalized by using the upper scaled oscillation function, Lip f, defined as follows:

$$\operatorname{Lip} f(x) = \limsup_{r \to 0^+} \frac{L_f(x, r)}{r}, \qquad (1)$$

where

$$L_f(x,r) = \sup\{|f(x) - f(y)| \colon |x - y| \le r\}.$$

Mathematical Reviews subject classification: Primary: 26A27

Key words: non-differentiability, Lipschitz conditions

<sup>\*</sup>The author would like to thank Thomas Zürcher for carefully reading a preliminary version of the paper and making many useful suggestions for improving it.



Received by the editors August 14, 2014

Communicated by: Marianna Csörnyei

The Rademacher-Stepanov Theorem (see ([2], Theorem 3.4, or [3]) now says the following:

**Theorem 1.** If f is continuous on  $\mathbb{R}$ , then  $N_f \cap \{x \mid \text{Lip}f(x) < \infty\}$  is a set of measure zero.

In the 1940's Zahorski gave sharp conditions characterizing  $N_f$  for both continuous and Lipschitz functions defined on  $\mathbb{R}$ :

**Theorem 2.** ([5], p.147)  $E = N_f$  for some continuous function  $f : \mathbb{R} \to \mathbb{R}$  if and only if  $E = E_1 \cup E_2$ , where  $E_1$  is a  $G_{\delta}$  set and  $E_2$  is a  $G_{\delta\sigma}$  set of measure 0.

**Theorem 3.** ([5], Theorem 3)  $E = N_f$  for some Lipschitz function  $f : \mathbb{R} \to \mathbb{R}$ if and only if E is a  $G_{\delta\sigma}$  set of measure 0.

We now define Lip  $\mathbb{R}$  as the set of all functions  $f: \mathbb{R} \to \mathbb{R}$  such that Lip  $f(x) < \infty$  for all  $x \in \mathbb{R}$ . Note that every f in Lip  $\mathbb{R}$  is continuous on  $\mathbb{R}$ . Using Theorem 1, we can reformulate Theorem 3 as follows:

**Theorem 4.**  $E = N_f$  for some  $f \in \text{Lip } \mathbb{R}$  if and only if E is a  $G_{\delta\sigma}$  set and |E| = 0.

We seek to explore the implications of replacing the upper scaled oscillation function Lip f with the *lower* scaled oscillation function lip f, defined as follows:

$$\lim_{r \to 0^+} f(x) = \liminf_{r \to 0^+} \frac{L_f(x, r)}{r}.$$

We also define lip  $\mathbb{R}$  as the set of all functions  $f \colon \mathbb{R} \to \mathbb{R}$  with lip  $f(x) < \infty$  for all  $x \in \mathbb{R}$ . Again, every function f in lip  $\mathbb{R}$  is continuous on  $\mathbb{R}$ .

As Balogh and Csörnyei showed in ([1]), functions in lip  $\mathbb{R}$  can fail to be differentiable a.e. so Theorem 4 fails if we replace the condition  $f \in \text{Lip } \mathbb{R}$  with  $f \in \text{lip } \mathbb{R}$ . On the other hand, Balogh and Csörnyei also proved the following result (see [1], Lemma 1.1):

**Theorem 5.** If  $f \in \lim \mathbb{R}$ , then  $|N_f \cap (a,b)| < b - a$  for any open interval (a,b).

Motivated by this result, we make the following definition:

**Definition 6.** A subset E of  $\mathbb{R}$  is <u>trim</u> if  $|E \cap (a,b)| < b - a$  for all open intervals (a,b).

Combining Theorems 5 and 2, we see that if f is in lip  $\mathbb{R}$ , then  $N_f$  is the union of a trim  $G_{\delta}$  set and a  $G_{\delta\sigma}$  set of measure zero. It is now natural to conjecture that a sort of converse holds:

**Conjecture 7.**  $E = N_f$  for some  $f \in \lim \mathbb{R}$  if and only if  $E = E_1 \cup E_2$ , where  $E_1$  is a trim  $G_{\delta}$  set and  $E_2$  is a  $G_{\delta\sigma}$  set of measure zero.

Our following results give evidence in favor of the conjecture:

**Theorem 8.** For every closed, nowhere dense set E there exists  $f \in \lim \mathbb{R}$  such that  $E = N_f$ .

Note that for closed sets nowhere dense and trim are equivalent.

**Theorem 9.** Suppose that E is a trim  $G_{\delta}$  set. Then there exists a function  $f \in \lim \mathbb{R}$  such that  $|E \bigtriangleup N_f| = 0$ .

# 2 Tools for the proofs of Theorems 8 and 9

We begin by establishing some elementary facts about perfect, nowhere dense sets which will be used in the proofs of both theorems. Throughout the rest of this paper S will be the set of dyadic rationals in the interval (0, 1). More precisely:

$$S = \{ \frac{m}{2^n} \, | \, 1 \le m \le 2^n - 1, \ n \ge 1 \}.$$

**Definition 10.** Suppose that

F is perfect, nowhere dense and 
$$\{a, b\} \subset F \subset [a, b].$$
 (2)

Let  $b_0 = a$  and  $a_1 = b$ . Suppose that  $\{I_s\}_{s \in S} = \{(a_s, b_s)\}_{s \in S}$  satisfies:

$$\cup_{s \in S} I_s = [a, b] \setminus F \tag{3}$$

$$s < t \Rightarrow b_s < a_t. \tag{4}$$

Then we say that  $\{I_s\}_{s\in S}$  is a dyadic decomposition of  $[a, b]\setminus F$ .

A simple induction proof shows that if (2) holds, then a dyadic decomposition of  $[a,b] \setminus F$  exists. Given a dyadic decomposition  $\{I_s\}_{s \in S}$  as defined above, for  $s = \frac{2i-1}{2^n}$  where  $1 \leq i \leq 2^{n-1}$  and  $n \geq 1$ , we define  $\tilde{I}_s = [b_r, a_t]$  where  $r = \frac{i-1}{2^{n-1}}$  and  $t = \frac{i}{2^{n-1}}$ . Note that  $\bar{I}_s \subset \tilde{I}_s$  for all  $s \in S$  and

$$\{x\} = \bigcap_{x \in \tilde{I}_s} \tilde{I}_s \text{ for all } x \in F.$$
(5)

We will need the following lemma, which follows easily from the fact that the complement of F is open and dense in [a, b].

**Lemma 11.** Suppose that (2) holds. Then there exists a dyadic decomposition  $\mathcal{I} = \{I_s\}_{s \in S}$  of  $[a, b] \setminus F$  satisfying:

$$I_s \cap \frac{1}{4}\tilde{I}_s \neq \emptyset \text{ for all } s \in S.$$
(6)

(Here, and elsewhere in the paper, we use the convention that if I is an (open, closed) interval centered at  $x_0$  and C > 0, then CI is the interval with length C|I| centered at  $x_0$ .)

For the remainder of this paper whenever we have a set F satisfying (2) we will assume that a dyadic decomposition satisfying (6) has been chosen as well. Furthermore, we will also assume that for each  $s \in S$  we have chosen  $c_s, d_s, m_s$  and  $h_s$  satisfying:

$$h_s = \frac{1}{6} |\tilde{I}_s| \tag{7}$$

$$a_s < c_s < m_s < d_s < b_s \tag{8}$$

$$I'_s = [c_s, d_s] \subset I_s \cap \frac{1}{3}\tilde{I}_s.$$
(9)

**Definition 12.** Given a set F satisfying (2) and a dyadic decomposition  $\mathcal{I} = \{(a_s, b_s)\}_{s \in S}$  of  $[a, b] \setminus F$  and  $\{c_s, m_s, d_s\}_{s \in S}$  satisfying (8) and (9), we define

$$T_{F,[a,b]} = \{c_s, m_s, d_s\}_{s \in S},$$
$$\tilde{\mathcal{I}}_{F,[a,b]} = \bigcup_{s \in S}\{(a_s, b_s)\}$$

and

$$\mathcal{I}_{F,[a,b]} = \cup_{s \in S} \{ (a_s, c_s), (c_s, m_s), (m_s, d_s), (d_s, b_s) \}$$

The remainder of this section will be useful for proving Theorem 9.

**Lemma 13.** Suppose that E is a trim  $G_{\delta}$  set. Then we can decompose E into sets  $E_0, E_1, E_2, \dots$  such that

$$E = \bigcup_{n=0}^{\infty} E_n \tag{10}$$

$$E_j \cap E_k = \emptyset \text{ for } j \neq k \tag{11}$$

$$E_0 \text{ is a } G_\delta \text{ set of measure } 0$$
 (12)

for each 
$$n \ge 1$$
 the set  $E_n$  is perfect and nowhere dense. (13)

PROOF. We assume without loss of generality that E is a bounded, trim  $G_{\delta}$  set. We note first of all that, according to the Cantor-Bendixson Theorem, every closed set F is the union of a perfect set and a countable set and thus given any measurable set G and  $\epsilon > 0$ , we can always find a perfect set F such that  $F \subset G$  and  $|G \setminus F| < \epsilon$ . We begin by choosing  $E_1$  to be a perfect set such that  $E_1 \subset E$  and  $|E \setminus E_1| < \frac{1}{2}$ . Proceeding inductively, assuming that we have chosen a collection of pairwise disjoint perfect sets  $\{E_1, E_2, ..., E_n\}$  such that  $\bigcup_{i=1}^n E_i \subset E$  and  $|E \setminus (\bigcup_{i=1}^n E_i)| < (\frac{1}{2})^n$ , we choose  $E_{n+1}$  to be a perfect subset of  $E \setminus (\bigcup_{i=1}^n E_i)$  such that  $|E \setminus (\bigcup_{i=1}^{n+1} E_i)| = |E \setminus (\bigcup_{i=1}^n E_i) \setminus E_{n+1}| < (\frac{1}{2})^{n+1}$ . Defining  $E_0 = E \setminus (\bigcup_{n=1}^\infty E_n)$ , we see that  $\{E_0, E_1, E_2, ...\}$  satisfies the conclusion of the lemma.

**Lemma 14.** Suppose that  $\{F_1, F_2, ...\}$  is a collection of pairwise disjoint perfect subsets of  $\mathbb{R}$ . Given  $k \in \mathbb{N}$ , we define  $\mathcal{F}_k = \{F_n\}_{n=k}^{\infty}$ . Suppose that I = (a, b) with  $\bigcup_{n=k}^{\infty} F_n \subset I$  and  $\sum_{n=k}^{\infty} |F_n| = \delta < b - a$  and let  $\epsilon > 0$ . Then for each  $n \geq k$  we can find a collection  $\mathcal{C}_n = \mathcal{C}_n(\mathcal{F}, (a, b))$ , such that each  $\mathcal{C}_n$ is a finite collection of pairwise disjoint, closed subintervals of (a, b) and such that letting  $K_n = \bigcup_{J \in \mathcal{C}_n} J$  and  $K = \bigcup_{n=k}^{\infty} K_n$ , we have for each  $n, m \geq k$ :

$$K_n \cap K_m = \emptyset \ if \ n \neq m \tag{14}$$

$$\cup_{j=k}^{n} F_j \subset \cup_{j=k}^{n} K_j \tag{15}$$

for each 
$$J = [c, d] \in \mathcal{C}_n$$
, we have  $\{c, d\} \subset F_n$  (16)

$$|K| = \sum_{n=k}^{\infty} |K_n| = \gamma < \min\{\delta + \epsilon, b - a\}.$$
(17)

Moreover, given any  $c, d \in \mathbb{R}$ , there exists a continuous, monotonic function  $\beta = \beta_{I,\mathcal{F},c,d}$  which maps [a,b] onto  $[\min\{c,d\}, \max\{c,d\}]$  and satisfies the following:

$$\beta(a) = c \text{ and } \beta(b) = d \tag{18}$$

$$\beta$$
 is constant on each  $J \in \bigcup_{n=k}^{\infty} \mathcal{C}_n$  (19)

$$\beta$$
 is Lipschitz on  $(a, b)$ . (20)

For future reference, if h is a function defined on I = [a, b], we define

$$\beta_{I,\mathcal{F},h} = \beta_{I,\mathcal{F},h(a),h(b)}.$$
(21)

Note that (15) and (16) imply that  $C_k$  is a finite covering of  $F_k$  with closed intervals whose endpoints are in  $F_k$ .

PROOF. We assume without loss of generality that k = 1. Suppose that  $\{F_n\}_{n=1}^{\infty}$  satisfies the hypotheses of the lemma. Choose  $\{\alpha_n\}$  such that  $|F_n| < \alpha_n$  and  $\sum_{n=1}^{\infty} \alpha_n < \min\{\delta + \epsilon, b - a\}$ . Using the compactness of  $F_1$ , we can find a finite collection of pairwise disjoint, open intervals which cover  $F_1$  and have total length less than  $\alpha_1$ . Then using the fact that  $F_1$  is perfect, we can shrink each of these intervals down to a closed interval whose endpoints are in  $F_1$ . This gives us  $C_1$ . Proceeding inductively, assume that the collections  $\mathcal{C}_1, \mathcal{C}_2, ..., \mathcal{C}_r$  have been chosen to satisfy equations (14), (15) and (16) for  $n, m \leq r$ . Noting that (because of (16))  $F_{r+1} \setminus (\cup_{j=1}^r K_j)$  is a perfect set, we choose  $\mathcal{C}_{r+1}$  to be a collection of pairwise disjoint, closed intervals (with endpoints in  $F_{r+1}$ ) covering  $F_{r+1} \setminus (\cup_{j=1}^r K_j)$  whose total length is less than  $\alpha_{r+1}$ . This establishes (14) - (17). (Note that it may happen that  $F_{r+1} \setminus (\cup_{j=1}^r K_j) = \emptyset$ , in which case  $\mathcal{C}_{r+1}$  is an empty collection.)

We now construct  $\beta$ . Let  $\bigcup_{n=1}^{\infty} C_n = \{I_j\}_{j=1}^{\infty} = \{[a_j, b_j]\}_{j=1}^{\infty}$  and assume without loss of generality that c = 0 and d = 1. Furthermore, we let  $E = \bigcup_{n=1}^{\infty} I_n = \bigcup_{n=1}^{\infty} [a_n, b_n]$  and define  $I_j < I_k$  if  $a_j < a_k$ . For each  $n \in \mathbb{N}$  let  $\delta_n = a_n - a - |\bigcup_{I_k < I_n} I_k|$  and  $h_n = \frac{\delta_n}{b-a-\gamma}$  and define  $\beta(x) = h_n$  if  $x \in I_n$ . Also define  $\beta(a) = 0$  and  $\beta(b) = 1$ . We extend  $\beta$  to  $\overline{E}$  by continuity. Then  $[0, 1] \setminus \overline{E}$  is a (possibly empty) disjoint union of open intervals. On each of these intervals extend  $\beta$  linearly. It is a straightforward exercise to show that  $\beta$  is Lipschitz on (a, b) with Lipschitz constant  $\frac{1}{b-a-\gamma}$  and clearly (19) is satisfied. This completes the proof of the lemma.

**Definition 15.** Given a closed interval J = [a, b] and  $n \in \mathbb{N}$ , we define  $\phi_J: J \to [0, \frac{b-a}{2}]$  as follows:

$$\phi_J(x) = \begin{cases} x - a & \text{if } a \le x \le \frac{a+b}{2} \\ b - x & \text{if } \frac{a+b}{2} \le x \le b. \end{cases}$$
(22)

**Definition 16.** Suppose that F satisfies (2). Let  $\mathcal{I} = \{I_s\}_{s \in S} = \{(a_s, b_s)\}_{s \in S}$ be a dyadic decomposition of  $[a, b] \setminus F$  with  $b_0 = a$  and  $a_1 = b$  and assume that (6)-(9) hold. For each  $s \in S$  define  $\gamma = \gamma_s \colon [a_s, b_s] \to [0, \infty)$  to be the unique function which is linear on the intervals  $[a_s, c_s], [c_s, m_s], [m_s, d_s],$ 

92

 $[d_s, b_s]$  with  $\gamma(a_s) = \gamma(c_s) = \gamma(d_s) = \gamma(b_s) = 0$  and  $\gamma(m_s) = h_s$ . We define  $\alpha_F \colon [a, b] \to [0, \infty)$  as follows:

$$\alpha_F(x) = \begin{cases} \gamma_s(x) & \text{if } x \in I_s \\ 0 & \text{if } x \notin \bigcup_{s \in S} I_s. \end{cases}$$
(23)

Note that technically the definition of  $\alpha_F$  depends not only on F, but also on the dyadic decomposition  $\mathcal{I}$ , so we should really use  $\alpha_{F,\mathcal{I}}$  in place of  $\alpha_F$ . In the interest of avoiding notational overload we use the deliberately sloppy, but more streamlined notation.

**Lemma 17.** Assume that F satisfies (2) and  $\mathcal{I} = \{I_s\}_{s \in S} = \{(a_s, b_s)\}_{s \in S}$ is a dyadic decomposition of  $[a, b] \setminus F$  with  $b_0 = a$  and  $a_1 = b$ . Then for each  $s \in S$  we have

$$h_s \le \frac{1}{2} \phi_{\tilde{I}_s}(x) \text{ for all } x \in I'_s, \tag{24}$$

and

$$\alpha_F(x) \le \frac{1}{2} \phi_{\tilde{I}_s}(x) \text{ for all } x \in \tilde{I}_s.$$
(25)

PROOF. Inequalities (24) and (25) follow easily from (7), (8), (9), the definition of  $\gamma$  and the fact that  $J \subset K$  implies  $\phi_J(x) \leq \phi_K(x)$  for all  $x \in J$ . Note that, taking s = 1/2 in (25), we get  $\alpha_F(x) \leq \frac{1}{2}\phi_{[a,b]}(x)$  for all  $x \in [a,b]$ .  $\Box$ 

# 3 Proof of Theorem 8

Let E be a closed, nowhere dense set. We assume without loss of generality that E is bounded, and we normalize E so that  $\{0,1\} \subset E \subset [0,1]$ . We first note that we may assume that E has no isolated points. To see this, we use the Cantor-Bendixson Theorem to write E as the disjoint union of  $E_1$  and  $E_2$ , where  $E_1$  is perfect and  $E_2$  is countable. Suppose that we can find a function f satisfying the conclusion of Theorem 8 with  $E_1$  in place of E. Then using Theorem 3, we find a Lipschitz function g such that  $N_g = E_2$  and we see that f + g satisfies the conclusion of Theorem 8.

Let  $\mathcal{I} = \{I_s\}_{s \in S} = \{(a_s, b_s)\}s \in S$  be a dyadic decomposition of E and define  $a_1 = 1, b_0 = 0$ . For each  $s \in S$  we define  $\delta_s \colon [a_s, b_s] \to [0, \infty)$  to satisfy the following:

$$\delta_s(a_s) = \delta_s(b_s) = 0 \tag{26}$$

$$\delta_s$$
 is differentiable on  $(a_s, b_s)$  (27)

$$0 < \delta_s(x) \le \delta_s(m_s) = h_s \text{ for all } x \in (a_s, b_s)$$
(28)

$$\delta_s$$
 is linear on  $[a_s, a_s + \epsilon_s]$  and  $[b_s - \epsilon_s, b_s]$  for some  $\epsilon_s > 0$  (29)

$$\delta_s(x) \le \phi_{\tilde{I}_s}(x) \text{ for all } x \in \tilde{I}_s.$$
(30)

Now define f as follows:

$$f(x) = \begin{cases} \delta_s(x) & \text{if } x \in I_s \\ 0 & \text{if } x \in E \\ -x & \text{if } x < 0 \\ x - 1 & \text{if } x > 1 \end{cases}$$
(31)

Note first of all that f is clearly differentiable on  $\mathbb{R} \setminus E$  and therefore

$$\lim f(x) = |f'(x)| < \infty \text{ for all } x \in \mathbb{R} \setminus E.$$
(32)

Now assume that  $x \in E$ . It remains to show that

$$\lim f(x) < \infty \tag{33}$$

and

$$f$$
 is not differentiable at  $x$ . (34)

Since  $x \in E$ , by (5) there is a sequence  $\{s_i\}$  in S such that  $\{x\} = \bigcap_{i=1}^{\infty} I_{s_i}$ . Suppose first of all that x lies in the interior of each  $\tilde{I}_{s_i} = [c_i, d_i]$ . Then from (30) we see that  $0 \leq f(y) \leq \phi_{\tilde{I}_{s_i}}(y)$  for all  $y \in \tilde{I}_{s_i}$  and it follows that  $L_f(x, r_i) \leq 2r_i$ , where  $r_i = \min\{x - c_i, d_i - x\}$ . Since  $r_i \to 0$ , it follows that lip  $f(x) \leq 2$ .

On the other hand, if x is not in the interior of each  $I_{s_i}$ , then we have  $x \in \bigcup_{s \in S} \{a_s, b_s\}$ . Suppose that  $x = a_s$ . Then by (29) for some  $\epsilon > 0$ , f is linear on  $[a_s, a_s + \epsilon]$ . Moreover,  $a_s = d_i$  for some  $i \in \mathbb{N}$  and therefore it follows from (30) and the definition of f, that  $0 \leq f(y) \leq \phi_{\tilde{I}_{s_i}}(y) \leq x - y$  for all  $y \in \tilde{I}_{s_i}$ . It follows that (33) holds in this case and a similar argument shows that (33) holds when  $x = b_s$  also.

To complete the proof we need to show that f is not differentiable at x. Note, first of all, that f = 0 on E and since E is perfect, it follows that  $\liminf_{y \to x} \frac{|f(y) - f(x)|}{|y - x|} = 0$ . On the other hand, letting  $h_i = h_{s_i}$  and  $m_i = m_{s_i}$ , and using the fact that  $|x - m_i| < |\tilde{I}_{s_i}|$  along with (24), we

get that  $\frac{|f(m_i) - f(x)|}{|m_i - x|} \ge \frac{h_i}{|\tilde{I}_{s_i}|} = \frac{1}{6}$  for all  $i \in \mathbb{N}$ , and it follows that  $\limsup_{y \to x} \frac{|f(y) - f(x)|}{|y - x|} \ge \frac{1}{6}$ , and therefore we get (34).

# 4 Proof of Theorem 9

Assume E is a trim  $G_{\delta}$  set. We may clearly assume that E is bounded, and we normalize so that  $E \subset [0, 1]$ . Using Lemma 13, we choose sets  $E_0$ ,  $E_1$ ,  $E_2$ , ... satisfying (10) - (13). We may assume without loss of generality that  $\{0, 1\} \subset E_1$ .

Note that in order to prove the theorem it suffices to construct a continuous function f such that  $\bigcup_{n=1}^{\infty} E_n \subset N_f$  and  $|N_f \setminus (\bigcup_{n=1}^{\infty} E_n)| = 0$ .

Given I = (a, b) such that  $\{a, b\} \cap E_i = \emptyset$  for i = k, k + 1, ..., we define

$$\mathcal{F}_{k,I} = \{ E_i \cap I \}_{i=k}^{\infty}.$$

It follows from the fact that E is trim and (10), (11), and (13), that  $\mathcal{F}_{k,I}$  satisfies the hypotheses of Lemma 14 with  $\mathcal{F}_k = \mathcal{F}_{k,I}$  and  $F_j = E_j \cap I$ . Using the notation from Lemma 14, for each  $n \geq k$  we define

$$\mathcal{C}_{n,k,I} = \mathcal{C}_n(\mathcal{F}_{k,I}, I),$$

and note that  $C_I = \bigcup_{n=k}^{\infty} C_{n,k,I}$  is a collection of pairwise disjoint, closed intervals which covers  $(\bigcup_{i=k}^{\infty} E_i) \cap I$ .

We next construct collections of pairwise disjoint, closed intervals  $\mathcal{J}_n$  and collections of pairwise disjoint, open intervals  $\mathcal{I}_n$ . Define  $\mathcal{J}_1 = \{[0,1]\}$  and (using the notation from Definition 12),  $\mathcal{I}_1 = \mathcal{I}_{E_1,[0,1]}$ . For n > 1, we define  $\mathcal{J}_n$  and  $\mathcal{I}_n$  recursively as follows:

$$\mathcal{J}_{n,k} = \bigcup_{I \in \mathcal{I}_{n-1}} \mathcal{C}_{k,n,I} \text{ for } k \ge n \tag{35}$$

$$\mathcal{J}_n = \cup_{k=n}^{\infty} \mathcal{J}_{n,k} \tag{36}$$

$$\mathcal{I}_{n,k} = \bigcup_{J \in \mathcal{J}_{n,k}} \mathcal{I}_{E_k \cap J,J} \text{ for } k \ge n$$
(37)

$$\tilde{\mathcal{I}}_{n,k} = \bigcup_{J \in \mathcal{J}_{n,k}} \tilde{\mathcal{I}}_{E_k \cap J,J} \text{ for } k \ge n$$
(38)

$$\mathcal{I}_n = \bigcup_{k=n}^{\infty} \mathcal{I}_{n,k} \tag{39}$$

### B. H. HANSON

$$\tilde{\mathcal{I}}_n = \bigcup_{k=n}^{\infty} \tilde{\mathcal{I}}_{n,k}.$$
(40)

Using the fact that  $[0,1] \setminus E$  is dense in [0,1], we also assume that for each  $J \in \mathcal{J}_{n,k}$  we have  $T_{E_k \cap J,J} \cap E = \emptyset$ . Furthermore, for each  $n \in \mathbb{N}$  define

$$H_n = \bigcup_{J \in \mathcal{J}_n} J \tag{41}$$

$$G_n = \bigcup_{I \in \mathcal{I}_n} I \tag{42}$$

$$G'_n = \bigcup_{I \in \tilde{\mathcal{I}}_n} I', \tag{43}$$

where I' in (43) is defined as in (9). Note that we have

$$H_{n+1} \subset G_n \text{ and } G'_n \subset H_n \text{ for every } n \in \mathbb{N}.$$
 (44)

Moreover, for each  $n \geq 2$  and for every  $I \in \mathcal{I}_n$ , we have  $I \cap E_j = \emptyset$  for j = 1, 2, ..., n.

We now begin the construction of f. We start by setting

$$f_1 = \alpha_{E_1}.$$

Proceeding recursively, (and recalling the notation in (21)), for every  $n \in \mathbb{N}$  we define

$$\tilde{f}_n(x) = \begin{cases} \beta_{I,\mathcal{F}_{n+1,I},f_n}(x) & \text{if } x \in I \in \mathcal{I}_n \\ f_n(x) & \text{if } x \notin G_n \end{cases}$$
(45)

$$g_n(x) = \begin{cases} \tilde{f}_n(x) + \phi_J(x) & \text{if } x \in J \in \mathcal{J}_{n+1} \\ \tilde{f}_n(x) & \text{if } x \notin H_{n+1} \end{cases}$$
(46)

and

$$f_{n+1}(x) = \begin{cases} \tilde{f}_n(x) + \alpha_{E_k \cap J}(x) & \text{if } x \in J \in \mathcal{J}_{n+1,k} \subset \mathcal{J}_{n+1} \\ \tilde{f}_n(x) & \text{if } x \notin H_{n+1}. \end{cases}$$
(47)

Note that if  $I_s = (a_s, b_s) \in \tilde{\mathcal{I}}_{n+1}$ , then  $\gamma_s \equiv 0$  on  $[a_s, c_s] \cup [d_s, b_s]$ , and it follows that

$$\tilde{f}_{n+1}(x) = f_{n+1}(x) = \tilde{f}_n(x) \text{ for all } x \notin G'_{n+1}.$$
(48)

We claim that for any  $x \in [0, 1]$  we have

$$g_{n+1}(x) \le g_n(x). \tag{49}$$

In order to prove the claim, first of all note that if  $x \notin H_{n+1}$ , then  $g_{n+1}(x) = g_n(x)$  so we may as well assume that  $x \in H_{n+1}$ . Choose J = [a, b] such that  $x \in J \in \mathcal{J}_{n+1,k} \subset \mathcal{J}_{n+1}$ . Note that  $\tilde{f}_n$  is constant on J and therefore we have

$$g_n(x) = \hat{f}_n(x) + \phi_J(x) = \hat{f}_n(a) + \phi_J(x).$$
(50)

We next show that

$$\tilde{f}_{n+1}(x) \le \tilde{f}_n(a) + \frac{1}{2}\phi_J(x).$$
(51)

Note that if  $x \notin G'_{n+1}$ , (51) follows from (48) and the fact that  $f_n$  is constant on J. On the other hand, suppose that  $x \in G'_{n+1}$ . In this case,  $x \in I'_s$ , where  $I_s \in \tilde{I}_{n+1,k}$  and it follows from (24), (45), and the fact that  $I'_s \subset \tilde{I}_s \subset J$ , that we have

$$\tilde{f}_{n+1}(x) \le \tilde{f}_n(a) + h_s \le \tilde{f}_n(a) + \frac{1}{2}\phi_{\tilde{I}_s}(x) \le \tilde{f}_n(a) + \frac{1}{2}\phi_J(x),$$
(52)

which gives us (51) again.

Now if  $x \notin H_{n+2}$ , we have  $g_{n+1}(x) = \tilde{f}_{n+1}(x)$  and (49) follows from (50) and (51) so suppose that  $x \in H_{n+2}$ . Then  $x \in K \subset J$ , where  $K \in \mathcal{J}_{n+2}$  and  $g_{n+1}(x) = \tilde{f}_{n+1}(x) + \phi_K(x)$ . Assume, first of all, that  $x \notin G'_{n+1}$ . Then (49) follows from (48), (50) and  $K \subset J$ . On the other hand, if  $x \in G'_{n+1}$ , then  $x \in I'$ , where  $I \in \tilde{\mathcal{I}}_{n+1}$  and we have  $x \in K \subset I' \subset I \subset J$  and it follows from (9) that  $K \subset \frac{1}{3}J$ . Thus,  $\phi_K(x) \leq \frac{1}{2}\phi_J(x)$  and (49) follows from (50) and (51) once again and we are done proving the claim.

Note that we have the following inequalities, which hold for all  $n \in \mathbb{N}$  and for all  $x \in [0, 1]$ :

$$\tilde{f}_n(x) \le \tilde{f}_{n+1}(x) \le f_{n+2}(x) \le g_{n+1}(x) \le g_n(x)$$
(53)

$$0 \le g_n(x) - \tilde{f}_n(x) \le \sup_{J \in \mathcal{J}_{n+1}} \frac{|J|}{2}.$$
 (54)

It follows easily that the sequence  $f_n$  converges uniformly on [0,1] to a continuous function f and for each  $n \in \mathbb{N}$  we have

$$f_n(x) \le f(x) \le g_n(x) \text{ for all } x \in [0,1].$$
(55)

We extend f to all of  $\mathbb{R}$  by defining f(x) = 0 if  $x \notin [0, 1]$ .

We now show that lip  $f(x) < \infty$  for all  $x \in [0,1]$ . Let  $x \in [0,1]$ . First assume that  $x \in \bigcap_{n=1}^{\infty} H_n$ . In this case we can find a sequence of intervals

 $\{J_n\}$  such that each  $J_n \in \mathcal{J}_n$  and x is in the interior of each  $J_n$ . Note that if  $x \in J = [a, b] \in \mathcal{J}_n$ , then we have  $f(a) \leq f(y) \leq f(a) + \phi_J(y)$  for all  $y \in J$ and it follows that  $L_f(x, r) \leq 2r$ , where  $r = \min\{x - a, b - x\}$ . This implies that lip  $f(x) \leq 2$ .

Now suppose that  $x \notin \bigcap_{n=1}^{\infty} H_n$ . Let *n* be the largest integer such that  $x \in H_n$  and choose  $J \in \mathcal{J}_n$  such that  $x \in J$ . Since  $x \notin H_{n+1}$ , it follows that  $f(x) = \tilde{f}_n(x) = g_n(x)$ . Then using (55) and the fact that  $\tilde{f}_n$  and  $g_n$  are locally Lipschitz, it follows that Lip  $f(x) < \infty$  so trivially lip  $f(x) < \infty$ .

We next show that  $\bigcup_{n=1}^{\infty} E_n \subset N_f$ . Let  $x \in E_n$  for some  $n \in \mathbb{N}$ . Since  $x \in E_n$ , it follows that  $x \in [a, b] = J \in \mathcal{J}_k$  for some  $k \leq n$ , where  $\{a, b\} \subset E_n$ . From the construction of f it follows that f(x) = f(y) for all  $y \in E_n \cap J$  and therefore  $\liminf_{t \to x} \frac{|f(t) - f(x)|}{|t - x|} = 0$ . Moreover, if  $\{I_s\}_{s \in S} = \mathcal{I}_{E_n \cap J, J}$ , then by (5) we can choose a sequence  $\{s_i\}$  in S such that  $\{x\} = \bigcap_{i=1}^{\infty} \tilde{I}_{s_i}$ . It follows that  $m_{s_i} \to x$ . Furthermore,

$$f(m_{s_i}) = f_k(m_{s_i}) = f_k(x) + \alpha_{E_n \cap J, J}(m_{s_i}) = f_k(x) + \frac{1}{6} |\tilde{I}_{s_i}|.$$

Thus, we get  $\frac{|f(m_{s_i})-f(x)|}{|m_{s_i}-x|} \geq \frac{1}{6}$  and therefore  $\limsup_{t\to x} \frac{|f(t)-f(x)|}{|t-x|} \geq \frac{1}{6}$ . Hence, f is not differentiable at x so  $x \in N_f$ .

It remains to show that f is differentiable a.e. on  $[0,1] \setminus E$ . For  $J \in \mathcal{J}_{n,k}$ we let  $T_J = T_{E_k \cap J,J}$  (where we use the notation from Definition 12) and we define  $T_n = \bigcup_{J \in \mathcal{J}_n} T_J$  and note that  $T_n \cap E = \emptyset$  for all  $n \in \mathbb{N}$ . We also observe that  $f_k(x) = f_n(x)$  for all  $x \in T_n$  and for all  $k \ge n$  and hence  $f(x) = f_n(x)$ for all  $x \in T_n$ . Finally, we define  $T = \bigcup_{n=1}^{\infty} T_n$ . Note that T is countable and therefore |T| = 0. We also note that, using (17) with  $\epsilon = (b-a)/k$ , it follows that  $|H_n| < \sum_{k=n}^{\infty} |E_k| + \frac{1}{n}$  and therefore  $|\bigcap_{n=1}^{\infty} H_n| = 0$ . Thus it suffices to show that f is differentiable a.e. on  $[0,1] \setminus (E \cup T \cup H)$ , where  $H = \bigcap_{n=1}^{\infty} H_n$ . Suppose that  $x \in [0,1] \setminus (E \cup T \cup H)$ . Then there exists  $n \in \mathbb{N}$  and  $I \in \mathcal{I}_n$ , such that  $x \in I$  and  $x \notin H_{n+1}$  so  $\tilde{f}_n(x) = g_n(x) = f(x)$ . Since  $\tilde{f}_n \le f \le g_n$ , it follows that f is differentiable at x if  $\tilde{f}_n$  and  $g_n$  are both differentiable at x. But  $\tilde{f}_n$  and  $g_n$  are both Lipschitz on I and therefore differentiable a.e. on I, which gives us the result we need.

## References

- Z. Balogh, and M. Csörnyei, Scaled oscillation and regularity, Proc. Amer. Math. Soc. 134(9) (2006), 2667–2675.
- [2] J. Heinonen, Lectures on Lipschitz analysis, Univ. Jyväskylä Dept. Math. Stat. 100 (2005), 1-77.

- [3] J. Maly, A simple proof of the Stepanov theorem on differentiability almost everywhere, Exposition. Math. 17 (1999), 59–61.
- [4] G. Piranian, The set of nondifferentiability of a continuous function, Amer. Math. Monthly **74(4)** (1966), 57–61.
- [5] Z. Zahorski, Sur l'ensemble des points de non-dérivabilité d'une fonction continue, Bull. Soc. Math. France 74 (1946), 147–178.

B. H. HANSON

100