SETS OF NON-DIFFERENTIABILITY FOR FUNCTIONS WITH FINITE LOWER SCALED OSCILLATION

Abstract

Up to a set of measure zero we characterize the sets of non-differentiability of functions with everywhere finite lower scaled oscillation.

1 Introduction and statement of results

We are interested in characterizing sets of non-differentiability for real-valued functions satisfying various Lipschitz-like conditions.

We begin by setting notation. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function, and define $N_{f}=\{x \in \mathbb{R} \mid f$ is not differentiable at $x\}$. What can be said about the set N_{f} ? First, an elementary argument using the continuity of f implies that N_{f} is a $G_{\delta \sigma}$ set. (A G_{δ} is a countable intersection of open sets; a $G_{\delta \sigma}$ is a countable union of $G_{\delta}{ }^{\prime}$'s.) By a theorem of Lebesgue, N_{f} has measure zero for any Lipschitz function f.

Lebesgue's result can be generalized by using the upper scaled oscillation function, $\operatorname{Lip} f$, defined as follows:

$$
\begin{equation*}
\operatorname{Lip} f(x)=\limsup _{r \rightarrow 0^{+}} \frac{L_{f}(x, r)}{r} \tag{1}
\end{equation*}
$$

where

$$
L_{f}(x, r)=\sup \{|f(x)-f(y)|:|x-y| \leq r\} .
$$

[^0]The Rademacher-Stepanov Theorem (see ([2], Theorem 3.4, or [3]) now says the following:

Theorem 1. If f is continuous on \mathbb{R}, then $N_{f} \cap\{x \mid \operatorname{Lip} f(x)<\infty\}$ is a set of measure zero.

In the 1940's Zahorski gave sharp conditions characterizing N_{f} for both continuous and Lipschitz functions defined on \mathbb{R} :

Theorem 2. ([5], p.147) $E=N_{f}$ for some continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ if and only if $E=E_{1} \cup E_{2}$, where E_{1} is a G_{δ} set and E_{2} is a $G_{\delta \sigma}$ set of measure 0.

Theorem 3. ([5], Theorem 3) $E=N_{f}$ for some Lipschitz function $f: \mathbb{R} \rightarrow \mathbb{R}$ if and only if E is a $G_{\delta \sigma}$ set of measure 0 .

We now define Lip \mathbb{R} as the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\operatorname{Lip} f(x)<\infty$ for all $x \in \mathbb{R}$. Note that every f in Lip \mathbb{R} is continuous on \mathbb{R}. Using Theorem 1, we can reformulate Theorem 3 as follows:

Theorem 4. $E=N_{f}$ for some $f \in \operatorname{Lip} \mathbb{R}$ if and only if E is a $G_{\delta \sigma}$ set and $|E|=0$.

We seek to explore the implications of replacing the upper scaled oscillation function Lip f with the lower scaled oscillation function lip f, defined as follows:

$$
\operatorname{lip} f(x)=\liminf _{r \rightarrow 0^{+}} \frac{L_{f}(x, r)}{r} .
$$

We also define lip \mathbb{R} as the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with lip $f(x)<\infty$ for all $x \in \mathbb{R}$. Again, every function f in lip \mathbb{R} is continuous on \mathbb{R}.

As Balogh and Csörnyei showed in ([1]), functions in lip \mathbb{R} can fail to be differentiable a.e. so Theorem 4 fails if we replace the condition $f \in \operatorname{Lip} \mathbb{R}$ with $f \in \operatorname{lip} \mathbb{R}$. On the other hand, Balogh and Csörnyei also proved the following result (see [1], Lemma 1.1):

Theorem 5. If $f \in \operatorname{lip} \mathbb{R}$, then $\left|N_{f} \cap(a, b)\right|<b-a$ for any open interval (a, b).

Motivated by this result, we make the following definition:
Definition 6. A subset E of \mathbb{R} is trim if $|E \cap(a, b)|<b-a$ for all open intervals (a, b).

Combining Theorems 5 and 2, we see that if f is in lip \mathbb{R}, then N_{f} is the union of a $\operatorname{trim} G_{\delta}$ set and a $G_{\delta \sigma}$ set of measure zero. It is now natural to conjecture that a sort of converse holds:

Conjecture 7. $E=N_{f}$ for some $f \in \operatorname{lip} \mathbb{R}$ if and only if $E=E_{1} \cup E_{2}$, where E_{1} is a trim G_{δ} set and E_{2} is a $G_{\delta \sigma}$ set of measure zero.

Our following results give evidence in favor of the conjecture:
Theorem 8. For every closed, nowhere dense set E there exists $f \in \operatorname{lip} \mathbb{R}$ such that $E=N_{f}$.

Note that for closed sets nowhere dense and trim are equivalent.
Theorem 9. Suppose that E is a trim G_{δ} set. Then there exists a function $f \in \operatorname{lip} \mathbb{R}$ such that $\left|E \triangle N_{f}\right|=0$.

2 Tools for the proofs of Theorems 8 and 9

We begin by establishing some elementary facts about perfect, nowhere dense sets which will be used in the proofs of both theorems. Throughout the rest of this paper S will be the set of dyadic rationals in the interval $(0,1)$. More precisely:

$$
S=\left\{\left.\frac{m}{2^{n}} \right\rvert\, 1 \leq m \leq 2^{n}-1, n \geq 1\right\}
$$

Definition 10. Suppose that

$$
\begin{equation*}
F \text { is perfect, nowhere dense and }\{a, b\} \subset F \subset[a, b] . \tag{2}
\end{equation*}
$$

Let $b_{0}=a$ and $a_{1}=b$. Suppose that $\left\{I_{s}\right\}_{s \in S}=\left\{\left(a_{s}, b_{s}\right)\right\}_{s \in S}$ satisfies:

$$
\begin{gather*}
\cup_{s \in S} I_{s}=[a, b] \backslash F \tag{3}\\
s<t \Rightarrow b_{s}<a_{t} \tag{4}
\end{gather*}
$$

Then we say that $\left\{I_{s}\right\}_{s \in S}$ is a dyadic decomposition of $[a, b] \backslash F$.
A simple induction proof shows that if (2) holds, then a dyadic decomposition of $[a, b] \backslash F$ exists. Given a dyadic decomposition $\left\{I_{s}\right\}_{s \in S}$ as defined above, for $s=\frac{2 i-1}{2^{n}}$ where $1 \leq i \leq 2^{n-1}$ and $n \geq 1$, we define $\tilde{I}_{s}=\left[b_{r}, a_{t}\right]$ where $r=\frac{i-1}{2^{n-1}}$ and $t=\frac{i}{2^{n-1}}$. Note that $\bar{I}_{s} \subset \tilde{I}_{s}$ for all $s \in S$ and

$$
\begin{equation*}
\{x\}=\cap_{x \in \tilde{I}_{s}} \tilde{I}_{s} \text { for all } x \in F . \tag{5}
\end{equation*}
$$

We will need the following lemma, which follows easily from the fact that the complement of F is open and dense in $[a, b]$.

Lemma 11. Suppose that (2) holds. Then there exists a dyadic decomposition $\mathcal{I}=\left\{I_{s}\right\}_{s \in S}$ of $[a, b] \backslash F$ satisfying:

$$
\begin{equation*}
I_{s} \cap \frac{1}{4} \tilde{I}_{s} \neq \emptyset \text { for all } s \in S \tag{6}
\end{equation*}
$$

(Here, and elsewhere in the paper, we use the convention that if I is an (open, closed) interval centered at x_{0} and $C>0$, then $C I$ is the interval with length $C|I|$ centered at x_{0}.)

For the remainder of this paper whenever we have a set F satisfying (2) we will assume that a dyadic decomposition satisfying (6) has been chosen as well. Furthermore, we will also assume that for each $s \in S$ we have chosen c_{s}, d_{s}, m_{s} and h_{s} satisfying:

$$
\begin{gather*}
h_{s}=\frac{1}{6}\left|\tilde{I}_{s}\right| \tag{7}\\
a_{s}<c_{s}<m_{s}<d_{s}<b_{s} \tag{8}\\
I_{s}^{\prime}=\left[c_{s}, d_{s}\right] \subset I_{s} \cap \frac{1}{3} \tilde{I}_{s} . \tag{9}
\end{gather*}
$$

Definition 12. Given a set F satisfying (2) and a dyadic decomposition $\mathcal{I}=\left\{\left(a_{s}, b_{s}\right)\right\}_{s \in S}$ of $[a, b] \backslash F$ and $\left\{c_{s}, m_{s}, d_{s}\right\}_{s \in S}$ satisfying (8) and (9), we define

$$
\begin{gathered}
T_{F,[a, b]}=\left\{c_{s}, m_{s}, d_{s}\right\}_{s \in S}, \\
\tilde{\mathcal{I}}_{F,[a, b]}=\cup_{s \in S}\left\{\left(a_{s}, b_{s}\right)\right\}
\end{gathered}
$$

and

$$
\mathcal{I}_{F,[a, b]}=\cup_{s \in S}\left\{\left(a_{s}, c_{s}\right),\left(c_{s}, m_{s}\right),\left(m_{s}, d_{s}\right),\left(d_{s}, b_{s}\right)\right\}
$$

The remainder of this section will be useful for proving Theorem 9.
Lemma 13. Suppose that E is a trim G_{δ} set. Then we can decompose E into sets $E_{0}, E_{1}, E_{2}, \ldots$ such that

$$
\begin{gather*}
E=\cup_{n=0}^{\infty} E_{n} \tag{10}\\
E_{j} \cap E_{k}=\emptyset \text { for } j \neq k \tag{11}\\
E_{0} \text { is } a G_{\delta} \text { set of measure } 0 \tag{12}
\end{gather*}
$$

for each $n \geq 1$ the set E_{n} is perfect and nowhere dense.

Proof. We assume without loss of generality that E is a bounded, trim G_{δ} set. We note first of all that, according to the Cantor-Bendixson Theorem, every closed set F is the union of a perfect set and a countable set and thus given any measurable set G and $\epsilon>0$, we can always find a perfect set F such that $F \subset G$ and $|G \backslash F|<\epsilon$. We begin by choosing E_{1} to be a perfect set such that $E_{1} \subset E$ and $\left|E \backslash E_{1}\right|<\frac{1}{2}$. Proceeding inductively, assuming that we have chosen a collection of pairwise disjoint perfect sets $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ such that $\cup_{i=1}^{n} E_{i} \subset E$ and $\left|E \backslash\left(\cup_{i=1}^{n} E_{i}\right)\right|<\left(\frac{1}{2}\right)^{n}$, we choose E_{n+1} to be a perfect subset of $E \backslash\left(\cup_{i=1}^{n} E_{i}\right)$ such that $\left|E \backslash\left(\cup_{i=1}^{n+1} E_{i}\right)\right|=\left|E \backslash\left(\cup_{i=1}^{n} E_{i}\right) \backslash E_{n+1}\right|<$ $\left(\frac{1}{2}\right)^{n+1}$. Defining $E_{0}=E \backslash\left(\cup_{n=1}^{\infty} E_{n}\right)$, we see that $\left\{E_{0}, E_{1}, E_{2}, \ldots\right\}$ satisfies the conclusion of the lemma.

Lemma 14. Suppose that $\left\{F_{1}, F_{2}, \ldots\right\}$ is a collection of pairwise disjoint perfect subsets of \mathbb{R}. Given $k \in \mathbb{N}$, we define $\mathcal{F}_{k}=\left\{F_{n}\right\}_{n=k}^{\infty}$. Suppose that $I=(a, b)$ with $\cup_{n=k}^{\infty} F_{n} \subset I$ and $\sum_{n=k}^{\infty}\left|F_{n}\right|=\delta<b-a$ and let $\epsilon>0$. Then for each $n \geq k$ we can find a collection $\mathcal{C}_{n}=\mathcal{C}_{n}(\mathcal{F},(a, b))$, such that each \mathcal{C}_{n} is a finite collection of pairwise disjoint, closed subintervals of (a, b) and such that letting $K_{n}=\cup_{J \in \mathcal{C}_{n}} J$ and $K=\cup_{n=k}^{\infty} K_{n}$, we have for each $n, m \geq k$:

$$
\begin{gather*}
K_{n} \cap K_{m}=\emptyset \text { if } n \neq m \tag{14}\\
\cup_{j=k}^{n} F_{j} \subset \cup_{j=k}^{n} K_{j} \tag{15}\\
\text { for each } J=[c, d] \in \mathcal{C}_{n}, \text { we have }\{c, d\} \subset F_{n} \tag{16}\\
|K|=\sum_{n=k}^{\infty}\left|K_{n}\right|=\gamma<\min \{\delta+\epsilon, b-a\} \tag{17}
\end{gather*}
$$

Moreover, given any $c, d \in \mathbb{R}$, there exists a continuous, monotonic function $\beta=\beta_{I, \mathcal{F}, c, d}$ which maps $[a, b]$ onto $[\min \{c, d\}, \max \{c, d\}]$ and satisfies the following:

$$
\begin{equation*}
\beta(a)=c \text { and } \beta(b)=d \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\beta \text { is constant on each } J \in \cup_{n=k}^{\infty} \mathcal{C}_{n} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\beta \text { is Lipschitz on }(a, b) \text {. } \tag{20}
\end{equation*}
$$

For future reference, if h is a function defined on $I=[a, b]$, we define

$$
\begin{equation*}
\beta_{I, \mathcal{F}, h}=\beta_{I, \mathcal{F}, h(a), h(b)} . \tag{21}
\end{equation*}
$$

Note that (15) and (16) imply that \mathcal{C}_{k} is a finite covering of F_{k} with closed intervals whose endpoints are in F_{k}.

Proof. We assume without loss of generality that $k=1$. Suppose that $\left\{F_{n}\right\}_{n=1}^{\infty}$ satisfies the hypotheses of the lemma. Choose $\left\{\alpha_{n}\right\}$ such that $\left|F_{n}\right|<$ α_{n} and $\sum_{n=1}^{\infty} \alpha_{n}<\min \{\delta+\epsilon, b-a\}$. Using the compactness of F_{1}, we can find a finite collection of pairwise disjoint, open intervals which cover F_{1} and have total length less than α_{1}. Then using the fact that F_{1} is perfect, we can shrink each of these intervals down to a closed interval whose endpoints are in F_{1}. This gives us \mathcal{C}_{1}. Proceeding inductively, assume that the collections $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{r}$ have been chosen to satisfy equations (14), (15) and (16) for $n, m \leq r$. Noting that (because of (16)) $F_{r+1} \backslash\left(\cup_{j=1}^{r} K_{j}\right)$ is a perfect set, we choose \mathcal{C}_{r+1} to be a collection of pairwise disjoint, closed intervals (with endpoints in $\left.F_{r+1}\right)$ covering $F_{r+1} \backslash\left(\cup_{j=1}^{r} K_{j}\right)$ whose total length is less than α_{r+1}. This establishes (14)-(17). (Note that it may happen that $F_{r+1} \backslash\left(\cup_{j=1}^{r} K_{j}\right)=\emptyset$, in which case \mathcal{C}_{r+1} is an empty collection.)

We now construct β. Let $\cup_{n=1}^{\infty} \mathcal{C}_{n}=\left\{I_{j}\right\}_{j=1}^{\infty}=\left\{\left[a_{j}, b_{j}\right]\right\}_{j=1}^{\infty}$ and assume without loss of generality that $c=0$ and $d=1$. Furthermore, we let $E=\cup_{n=1}^{\infty} I_{n}=\cup_{n=1}^{\infty}\left[a_{n}, b_{n}\right]$ and define $I_{j}<I_{k}$ if $a_{j}<a_{k}$. For each $n \in \mathbb{N}$ let $\delta_{n}=a_{n}-a-\left|\cup_{I_{k}<I_{n}} I_{k}\right|$ and $h_{n}=\frac{\partial_{n}}{b-a-\gamma}$ and define $\beta(x)=h_{n}$ if $x \in I_{n}$. Also define $\beta(a)=0$ and $\beta(b)=1$. We extend β to \bar{E} by continuity. Then $[0,1] \backslash \bar{E}$ is a (possibly empty) disjoint union of open intervals. On each of these intervals extend β linearly. It is a straightforward exercise to show that β is Lipschitz on (a, b) with Lipschitz constant $\frac{1}{b-a-\gamma}$ and clearly (19) is satisfied. This completes the proof of the lemma.

Definition 15. Given a closed interval $J=[a, b]$ and $n \in \mathbb{N}$, we define $\phi_{J}: J \rightarrow\left[0, \frac{b-a}{2}\right]$ as follows:

$$
\phi_{J}(x)= \begin{cases}x-a & \text { if } a \leq x \leq \frac{a+b}{2} \tag{22}\\ b-x & \text { if } \frac{a+b}{2} \leq x \leq b .\end{cases}
$$

Definition 16. Suppose that F satisfies (2). Let $\mathcal{I}=\left\{I_{s}\right\}_{s \in S}=\left\{\left(a_{s}, b_{s}\right)\right\}_{s \in S}$ be a dyadic decomposition of $[a, b] \backslash F$ with $b_{0}=a$ and $a_{1}=b$ and assume that (6)-(9) hold. For each $s \in S$ define $\gamma=\gamma_{s}:\left[a_{s}, b_{s}\right] \rightarrow[0, \infty)$ to be the unique function which is linear on the intervals $\left[a_{s}, c_{s}\right],\left[c_{s}, m_{s}\right],\left[m_{s}, d_{s}\right]$,
[$\left.d_{s}, b_{s}\right]$ with $\gamma\left(a_{s}\right)=\gamma\left(c_{s}\right)=\gamma\left(d_{s}\right)=\gamma\left(b_{s}\right)=0$ and $\gamma\left(m_{s}\right)=h_{s}$. We define $\alpha_{F}:[a, b] \rightarrow[0, \infty)$ as follows:

$$
\alpha_{F}(x)=\left\{\begin{array}{cc}
\gamma_{s}(x) & \text { if } x \in I_{s} \tag{23}\\
0 & \text { if } x \notin \cup_{s \in S} I_{s} .
\end{array}\right.
$$

Note that technically the definition of α_{F} depends not only on F, but also on the dyadic decomposition \mathcal{I}, so we should really use $\alpha_{F, \mathcal{I}}$ in place of α_{F}. In the interest of avoiding notational overload we use the deliberately sloppy, but more streamlined notation.

Lemma 17. Assume that F satisfies (2) and $\mathcal{I}=\left\{I_{s}\right\}_{s \in S}=\left\{\left(a_{s}, b_{s}\right)\right\}_{s \in S}$ is a dyadic decomposition of $[a, b] \backslash F$ with $b_{0}=a$ and $a_{1}=b$. Then for each $s \in S$ we have

$$
\begin{equation*}
h_{s} \leq \frac{1}{2} \phi_{\tilde{I}_{s}}(x) \text { for all } x \in I_{s}^{\prime} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{F}(x) \leq \frac{1}{2} \phi_{\tilde{I}_{s}}(x) \text { for all } x \in \tilde{I}_{s} \tag{25}
\end{equation*}
$$

Proof. Inequalities (24) and (25) follow easily from (7), (8), (9), the definition of γ and the fact that $J \subset K$ implies $\phi_{J}(x) \leq \phi_{K}(x)$ for all $x \in J$. Note that, taking $s=1 / 2$ in (25), we get $\alpha_{F}(x) \leq \frac{1}{2} \phi_{[a, b]}(x)$ for all $x \in[a, b]$.

3 Proof of Theorem 8

Let E be a closed, nowhere dense set. We assume without loss of generality that E is bounded, and we normalize E so that $\{0,1\} \subset E \subset[0,1]$. We first note that we may assume that E has no isolated points. To see this, we use the Cantor-Bendixson Theorem to write E as the disjoint union of E_{1} and E_{2}, where E_{1} is perfect and E_{2} is countable. Suppose that we can find a function f satisfying the conclusion of Theorem 8 with E_{1} in place of E. Then using Theorem 3, we find a Lipschitz function g such that $N_{g}=E_{2}$ and we see that $f+g$ satisfies the conclusion of Theorem 8.

Let $\mathcal{I}=\left\{I_{s}\right\}_{s \in S}=\left\{\left(a_{s}, b_{s}\right)\right\} s \in S$ be a dyadic decomposition of E and define $a_{1}=1, b_{0}=0$. For each $s \in S$ we define $\delta_{s}:\left[a_{s}, b_{s}\right] \rightarrow[0, \infty)$ to satisfy the following:

$$
\begin{equation*}
\delta_{s}\left(a_{s}\right)=\delta_{s}\left(b_{s}\right)=0 \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
\delta_{s} \text { is differentiable on }\left(a_{s}, b_{s}\right) \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
0<\delta_{s}(x) \leq \delta_{s}\left(m_{s}\right)=h_{s} \text { for all } x \in\left(a_{s}, b_{s}\right) \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
\delta_{s} \text { is linear on }\left[a_{s}, a_{s}+\epsilon_{s}\right] \text { and }\left[b_{s}-\epsilon_{s}, b_{s}\right] \text { for some } \epsilon_{s}>0 \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
\delta_{s}(x) \leq \phi_{\tilde{I}_{s}}(x) \text { for all } x \in \tilde{I}_{s} . \tag{30}
\end{equation*}
$$

Now define f as follows:

$$
f(x)=\left\{\begin{array}{cl}
\delta_{s}(x) & \text { if } x \in I_{s} \tag{31}\\
0 & \text { if } x \in E \\
-x & \text { if } x<0 \\
x-1 & \text { if } x>1
\end{array}\right.
$$

Note first of all that f is clearly differentiable on $\mathbb{R} \backslash E$ and therefore

$$
\begin{equation*}
\operatorname{lip} f(x)=\left|f^{\prime}(x)\right|<\infty \text { for all } x \in \mathbb{R} \backslash E \tag{32}
\end{equation*}
$$

Now assume that $x \in E$. It remains to show that

$$
\begin{equation*}
\operatorname{lip} f(x)<\infty \tag{33}
\end{equation*}
$$

and
f is not differentiable at x.
Since $x \in E$, by (5) there is a sequence $\left\{s_{i}\right\}$ in S such that $\{x\}=\cap_{i=1}^{\infty} \tilde{I}_{s_{i}}$.
Suppose first of all that x lies in the interior of each $\tilde{I}_{s_{i}}=\left[c_{i}, d_{i}\right]$. Then from (30) we see that $0 \leq f(y) \leq \phi_{\tilde{I}_{s_{i}}}(y)$ for all $y \in \tilde{I}_{s_{i}}$ and it follows that $L_{f}\left(x, r_{i}\right) \leq 2 r_{i}$, where $r_{i}=\min \left\{x-c_{i}, d_{i}-x\right\}$. Since $r_{i} \rightarrow 0$, it follows that $\operatorname{lip} f(x) \leq 2$.

On the other hand, if x is not in the interior of each $\tilde{I}_{s_{i}}$, then we have $x \in \cup_{s \in S}\left\{a_{s}, b_{s}\right\}$. Suppose that $x=a_{s}$. Then by (29) for some $\epsilon>0, f$ is linear on $\left[a_{s}, a_{s}+\epsilon\right]$. Moreover, $a_{s}=d_{i}$ for some $i \in \mathbb{N}$ and therefore it follows from (30) and the definition of f, that $0 \leq f(y) \leq \phi_{\tilde{I}_{s_{i}}}(y) \leq x-y$ for all $y \in \tilde{I}_{s_{i}}$. It follows that (33) holds in this case and a similar argument shows that (33) holds when $x=b_{s}$ also.

To complete the proof we need to show that f is not differentiable at x. Note, first of all, that $f=0$ on E and since E is perfect, it follows that $\liminf _{y \rightarrow x} \frac{|f(y)-f(x)|}{|y-x|}=0$. On the other hand, letting $h_{i}=h_{s_{i}}$ and $m_{i}=m_{s_{i}}$, and using the fact that $\left|x-m_{i}\right|<\left|\tilde{I}_{s_{i}}\right|$ along with (24), we
get that $\frac{\left|f\left(m_{i}\right)-f(x)\right|}{\left|m_{i}-x\right|} \geq \frac{h_{i}}{\left|\tilde{I}_{s_{i}}\right|}=\frac{1}{6}$ for all $i \in \mathbb{N}$, and it follows that $\limsup _{y \rightarrow x} \frac{|f(y)-f(x)|}{|y-x|} \geq \frac{1}{6}$, and therefore we get (34).

4 Proof of Theorem 9

Assume E is a trim G_{δ} set. We may clearly assume that E is bounded, and we normalize so that $E \subset[0,1]$. Using Lemma 13 , we choose sets E_{0}, E_{1}, E_{2}, \ldots satisfying (10) - (13). We may assume without loss of generality that $\{0,1\} \subset E_{1}$.

Note that in order to prove the theorem it suffices to construct a continuous function f such that $\cup_{n=1}^{\infty} E_{n} \subset N_{f}$ and $\left|N_{f} \backslash\left(\cup_{n=1}^{\infty} E_{n}\right)\right|=0$.

Given $I=(a, b)$ such that $\{a, b\} \cap E_{i}=\emptyset$ for $i=k, k+1, \ldots$, we define

$$
\mathcal{F}_{k, I}=\left\{E_{i} \cap I\right\}_{i=k}^{\infty}
$$

It follows from the fact that E is trim and (10), (11), and (13), that $\mathcal{F}_{k, I}$ satisfies the hypotheses of Lemma 14 with $\mathcal{F}_{k}=\mathcal{F}_{k, I}$ and $F_{j}=E_{j} \cap I$. Using the notation from Lemma 14, for each $n \geq k$ we define

$$
\mathcal{C}_{n, k, I}=\mathcal{C}_{n}\left(\mathcal{F}_{k, I}, I\right)
$$

and note that $\mathcal{C}_{I}=\cup_{n=k}^{\infty} \mathcal{C}_{n, k, I}$ is a collection of pairwise disjoint, closed intervals which covers $\left(\cup_{j=k}^{\infty=k} E_{j}\right) \cap I$.

We next construct collections of pairwise disjoint, closed intervals \mathcal{J}_{n} and collections of pairwise disjoint, open intervals \mathcal{I}_{n}. Define $\mathcal{J}_{1}=\{[0,1]\}$ and (using the notation from Definition 12), $\mathcal{I}_{1}=\mathcal{I}_{E_{1},[0,1]}$. For $n>1$, we define \mathcal{J}_{n} and \mathcal{I}_{n} recursively as follows:

$$
\begin{gather*}
\mathcal{J}_{n, k}=\cup_{I \in \mathcal{I}_{n-1}} \mathcal{C}_{k, n, I} \text { for } k \geq n \tag{35}\\
\mathcal{J}_{n}=\cup_{k=n}^{\infty} \mathcal{J}_{n, k} \tag{36}\\
\mathcal{I}_{n, k}=\cup_{J \in \mathcal{J}_{n, k}} \mathcal{I}_{E_{k} \cap J, J} \text { for } k \geq n \tag{37}\\
\tilde{\mathcal{I}}_{n, k}=\cup_{J \in \mathcal{J}_{n, k}} \tilde{\mathcal{I}}_{E_{k} \cap J, J} \text { for } k \geq n \tag{38}\\
\mathcal{I}_{n}=\cup_{k=n}^{\infty} \mathcal{I}_{n, k} \tag{39}
\end{gather*}
$$

$$
\begin{equation*}
\tilde{\mathcal{I}}_{n}=\cup_{k=n}^{\infty} \tilde{\mathcal{I}}_{n, k} \tag{40}
\end{equation*}
$$

Using the fact that $[0,1] \backslash E$ is dense in $[0,1]$, we also assume that for each $J \in \mathcal{J}_{n, k}$ we have $T_{E_{k} \cap J, J} \cap E=\emptyset$. Furthermore, for each $n \in \mathbb{N}$ define

$$
\begin{align*}
H_{n} & =\cup_{J \in \mathcal{J}_{n}} J \tag{41}\\
G_{n} & =\cup_{I \in \mathcal{I}_{n}} I \tag{42}\\
G_{n}^{\prime} & =\cup_{I \in \tilde{\mathcal{I}}_{n}} I^{\prime} \tag{43}
\end{align*}
$$

where I^{\prime} in (43) is defined as in (9). Note that we have

$$
\begin{equation*}
H_{n+1} \subset G_{n} \text { and } G_{n}^{\prime} \subset H_{n} \text { for every } n \in \mathbb{N} \tag{44}
\end{equation*}
$$

Moreover, for each $n \geq 2$ and for every $I \in \mathcal{I}_{n}$, we have $I \cap E_{j}=\emptyset$ for $j=1,2, \ldots, n$.

We now begin the construction of f. We start by setting

$$
f_{1}=\alpha_{E_{1}}
$$

Proceeding recursively, (and recalling the notation in (21)), for every $n \in \mathbb{N}$ we define

$$
\begin{gather*}
\tilde{f}_{n}(x)=\left\{\begin{array}{cc}
\beta_{I, \mathcal{F}_{n+1, I}, f_{n}}(x) & \text { if } x \in I \in \mathcal{I}_{n} \\
f_{n}(x) & \text { if } x \notin G_{n}
\end{array}\right. \tag{45}\\
g_{n}(x)=\left\{\begin{array}{cc}
\tilde{f}_{n}(x)+\phi_{J}(x) & \text { if } x \in J \in \mathcal{J}_{n+1} \\
\tilde{f}_{n}(x) & \text { if } x \notin H_{n+1}
\end{array}\right. \tag{46}
\end{gather*}
$$

and

$$
f_{n+1}(x)=\left\{\begin{array}{cc}
\tilde{f}_{n}(x)+\alpha_{E_{k} \cap J}(x) & \text { if } x \in J \in \mathcal{J}_{n+1, k} \subset \mathcal{J}_{n+1} \tag{47}\\
\tilde{f}_{n}(x) & \text { if } x \notin H_{n+1}
\end{array}\right.
$$

Note that if $I_{s}=\left(a_{s}, b_{s}\right) \in \tilde{\mathcal{I}}_{n+1}$, then $\gamma_{s} \equiv 0$ on $\left[a_{s}, c_{s}\right] \cup\left[d_{s}, b_{s}\right]$, and it follows that

$$
\begin{equation*}
\tilde{f}_{n+1}(x)=f_{n+1}(x)=\tilde{f}_{n}(x) \text { for all } x \notin G_{n+1}^{\prime} \tag{48}
\end{equation*}
$$

We claim that for any $x \in[0,1]$ we have

$$
\begin{equation*}
g_{n+1}(x) \leq g_{n}(x) \tag{49}
\end{equation*}
$$

In order to prove the claim, first of all note that if $x \notin H_{n+1}$, then $g_{n+1}(x)=g_{n}(x)$ so we may as well assume that $x \in H_{n+1}$. Choose $J=[a, b]$ such that $x \in J \in \mathcal{J}_{n+1, k} \subset \mathcal{J}_{n+1}$. Note that \tilde{f}_{n} is constant on J and therefore we have

$$
\begin{equation*}
g_{n}(x)=\tilde{f}_{n}(x)+\phi_{J}(x)=\tilde{f}_{n}(a)+\phi_{J}(x) \tag{50}
\end{equation*}
$$

We next show that

$$
\begin{equation*}
\tilde{f}_{n+1}(x) \leq \tilde{f}_{n}(a)+\frac{1}{2} \phi_{J}(x) \tag{51}
\end{equation*}
$$

Note that if $x \notin G_{n+1}^{\prime},(51)$ follows from (48) and the fact that \tilde{f}_{n} is constant on J. On the other hand, suppose that $x \in G_{n+1}^{\prime}$. In this case, $x \in I_{s}^{\prime}$, where $I_{s} \in \tilde{I}_{n+1, k}$ and it follows from (24), (45), and the fact that $I_{s}^{\prime} \subset \tilde{I}_{s} \subset J$, that we have

$$
\begin{equation*}
\tilde{f}_{n+1}(x) \leq \tilde{f}_{n}(a)+h_{s} \leq \tilde{f}_{n}(a)+\frac{1}{2} \phi_{\tilde{I}_{s}}(x) \leq \tilde{f}_{n}(a)+\frac{1}{2} \phi_{J}(x) \tag{52}
\end{equation*}
$$

which gives us (51) again.
Now if $x \notin H_{n+2}$, we have $g_{n+1}(x)=\tilde{f}_{n+1}(x)$ and (49) follows from (50) and (51) so suppose that $x \in H_{n+2}$. Then $x \in K \subset J$, where $K \in \mathcal{J}_{n+2}$ and $g_{n+1}(x)=\tilde{f}_{n+1}(x)+\phi_{K}(x)$. Assume, first of all, that $x \notin G_{n+1}^{\prime}$. Then (49) follows from (48), (50) and $K \subset J$. On the other hand, if $x \in G_{n+1}^{\prime}$, then $x \in I^{\prime}$, where $I \in \tilde{\mathcal{I}}_{n+1}$ and we have $x \in K \subset I^{\prime} \subset I \subset J$ and it follows from (9) that $K \subset \frac{1}{3} J$. Thus, $\phi_{K}(x) \leq \frac{1}{2} \phi_{J}(x)$ and (49) follows from (50) and (51) once again and we are done proving the claim.

Note that we have the following inequalities, which hold for all $n \in \mathbb{N}$ and for all $x \in[0,1]$:

$$
\begin{gather*}
\tilde{f}_{n}(x) \leq \tilde{f}_{n+1}(x) \leq f_{n+2}(x) \leq g_{n+1}(x) \leq g_{n}(x) \tag{53}\\
0 \leq g_{n}(x)-\tilde{f}_{n}(x) \leq \sup _{J \in \mathcal{J}_{n+1}} \frac{|J|}{2} \tag{54}
\end{gather*}
$$

It follows easily that the sequence f_{n} converges uniformly on $[0,1]$ to a continuous function f and for each $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\tilde{f}_{n}(x) \leq f(x) \leq g_{n}(x) \text { for all } x \in[0,1] \tag{55}
\end{equation*}
$$

We extend f to all of \mathbb{R} by defining $f(x)=0$ if $x \notin[0,1]$.
We now show that lip $f(x)<\infty$ for all $x \in[0,1]$. Let $x \in[0,1]$. First assume that $x \in \cap_{n=1}^{\infty} H_{n}$. In this case we can find a sequence of intervals
$\left\{J_{n}\right\}$ such that each $J_{n} \in \mathcal{J}_{n}$ and x is in the interior of each J_{n}. Note that if $x \in J=[a, b] \in \mathcal{J}_{n}$, then we have $f(a) \leq f(y) \leq f(a)+\phi_{J}(y)$ for all $y \in J$ and it follows that $L_{f}(x, r) \leq 2 r$, where $r=\min \{x-a, b-x\}$. This implies that lip $f(x) \leq 2$.

Now suppose that $x \notin \cap_{n=1}^{\infty} H_{n}$. Let n be the largest integer such that $x \in H_{n}$ and choose $J \in \mathcal{J}_{n}$ such that $x \in J$. Since $x \notin H_{n+1}$, it follows that $f(x)=\tilde{f}_{n}(x)=g_{n}(x)$. Then using (55) and the fact that \tilde{f}_{n} and g_{n} are locally Lipschitz, it follows that $\operatorname{Lip} f(x)<\infty$ so trivially lip $f(x)<\infty$.

We next show that $\cup_{n=1}^{\infty} E_{n} \subset N_{f}$. Let $x \in E_{n}$ for some $n \in \mathbb{N}$. Since $x \in E_{n}$, it follows that $x \in[a, b]=J \in \mathcal{J}_{k}$ for some $k \leq n$, where $\{a, b\} \subset E_{n}$. From the construction of f it follows that $f(x)=f(y)$ for all $y \in E_{n} \cap J$ and therefore $\liminf _{t \rightarrow x} \frac{|f(t)-f(x)|}{|t-x|}=0$. Moreover, if $\left\{I_{s}\right\}_{s \in S}=\mathcal{I}_{E_{n} \cap J, J}$, then by (5) we can choose a sequence $\left\{s_{i}\right\}$ in S such that $\{x\}=\cap_{i=1}^{\infty} \tilde{I}_{s_{i}}$. It follows that $m_{s_{i}} \rightarrow x$. Furthermore,

$$
f\left(m_{s_{i}}\right)=f_{k}\left(m_{s_{i}}\right)=f_{k}(x)+\alpha_{E_{n} \cap J, J}\left(m_{s_{i}}\right)=f_{k}(x)+\frac{1}{6}\left|\tilde{I}_{s_{i}}\right|
$$

Thus, we get $\frac{\left|f\left(m_{s_{i}}\right)-f(x)\right|}{\left|m_{s_{i}}-x\right|} \geq \frac{1}{6}$ and therefore $\limsup _{t \rightarrow x} \frac{|f(t)-f(x)|}{|t-x|} \geq \frac{1}{6}$. Hence, f is not differentiable at x so $x \in N_{f}$.

It remains to show that f is differentiable a.e. on $[0,1] \backslash E$. For $J \in \mathcal{J}_{n, k}$ we let $T_{J}=T_{E_{k} \cap J, J}$ (where we use the notation from Definition 12) and we define $T_{n}=\cup_{J \in \mathcal{J}_{n}} T_{J}$ and note that $T_{n} \cap E=\emptyset$ for all $n \in \mathbb{N}$. We also observe that $f_{k}(x)=f_{n}(x)$ for all $x \in T_{n}$ and for all $k \geq n$ and hence $f(x)=f_{n}(x)$ for all $x \in T_{n}$. Finally, we define $T=\cup_{n=1}^{\infty} T_{n}$. Note that T is countable and therefore $|T|=0$. We also note that, using (17) with $\epsilon=(b-a) / k$, it follows that $\left|H_{n}\right|<\sum_{k=n}^{\infty}\left|E_{k}\right|+\frac{1}{n}$ and therefore $\left|\cap_{n=1}^{\infty} H_{n}\right|=0$. Thus it suffices to show that f is differentiable a.e. on $[0,1] \backslash(E \cup T \cup H)$, where $H=\cap_{n=1}^{\infty} H_{n}$. Suppose that $x \in[0,1] \backslash(E \cup T \cup \underset{\sim}{H})$. Then there exists $n \in \mathbb{N}$ and $I \in \mathcal{I}_{n}$, such that $x \in I$ and $x \notin H_{n+1}$ so $\tilde{f}_{n}(x)_{\tilde{n}}=g_{n}(x)=f(x)$. Since $\tilde{f}_{n} \leq f \leq g_{n}$, it follows that f is differentiable at x if \tilde{f}_{n} and g_{n} are both differentiable at x. But \tilde{f}_{n} and g_{n} are both Lipschitz on I and therefore differentiable a.e. on I, which gives us the result we need.

References

[1] Z. Balogh, and M. Csörnyei, Scaled oscillation and regularity, Proc. Amer. Math. Soc. 134(9) (2006), 2667-2675.
[2] J. Heinonen, Lectures on Lipschitz analysis, Univ. Jyväskylä Dept. Math. Stat. 100 (2005), 1-77.
[3] J. Maly, A simple proof of the Stepanov theorem on differentiability almost everywhere, Exposition. Math. 17 (1999), 59-61.
[4] G. Piranian, The set of nondifferentiability of a continuous function, Amer. Math. Monthly 74(4) (1966), 57-61.
[5] Z. Zahorski, Sur l'ensemble des points de non-dérivabilité d'une fonction continue, Bull. Soc. Math. France 74 (1946), 147-178.
B. H. Hanson

[^0]: Mathematical Reviews subject classification: Primary: 26A27
 Key words: non-differentiability, Lipschitz conditions
 Received by the editors August 14, 2014
 Communicated by: Marianna Csörnyei
 *The author would like to thank Thomas Zürcher for carefully reading a preliminary version of the paper and making many useful suggestions for improving it.

