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Abstract

Let X be a compact topological space and T : X → X a continuous
map. Y.N. Dowker, F.G. Friedlander and A.N. Sharkovsky, indepen-
dently, introduced and studied the notion of T -connectedness. In par-
ticular, they showed that any ω-limit set of a dynamical system (X,T ) is
T -connected. Let

(
C(X), F

)
be the induced dynamical system of a given

system (X,T ), where C(X) is the hyperspace of all compact connected
subsets of X and F : C(X) → C(X) is the induced map of T . In this
paper we give a characterization of the induced-map-connected subsets
of C(I), where I is a compact interval. The characterization is given
via the structure of the ω-limit sets (located on a fiber) of continuous
triangular induced maps on I × C(I).

1 Introduction

Let f : I → I be a continuous map from a compact interval I into itself. The
structure of an ω-limit set of a continuous self-map of a closed interval has been
studied in detail (see [16], [17]). As established in [1] (see also [4]), a nonvoid
closed subset M of I is an ω-limit set for a point x ∈ I if and only if M is
either a nowhere-dense subset of I or a union of finitely many nondegenerate
closed intervals in I. The structure of ω-limit sets for some other classes of
(non-continuous) self-maps of a closed interval has been studied in [3]. Up to
now, the problem of characterizing which closed sets can be described as an
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ω-limit set for a continuous map in Rk, for k ≥ 2, is a difficult open problem.
So, a natural first step is to study the ω-limit sets of a particular class of
continuous maps with dimension two. The triangular maps of the square I2

into itself, which we shall shortly define, happen to be good examples to begin
with.

A map F : I2 → I2 is called triangular if F (x, y) =
(
f(x), g(x, y)

)
, for any

(x, y) ∈ I2. Such a map is continuous if and only if f : I → I and g : I2 → I
are continuous. For these maps we can also write F (x, y) =

(
f(x), gx(y)

)
,

where gx : I → I is a family of continuous maps continuously depending on x.
The set of all continuous triangular maps from I2 into I2 will be denoted by
S∆(I2). Since the triangular map F splits the square I2 into fibres ({x} × I,
where x ∈ I) such that each fibre is mapped by F into a fibre, one may
expect that the triangular dynamical system (I2, F ) is close, in its dynamical
properties, to one-dimensional dynamical systems. In some respects, this is
true; for example, the continuous triangular maps of the square are known
to obey the Sharkovsky cycle coexistence ordering [9]. Nevertheless, they
prove to have some essential differences when compared with continuous one-
dimensional maps (see [11], [10], [18]).

Now let us narrow the focus of our investigation, to concentrate on the
ω-limit sets of triangular maps. As mentioned above, it is important to study
both the structure and also the general properties of these ω-limit sets, since
they can open the door to the world of ω-limit sets of continuous maps defined
on Euclidean spaces of dimension greater than one. Bearing in mind that a
triangular map sends each fibre into a fibre, it seems sensible to begin by
examining those ω-limit sets which lie on a fibre. It turns out that these sorts
of ω-limit sets are rather free in terms of the forms they may take. As a
matter of fact, it was proved that any closed set located on any fixed fibre can
be an ω-limit set for some triangular map from I2 into itself, with one specific
exception. This prohibited form was given in the following theorem from [12],
which provided a full characterization of those ω-limit sets of triangular maps
which lie on a fibre.

Theorem (A). Let a ∈ I be a single point and let M ⊂ I. Then, the following
two statements are equivalent:

(i) There exist F ∈ S∆(I2) and (x, y) ∈ I2 such that ωF (x, y) = {a} ×M .
(ii) M is a nonempty closed subset of I, which cannot be written in the

form M = J1 ∪ J2 ∪ ... ∪ Jn ∪ K, where n is a natural number, each Ji, for
1 ≤ i ≤ n, is a closed, nondegenerate interval, K is a nonempty countable set,
the collection {J1, . . . , Jn,K} is pairwise disjoint and, finally, for at least one
i ∈ {1, ..., n} we have that distH(K,Ji) > 0.

Also in the paper [12], a wider range of ω-limit sets are considered and,
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in some sense, a more thorough description of them is constructed. More
precisely, the assumption that the ω-limit set must lie on one fibre is dropped,
thus achieving a partial description of other types of ω-limit set. The question
is then whether any arbitrary closed subset of a fibre is the intersection of that
particular fibre with the ω-limit set of some triangular map. The theorem
below (from [12]) gives the answer.

Theorem (B). Let a ∈ I be a single point and M be any closed subset of
I. Then, there exists a map F ∈ S∆(I2) and a point (x, y) ∈ I2 such that
ωF (x, y) ∩ Ia = {a} ×M , where Ia = {a} × I.

For further results concerning the ω-limit sets of triangular maps, see also
[8] and [15].

In the present work we introduce and study a particular class of induced
continuous maps. Before moving forward we would like to define the type of
induced maps which will be considered. Let f : X → X be a continuous map
from a continuum (compact connected metric space) X into itself. Denote by
C(X) the hyperspace of all compact connected subsets of X endowed with the
Hausdorff metric. It is known that if X is compact, so is the hyperspace C(X)
(see [13], pages 52-63). We define the induced continuous map F : C(X) →
C(X) by setting F(xc) := {f(x) : x ∈ xc} for each xc ∈ C(X). It is well
known that continuity of f implies continuity of F . It is natural to study the
relations between the dynamical properties of f and its induced map F .

Dynamical properties of induced maps on an interval have been studied
before [6], [7]. It turns out that in the one-dimensional situation there is a
close connection between the dynamics of the induced map and those of the
original inducing map. If consider the induced map of the interval I, then the
ω-limit set of a point of C(I) is a union of singletons or a finite subset of C(I).

Suppose that X is a compact metric space. By C(X)2 we denote the
Cartesian product C(X)×C(X) endowed with the Hausdorff metric. We will
consider a skew product of two induced maps on C(X)2. More precisely, we
consider a map F̃ : C(X)2 → C(X)2 such that F̃ (xc, yc) =

(
F(xc),G(xc, yc)

)
,

where F : C(X) → C(X) is a continuous induced map. In other words,
F(xc) := {f(x) : x ∈ xc}, and Gxc

: C(X)2 → C(X) is a family of continuous
maps continuously depending on xc. The map F̃ will be referred to as a
triangular induced map and the set of all continuous triangular induced maps
from the hyperspace C(X)2 into itself will be denoted by S∆

(
C(X)2

)
.

Giving a complete characterization of the possible ω-limit sets for triangu-
lar induced maps on C(X)2 in general is presently too complicated. However,
if (X2, F ) is an invariant subsystem of

(
C(X)2, F̃

)
, it can be easier to begin

by studying the ω-limit sets of the smaller system, then finding connections



302 S. Kolyada and D. Robatian

from there to the larger system (if any exist), and then trying to generalize
the previously-obtained results. By a subsystem (Y, g) of a dynamical system
(X, f), we mean that Y is a closed f -invariant subset of X, that is, f(Y ) ⊆ Y ,
and g is the restriction of f to Y . One thing is obvious: the dynamics of the
system (X, f) cannot be simpler than that of the system (Y, g), because the
system (Y, g) is present in the system (X, f). Here, instead of considering the
general case where X could be any arbitrary continuum, we will consider the
case where X is the compact interval I = [0, 1]. Again, since it is not easy to
characterize the ω-limit sets of the dynamical system

(
C(I)2, F̃

)
in general,

we start from the simpler system
(
I × C(I), F̃

)
. This is because, on the one

hand,
(
I ×C(I), F̃

)
is an invariant subsystem of

(
C(I)2, F̃

)
and, on the other

hand, it contains the system (I2, F ), for which a full characterization of the
ω-limit sets which lie on a fixed fibre is already known. Therefore, in the
current paper we compare some of the facts and properties established for the
ω-limit sets of the system (I2, F ) with those of the, roughly speaking, wider
system

(
I ×C(I), F̃

)
. Once more, we emphasize that the main goal here is to

characterize those ω-limit sets of the system
(
I × C(I), F̃

)
which are located

on a fixed fibre.

2 Notations and definitions

We defined C(I) as the space of all compact connected subsets of the compact
interval I, which means that each element of C(I) is in fact a closed subinter-
val of I. On the other hand, despite the set-nature of each of these elements,
we treat them as a single whole object. That is, if roughly speaking, any space
consists of points, then our space C(I) consists of points, which are as a matter
of fact, closed intervals in I. For this reason and in order to avoid any ambi-
guity, we use the word pointerval to mean the described elements of the phase
space C(I). Moreover, since any singleton {x} ⊂ I is also a compact connected
set, i.e. a pointerval in C(I), we prefer the phrase degenerate pointerval when
we talk about such a set as an element of C(I). Consequently, the phrase
nondegenerate pointerval is applied otherwise. Furthermore, it is necessary to
introduce appropriate notation in order to remove any confusion. That is, if
for instance, two points a and b are arbitrary points in I such that a ≤ b, then
the notation J = [a, b] can confuse one. The problem is that it is not clear if
we regard J = [a, b] as an ordinary interval [a, b] = {x ∈ I|a ≤ x ≤ b} ⊆ I or
we mean the pointerval [a, b] as a single element of C(I). To solve this, we use
[a, b]c (or equivalently Jc) for a pointerval in C(I) and [a, b] (equivalently J )
to mean the set {x ∈ I|a ≤ x ≤ b} ⊆ I. In addition, and for ease, when we
talk about a degenerate pointerval, say {a}c ∈ C(I), we may only write ac,
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when it does not cause any confusion. Finally, we would like you to remember
that the phrase ”single point” is used, while we merely mean a single element
of I.

In addition, we have to mention that, in spite of the fact that using phrases
like ”convex set”, ”connected set” or ”dense set” do not raise any ambiguity
when we are talking about subsets of, e.g. R, R2, it is not clear yet what
a ”convex” or ”connected” set of pointervals is. Here, we introduce some of
these conceptions regarding sets of pointervals. To this end, first, we give a
specific interpretation of a pointerval at the beginning of the next paragraph.
In fact, we will build a one-to-one correspondence between the elements of
C(I) and the points of two dimensional set I2

y≥x = {(x, y) ∈ I2 | y ≥ x} (i.e.

points of the square I2 located on and above the diagonal of I2). So that one
can interpret any pointerval of C(I) as an ordinary point in I2

y≥x.
Suppose that [a, b]c ∈ C(I) is an arbitrary pointerval. The following one-

to-one correspondence is what we are looking for: [a, b]c ↔ (a, b), where (a, b)
is a point in I2

y≥x, whose first and second coordinates are a and b respectively.
Automatically, when we talk about a map from the TTS into itself, we mean
the correspondent induced map from C(I)→ C(I).

Moreover, we would like to add that if dimC(I) denotes the topological
dimension of C(I), then obviously dimC(I) = 2. In addition, we should
specify that if F : C(I) → C(I) is an arbitrary induced map and L denotes
the diagonal of the space I2

y≥x, which we will call TTS (triangular translated

space), then obviously L is an invariant subset of I2
y≥x under the action of F .

x

y

a b

(a, b)

fig.1

Therefore, with the help of this translation, any set of pointervals in C(I) can
be uniquely considered as a set in the space I2

y≥x. If the translated set in I2
y≥x
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is connected, the original set of pointervals in C(I) is said to be connected.
The word ”connected” in the previous sentence can be replaced by ”convex”,
”dense” and etc. Since we are paying special attention to the connected sets of
pointervals in the last section, we prefer to call a connected set of pointervals by
the shorter term conterval. Similarly as for pointervals, we will call a conterval
consisting of one pointerval degenerate, while the adjective nondegenerate will
be used otherwise.

Finally, we would like to specify that since any pointerval is, in fact, a
single element, it does not make any sense to talk about the ”intersection” or
”disjointness” of two pointervals. Nevertheless, we sometimes do that. Hence,
when we say, for e.g, two pointervals Jc(1), Jc(2) are pairwise ”disjoint”, we
mean that J(1), J(2) as subsets of I are pairwise disjoint.

3 Map-connectedness

Let X be a compact topological space and T : X → X a continuous map. Also,
let Y ⊆ X be a nonempty strongly T -invariant (i.e. T (Y ) = Y closed subset of
X). Then, Y is called T -connected, if it contains no proper closed subset which
is mapped into its own interior; in other words, if U is any nonempty open (in
Y ) subset of Y , from T (U) ⊆ U implies that U = Y . Dowker and Friedlander
in [5], and Sharkovsky in [16] 1 showed that any ω-limit set of the dynamical
system (X,T ) is T -connected. Moreover, they proved there that if a subset
Y of the dynamical system (X,T ) has the property of T -connectedness, then
Y is the ω-limit set of some point of a dynamical system which ”includes”
(Y, T |Y ).

It is also known that, if T is the identity map, then T -connectedness reduces
to connectedness in the usual sense and in general, T -connectedness is to
some extent analogous to connectedness; this is illustrated by Theorem III in
[5], which extends Sierpinski’s well-known decomposition theorem [14] from
continua to T -connected sets.

Let us go back to Theorem (A), and once more have a quick look at it.
Assume that M ⊂ I is the set described there and T : I → I is any continuous
map. According to the Dowker-Friedlander-Sharkovsky theorem, M is not
an ω-limit set since it is not T -connected. Now, it is easy to see that an
”analogous” set M1 in the space C(I) ( i.e. M1 is a union of finite number of
nondegenerate contervals together with at most countable set of pointervals
with positive distance with at least one of the above mentioned contervals) is
never T -connected for any continuous map T : C(I)→ C(I).

1Sharkovsky used the term ”weakly incompressibility” instead of ”T -connectedness”.
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Since, in the current paper, we consider induced maps Tind : C(I) →
C(I), it is necessary to show that there are some other forms of compact
subsets of C(I) which are not Tind-connected, for instance a finite number of
nondegenerate pointervals and at most countable set of degenerate pointervals.
Apropos, we have the following property:

Lemma 1. Let (X,T ) and (Y, S) be dynamical systems, where T and S are
continuous and T is surjective. Also, let (Y, S) be a factor of (X,T ), i.e.
there is a continuous surjection π : X → Y such that π ◦ T = S ◦ π. Then,
T -connectedness of X implies S-connectedness of Y .

Proof. Assume that Y is not S-connected. From here, there should exist
a nonempty open subset B of Y with S(B) ⊆ B and B 6= Y . To finish
the proof we only need to show that the following properties (i) T

(
π−1(B)

)
⊆

π−1(B) and (ii) π−1(B) 6= X hold for the nonempty open set π−1(B). Firstly,
since π−1(B) ⊆ π−1(B), we have T

(
π−1(B)

)
⊆ T

(
π−1(B)

)
⊆ π−1

(
S(B)

)
⊆

π−1(B). Secondly, surjectivity of π together with B 6= Y imply that π−1(B) 6=
X.

In particular, it means that each dynamical extension of a T -connected set
from I to C(I) is Tind-connected.

In the following sections, taking into account that the system
(
I×C(I), F̃

)
includes (I2, F ) and therefore is more complicated, we will search for other
possible forms of sets

(
other than the set described in Theorem (A)

)
which

cannot be realized as an ω-limit set.

4 Sets including a finite number of nondegenerate point-
ervals

Let M ⊂ C(I) be a set containing a finite number (at least one) of non-
degenerate pointervals. Also, assume that a ∈ I is an arbitrary point. We
are interested to determine what forms the set M can have, so that the set
{a}×M could be realized as an ω-limit set for some nondegenerate pointerval
in I × C(I). The present section is devoted to exploring this question.

As a matter of fact, there are only a few possible forms that the set M
generally can have. For ease, we will consider these forms in the remainder of
the section one by one and will discuss them in turn. Firstly, let us begin with
the case where M in addition to a certain number of nondegenerate point-
ervals, also has some degenerate pointervals. Obviously, whatever form this
subset of degenerate pointervals has, the set M does not satisfy the property
of map-connectedness. The reason is that if M is map-connected, then, inas-
much as it contains a finite number of nondegenerate pointervals, there should
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be a degenerate pointerval whose image is a nondegenerate pointerval, which
is obviously impossible. Since this is independent from the map considered on
M , one can see that any attempt to realize the set {a} ×M as an ω-limit set
will end in failure. Therefore, M cannot include any degenerate pointerval.
There remains two possibilities: either M consists of pairwise ”disjoint” non-
degenerate pointervals or some of these nondegenerate pointervals ”intersect”
some others. If the former is the case, it is easy to see that the set {a} ×M
can definitely be realized as an ω-limit set; but if the latter one is true, then
{a} ×M can be an ω-limit set for some nondegenerate pointerval in I ×C(I)
iff each pointerval of M ”intersects” exactly one and only one other pointerval
of M and additionally for any two pointervals of M , non of them is a subset of
the other one. In fact, if M has any other form except from this one, one can
verify that the property of map-connectedness does not hold and hence, the
set {a} ×M is not an ω-limit set. So, we can sum up this section by stating
that, if a set M ⊂ C(I) contains at least one and at most a finite number of
nondegenerate pointervals, then {a}×M , where a is an arbitrary single point
of I, is an ω-limit set for some nondegenerate pointerval in I × C(I) iff M is
either

1. a set of pairwise ”disjoint” nondegenerate pointervals, or

2. a set of nondegenerate pointervals such that any pointerval has an ”inter-
section” with exactly one and only one other pointerval of M and for any
two pointervals Jc(i), Jc(j) ∈M we have Jc(i)\Jc(j) 6= ∅, Jc(j)\Jc(i) 6=
∅.

5 Sets with countably infinite number of pointervals

Suppose that M ⊂ C(I) is a countable set which contains an infinite number
of nondegenerate pointervals and a ∈ I is a single point. The question is then
whether there exists any nondegenerate pointerval (x, Jc) ∈ I×C(I) such that
ωF̃ (x, Jc) = {a} ×M , for some F̃ ∈ S∆

(
I × C(I)

)
. In principle, the above

described set M can have a vast variety of forms, nevertheless, in the present
work, we do not mean to provide a complete characterization for all of these
forms. We will just discuss some of the most important forms and will answer
the previously mentioned question for them. Before answering the question,
we will give the definition of a homoclinic set, which is essentially used in the
remainder of the paper (see [4]).

Let X be a compact topological space and Γ ⊆ X be a compact subset
of it. Also, let the finite set A = {a0, ..., ak−1} 6= ∅ be a set of points of
Γ and f : Γ → Γ be a continuous map such that A is a k-cycle of f with
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f(ai) = ai−1 for i > 0 and f(a0) = ak−1. Assume that there is a system
{Γin}∞n=0, i = 0, ..., k − 1, of nonempty pairwise disjoint compact subsets of Γ
such that Γ\ ∪i,n Γin = A and limn→∞ Γin = ai,∀i. If f(Γin) = Γi−1

n for i > 0
and any n, f(Γ0

n) = Γk−1
n−1 for n > 0, and f(Γ0

0) = ak−1, then Γ is called a
homoclinic set (of order k ) with respect to f .

Remark. If Γ is homoclinic of order k with respect to f , then for each i, the
set Γi = {ai} ∪∞n=0 Γin is homoclinic of order 1 with respect to g = fk; more
precisely, we have g(Γin) = Γin−1 for n > 0 and g(Γi0) = g(ai) = ai (see [4]).

Let D ⊂ C(I) be the closure of a nonempty set consisting of a countably
infinite number of nondegenerate pointervals. In addition, assume that D can
be written as D = ∪∞i=1Dc(i), where Dc(i)s are pairwise ”disjoint” finite sets
of pointervals (pointervals of each portion Dc(i) can ”intersect” each other in
whatever way). Obviously, the compact countable set D contains both de-
generate and nondegenerate pointervals, since any sequence of portions of D
converges to a degenerate pointerval. Furthermore, if A is any set of pointer-
vals, say A = {Jc(1), Jc(2), ...}, then we write ∪A = ∪∞i=1J(i). In this section
we want to show that D, mentioned above, is homoclinic with respect to some
continuous map G : D → D. One may ask why we assume disjointness for the
subsets of pointervals? In other words, is disjointness a necessary condition for
D in order to be a homoclinic set? Indeed the answer is positive, i.e. without
the assumption of disjointness the set D can not be a homoclinic set. Never-
theless, this is not a necessary assumption for D in order to be map-connected.
Later, in Examples 7 and 8 we will show this.

Before stating the following lemmas we need some notations. Let B be
a countable compact set. Define a transfinite sequence (Bα)α<Ω of subsets
of B as follows: B0 = B, Bγ = ∩α<γBα if γ is a limit ordinal, and Bγ is
the derivative (the set of limit points) of Bγ−1 otherwise. Clearly, for any
countable compact set such B there is an ordinal β < Ω such that Bβ is
nonempty and finite, and Bβ+1 = ∅. We denote such β by Ker(B).

Here we would like to mention that in the following, in Lemmas 2, 3 and
Theorem 4, we use some ideas from [4].

Lemma 2. Let D ⊂ C(I) be the compact set described above and Ker(D) = η
and Dη = dc, where dc ∈ C(I) is a degenerate pointerval (d ∈ I). Then, there
is a sequence (An)∞n=1 of pairwise disjoint compact subsets of D such that
D\ ∪n An = dc and limn→∞An = dc and moreover ∀n : η > Ker(An+1) ≥
Ker(An).

Proof. We assume that d ∈ (0, 1) and it is not an endpoint for any
nondegenerate pointerval of D (the proof is similar for these cases). Let(
I(n)

)∞
n=1

be a strictly decreasing sequence of compact intervals of I with
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end points in I\ ∪ D and such that ∩∞n=1I(n) = {d}. Take n1 such that

C
(
I\I(n1)

)
∩ D 6= ∅. Since limn→∞Ker

(
C
(
I\I(n)

)
∩ D

)
is η if η is

a limit ordinal, and is η − 1 otherwise, there exists n2 > n1 such that

η > Ker

(
C
(
I(n1)\I(n2)

)
∩ D

)
≥ Ker

(
C
(
I\I(n1)

)
∩ D

)
. By induction

we get an increasing sequence (nk)∞k=1 of positive integers such that for any

k > 0, η > Ker

(
D ∩ C

(
I(nk)\I(nk+1)

))
≥ Ker

(
D ∩ C

(
I(nk−1)\I(nk)

))
,

where I(n0) = I. Then, put Ak =

(
D ∩ C

(
I(nk−1)\I(nk)

))
. If for some k,

the set (Ak)Ker(Ak) has more than one element, replace Ak in the sequence by a

string A1
k, ..., A

m(k)
k , where Aik are portions of Ak such that Ker(Aik) = Ker(Ak)

and (Aik)Ker(Ak) = {aik} for each i.

In the remainder, for any two subsets A and B, by A � B we mean that
there is a continuous map of A onto B. If A and B are subsets of C(I), then
A � B means that there is a continuous induced map from A onto B.

Lemma 3. Let A,B ⊂ C(I) be nonempty compact sets consisting of a count-
able number of pairwise disjoint finite subsets of nondegenerate pointervals.
Also, let α = Ker(A) ≥ Ker(B) = β and Bβ = bc. Then, A � B.

Proof. We use transfinite induction. It is easy to check that this is true
for α = 0. Now, assume Ker(A) = α(0) > 0 and the statement holds for
any α < α(0). We are tending to show that it is also true for α(0). First,
consider the case Aα(0) = ac. Applying Lemma 2 to B we will get the sequence
(Bn)∞n=1 of corresponding compact subsets of B. For each n denote Ker(Bn) =
β(n). Then, apply Lemma 2 to A and let (Dn)∞n=1 be the corresponding
sequence of compact subsets of A. For each k, limn→∞Ker(Dn) ≥ β(k),
hence there is n(k) such that Ker(Dn(k)) ≥ β(k). Hence, for k = 1 there
is n(1) such that Ker(Dn(1)) ≥ β(1). If B1 has any degenerate pointerval,
so definitely D1 ∪ ... ∪ Dn(1) � B1. But if B1 does not have any degenerate
pointerval, while D1 ∪ ... ∪Dn(1) has at least one degenerate pointerval, then
certainly D1 ∪ ...∪Dn(1) � B. Similarly, we can find n(k) for any k such that
Ker(Dn(k)) ≥ β(k) and Dn(k−1)+1∪...∪Dn(k) � Bk or Dn(k−1)+1∪...∪Dn(k) �
B. Clearly, the obtained sequence

(
n(k)

)∞
k=1

is an increasing sequence. Now,
take Ak = Dn(k−1)+1 ∪ ... ∪ Dn(k). Then, α(0) > Ker(An) ≥ β(n) for each

n, and consequently by the hypothesis, An � Bn
(
note that by Lemma 2, for

any n, the set (Bn)β(n) has no more than one element
)

or otherwise An � B.
Let ϕn be the corresponding map. Define ϕ by ϕ(Jc) = ϕn(Jc) if Jc ∈ An,
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and ϕ(ac) = bc. Since A = ∪nAn ∪ {ac} and B = ∪nBn ∪ {bc}, ϕ is a map
from A onto B, and since limn→∞An = ac and limn→∞Bn = bc, the map
ϕ is continuous. Finally, if Aα(0) = {ac(0), ..., ac(k − 1)} with k > 1, divide

A into compact portions A0, ..., Ak−1 such that Aiα(0) = {ac(i)},∀i. Since

A ⊃ Ai � B, ∀i, we have A � B.

Theorem 4. Let M ⊂ C(I) be a nonempty compact set containing a countably
infinite number of pairwise ”disjoint” finite subsets of nondegenerate pointer-
vals. Then, M is homoclinic with respect to an induced continuous map F .

Proof. Let Ker(M) = α, and Mα = {ac(0), ..., ac(k − 1)}. Also, let
I0, ..., Ik−1 be pairwise disjoint compact intervals in I ”covering” M and such
that Ii is a neighborhood (in I) of a(i) for any i. Denote M i =

(
M ∩C(Ii)

)
.

Then, Ker(M i) = α and M i
α = ac(i). Apply Lemma 2 to every M i and let

(Di
n)∞n=1 be the corresponding sequence of compact subsets of M i,∀i. We

may assume that Di
n 6= ∅ for any i and n. To finish the proof it suffices

to define sets M i
n with properties needed for a homoclinic trajectory. First,

put M0
0 = D0

1; then, clearly M0
0 � ac(k − 1). Now we must find the set

M1
0 such that M1

0 � M0
0 . Since T (M i) = α,∀i and according to Lemma 2

there is n(1) ≥ 1 such that T (D1
n(1)) ≥ T (D0

1). Put M1
0 = ∪n(1)

n=1D
1
n. Obviously

M1
0 �M0

0 . Similarly, we can find n(2) ≥ n(1) for which M2
0 = ∪n(2)

n=1D
2
n �M1

0 .
In fact, by induction, for any set M i

n, we are always able to find the set M i+1
n

such that M i+1
n � M i

n. Thus, one can find an induced map F : M → M
for which F

(
ac(i)

)
= ac(i − 1), for i ≥ 1 and F

(
ac(0)

)
= ac(k − 1). Since

limn→∞M i
n = ac(i), for any i, the map F is continuous.

Let M ⊆ C(I) and ε > 0. The finite set {xc(1), ..., xc(n)} ⊂ M is called
an ε-net for M provided that for any xc ∈ M there is xc(i), i = 1, ..., n with
dist

(
xc, xc(i)

)
< ε.

Now, if F : M → M is continuous and ε > 0, then the finite sequence
xc(1), ..., xc(n) of pointervals of M is called ε-recurrent chain, or shortly, ε-

chain for F , if dist

(
F
(
xc(i)

)
, xc(i+ 1)

)
< ε(mod n), for any i = 1, ..., n.

It is needed to be mentioned that we are not going to prove the next
lemma here, since the proof is extremely analogous to the one for the ordinary
triangular map given in [12].

Lemma 5. (See Lemma 2 and its proof in [12]) Let M ⊂ C(I) be closed and
a ∈ I be a single point. Suppose that F : M →M is a continuous induced map
such that for any ε > 0, there exists an ε-chain for F , which is an ε-net for
M . Then, there exists F̃ ∈ S∆

(
I × C(I)

)
and a pointerval (x, Jc) ∈ I × C(I)

such that ωF̃ (x, Jc) = {a} ×M .
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It is obvious that if M ⊂ C(I) is homoclinic with respect to some induced
map F , then for any ε > 0 there is an ε-net for M , which is an ε-chain for F .
Hence, from here, Theorem 4 and Lemma 5 we have

Corollary 6. Let M be as in Theorem 4 and let a be a single point in I.
Then, there is a nondegenerate pointerval (x, Jc) ∈ I × C(I) and there is an
induced triangular map F̃ ∈ S∆

(
I × C(I)

)
for which ωF̃ (x, Jc) = {a} ×M .

As one can see, in most of the proofs of this section, we essentially used
the fact that the considered set could be divided into an infinite countable
number of disjoint subsets of nondegenerate pointervals. In actual fact, this
assumption guaranteed the existence of an infinite number of, roughly speak-
ing, ”holes” arbitrarily close to the accumulation point, and this turns to be
vitally necessary to construct the homoclinic trajectory. Example 7 illustrates
this necessity.

Example 7. Assume that M1 = {Jc(1), Jc(2), ...} ⊂ C(I) is a set of
nondegenerate pointervals such that J(n) ∩ J(n + 1) 6= ∅, ∀n ∈ N and
limn→∞ Jc(n) = pc, where pc is a degenerate pointerval in C(I). We will
show that M := M1 is not a map-connected set under the action of any con-
tinuous induced map from M into itself. By contradiction let us assume that
F : M → M is a continuous induced map such that M is F-connected. So,
there should certainly exists n for which F

(
Jc(n)

)
= pc. But this implies

that F
(
Jc(n)

)
= pc, for all n ∈ N. Hence the preimage of any nondegenerate

pointerval of M does not belong to M and this leads to contradiction.

The next example shows that while the absence of the holes results in the
absence of the homoclinic trajectory, however it is still possible for such a set
to be an ω-limit set for some pointerval.

Example 8. Let D = ∪∞m=1 ∪3m−1−1
k=0 [ 3k+1

3m , 3k+2
3m ] ⊂ I

(
pay attention that

for the ternary Cantor set C3 created from the segment [0, 1], we have that

C3 = [0, 1]\∪∞m=1∪3m−1−1
k=0 ( 3k+1

3m , 3k+2
3m )

)
. It is obvious that D could be written

as a countable union of an infinite number of pairwise disjoint nondegenerate
closed intervals, say [ai, bi] ⊂ I; i.e. D = ∪∞i=1[ai, bi] such that [ak, bk] ∩
[al, al] = ∅, k 6= l. Suppose that M = {[ai, bi]c}∞i=1 (the set M ′ is the Cantor
ternary set). We show that there exists an induced continuous surjection from
M onto itself, with respect to which M is map-connected. Let f : I → I be
the following surjection: f(x) = 3min {x, 1− x} for any x ∈ [0, 1

3 )∪ ( 2
3 , 1] and

f(x) = 1 for any x ∈ [ 1
3 ,

2
3 ]. The induced continuous map F : M → M of f

is the desired surjection. It is not difficult to see that for any nondegenerate
pointerval, say Jc(i) ∈M , and for any ε > 0 there exists Jc(j) ∈M such that
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dist
(
Jc(j), 1c

)
< ε and Jc(j) ∈ ∪∞n=0F−n

(
Jc(i)

)
. In addition, there certainly

exists an n ∈ N with fn
(
Jc(i)

)
= [1

3 ,
2
3 ]c. Assume that on each {x} ×M ,

where x ∈ I, acts the same map as F . Now, if a is an arbitrary point in I, it
is easy to find a nondegenerate pointerval in I × C(I), for which {a} ×M is
an ω-limit set.

6 Connected sets of pointervals

Until now we have limited ourselves to investigate, at first, finite and later
countable sets of pointervals. But, clearly these are not the only possible sets
of pointervals one can imagine. It seems that it is necessary to cover a wider
range of sets in our study in order to obtain a thorougher description of ω-
limit sets of triangular induced systems. To this end, we will survey some sets
including contervals (connected set of pointervals) and discuss when they can
form an ω-limit set for a pointerval in

(
I × C(I)

)
.

First, let us give the definition of an ε-route between two points, where ε
is a positive real number. Let X be a compact metric space and a and b two
points in it. The finite ordered sequence x1, x2, ..., xn is called an ε-route from
a to b provided that x1 = a, xn = b and d(xi, xi+1) < ε, ∀i = 1, 2, ..., n− 1.

Next, we will show that if A is a closed connected subset of the compact
metric space X, then for any two arbitrary points a and b in A and any ε > 0,
there exists an ε-route in A, which connects a, b. It is clear that the set A is
a compact subset of X. Hence, for any ε > 0, there is a finite ε-cover for A,
which implies that there necessarily exists an ε-route inside A connecting the
points a and b. In the following theorem we will see that this fact guarantees
that once we have a closed connected set on a fibre {a} × C(I), where a is a
single point in I, we are always able to realize this set as an ω-limit set without
approaching any point outside the desired closed connected set.

Theorem 9. Let C be a closed conterval in C(I) and let a ∈ I be a single
point. Then, there exists a map F̃ ∈ S∆

(
I × C(I)

)
and a pointerval (x, Jc) ∈

I × C(I) such that ωF̃ (x, Jc) = {a} × C.

Proof. It is well known that any compact metric space has a countable dense
subset. So, Let D =

(
Jc(i)

)∞
i=0

be a dense sequence in C. For any εi >

0, i ≥ 1 there exists a circular εi-route Ri =
(
Eic(l)

)ni

l=0
, ni ∈ N in C1 such

that Ri ⊇ {Jc(0), ..., Jc(i)} and Eic(0) = Eic(ni) = Jc(0). Take the sequence

S =

((
Eic(l)

)ni

l=0

)∞
i=1

. For ease, we rename the elements of this sequence as

follows: S =
(
Ec(k)

)∞
k=0

. Now, assume that (ak)∞k=0 is a sequence in I such
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that ak → a, k →∞. Let K = {
(
ak, Ec(k)

)
}∞k=0 ∪ ({a} × C) and G̃ : K → K

be the following map: G̃|{a}×C = id, and G̃
(
ak, Ec(k)

)
=

(
ak+1, Ec(k + 1)

)
,

for anyk = 0, 1, ... . The set K is obviously compact and G̃ is continuous.
Therefore, using the Extension Lemma, one can continuously extend G̃ to a
map F̃ ∈ S∆

(
I × C(I)

)
, for which obviously the equality ωF̃

(
a0, Ec(0)

)
=

{a} × C holds.

In Theorem 9, the set{a} ×C was realized as an ω-limit set with the help
of the identity map. In spite of the fact that it does not seem very obvious,
but surprisingly, one can show that in some particular cases the set {a}×C(I)
can be realized as an ω-limit set for a pointerval in I × C(I) only if the map
defined on {a} × C or its second iterate is the identity map on {a} × C.

In order to find necessary and sufficient conditions under which a set con-
sisting of a finite number of closed nondegenerate contervals could be realized
as an ω-limit set, it is easier to begin with the case where the considered set,
say M , consists of only two closed nondegenerate contervals C1 and C2. For
ease, we assume that (∪C1)∩ (∪C2) = ∅. The first more or less obvious thing
we show here (via the following examples) is that not any two closed nonde-
generate pointervals can form an ω-limit set. In fact, several factors together
play a significant role to make such a set able to be an ω-limit set. Roughly
speaking, there must be a kind of ”similarity” between the ways the pointer-
vals of each conterval C1 and C2 are arranged together. This loosely expressed
statement could be better understood through the next simple examples.

We remind that M = C1 ∪ C2, where C1 and C2 are closed contervals in
C(I). Assume that C1 has a degenerate pointerval in it (i.e. it intersects the
diagonal L in the TTS), whereas C2 does not. Clearly, M is not map-connected
since the diagonal is invariant in I2

y≥x. Therefore, if M is map-connected
and one of the contervals intersects the diagonal, then the second one has to
intersect it as well; however, obviously, this is not a sufficient condition.

As the second example, let both C1 and C2 have no intersection with L.
Again, this is not sufficient for M to be realized as an ω-limit set. For instance,
suppose that C1 and C2 are as in fig.2. Taking any two distinct pointervals in
C1, one of them necessarily includes the other one. On the other hand, for any
two arbitrary pointervals in C2, say Jc(1), Jc(2), we have Jc(1) * J(2) and
Jc(1) + J(2), which means that there does not exist any continuous induced
map from C1 onto C2. So, the set M obviously cannot be a map-connected
set.
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x

y

C1

C2

fig.2

In fact, the set M mentioned in the second example cannot be realized as
an ω-limit set since C1 and C2 are, roughly speaking, of different structures.
That is, the pointervals located inside each of C1 and C2 have essentially
”dissimilar positions” with respect to each other. But the question is then
what do we mean exactly by ”dissimilar positions”? To clarify this, we have
to dig up the terminology in a more mathematical language.

Let Ai, i = 1, ..., n be some sets in C(I) such that (∪Ai1) ∩ (∪Ai2) =
∅, ∀i1 6= i2. We say A1, A2, ...and An are of the same arrangement provided
that there exist n continuous induced surjections Θi : Ai → Ai+1(mod n)
generated by continuous surjections θi : ∪Ai → ∪Ai+1(mod n) such that
Θn...Θ1 = id or (Θn...Θ1)2 = id. Obviously, if Eic(1), Eic(2) ∈ Ai with Ei(1)∩
Ei(2) 6= ∅, then θi

(
Ei(1)

)
∩ θi

(
Ei(2)

)
6= ∅.

Clearly, if any set M ∈ C(I), consisting of a finite number of closed non-
degenerate contervals Ai, i = 1, ..., n such that (∪Ai1)∩ (∪Ai2) = ∅, ∀i1 6= i2,
is map-connected with respect to some continuous induced map, then all the
contervals of M have the same arrangement. Moreover, the next theorem,
which is a corollary of 9, shows that having the same arrangement is suffi-
cient for the contervals of the set M to be realized as an ω-limit set for some
pointerval in I × C(I).

Theorem 10. Let M ⊆ C(I) be a set consisting of closed contervals
C1, ..., Cn, n ∈ N such that (∪Ci) ∩ (∪Cj) = ∅,∀i, j = 1, ..., n and i 6= j.
Also, let Ci, i = 1, ..., n be of the same arrangement. If a ∈ I is an arbitrary
point, then, there exist F̃ ∈ S∆

(
I × C(I)

)
and (x, Jc) ∈ I × C(I) such that

ωF̃ (x, Jc) = {a} ×M .
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