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Abstract

This note shows that if a subset S of R is such that some continuous
function f : R → R has the property “f [S] contains a perfect set,” then
some C∞ function g : R → R has the same property. Moreover, if f [S]
is nowhere dense, then the g can have the stronger property “g[S] is
perfect.” The last result is used to show that it is consistent with ZFC
(the usual axioms of set theory) that for each subset S of R of cardinality
c (the cardinality of the continuum) there exists a C∞ function g : R → R
such that g[S] contains a perfect set.

1 The results

Recall that a proposition

(A) for every subset S of R of cardinality c there exists a continuous function
g : R→ R such that g[S] = [0, 1]

is independent of the usual ZFC axioms of set theory. More precisely, (A)
holds in the iterated perfect set model, as proved by A. Miller [7]. In fact, (A)
follows easily from the Covering Property Axiom CPAcube, which holds in this
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model, see [2, sec. 1.1]. (A) holds also in two other models of ZFC described
in [4] and in [3].

The property (A) is false in any model of ZFC in which there exists either
Lusin’s or Sierpinski’s set [7, 2]. In particular, the continuum hypothesis CH
implies that (A) is false.

It is easy to see that (A) is equivalent to a seemingly weaker proposition

(B) for every subset S of R of cardinality c there exists a continuous function
G : R→ R such that G[S] contains a perfect set P .

Indeed, if G satisfies (B) and h : R→ [0, 1] is a continuous function such that
h[P ] = [0, 1], then g = h ◦G satisfies (A).

Can (A) hold if g is required to have the stronger condition of being
differentiable? The answer is clearly negative. In fact, the requirement of
g[S] = [0, 1] in (A) fails for any Lebesgue measure zero set S and every dif-
ferentiable function g, since every differentiable function g : R → R satisfies
Lusin’s condition (N), that is, g maps Lebesgue measure zero sets onto sets
of measure zero. (See e.g., [5, p. 355].) This argument does not work any
more for the requirement in (B) that g[S] contain a perfect set. In fact, the
next theorem shows that in the statement of (B) the function g can also be
required to be a C∞ function, that is, infinitely many times differentiable.

Theorem 1. The following conditions are equivalent.

(A) For every subset S of R of cardinality c there exists a continuous function
g : R→ R such that g[S] = [0, 1].

(B) For every subset S of R of cardinality c there exists a continuous function
g : R→ R such that g[S] contains a perfect set.

(C) For every subset S of R of cardinality c there exists a C∞ function g : R→
R such that g[S] contains a perfect set.

The main notion behind our proof of the theorem is that of outer-home-
omorphisms: for a continuous function f from a closed subset K of R into
R we say that f is outer-homeomorphic to g : K → R provided there exists
a homeomorphism h : R → R such that g = h ◦ f . Obviously, if ḡ and g
are outer-homeomorphic and g[S] is as in (A) or in (B), then so is ḡ[S]. In
this sense, (A) and (B) are invariant under outer-homeomorphisms. However,
differentiability of a function is not invariant under outer-homeomorphisms.
(See e.g. [1].) Nonetheless we have the following result, which is of interest by
itself.
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Proposition 2. For every continuous function f from a closed subset K of
R into a nowhere dense compact perfect set P ⊂ R there exists a C∞ function
g : R→ R such that g � K is outer-homeomorphic to f .

Proposition 2 is proved in the next section. Here we will use it to prove
Theorem 1.

Proof of Theorem 1. We already noticed that (A) is equivalent to (B). It
is also obvious, that (C) implies (B). Thus, to finish the proof, it is enough to
prove that (B) implies (C).

So, fix a subset S of R of cardinality c. By (B), there exists a continuous
function f : R → R such that f [S] contains a perfect set. Let P ⊂ f [S] be
nowhere dense, compact, perfect and let K = f−1(P ). Apply Proposition 2 to
f � K to find a homeomorphism h : R→ R and a C∞ function g : R→ R such
that h◦f � K = g � K. Then g[S] ⊃ g[S∩K] = (h◦f)[S∩K] = h[f [S∩K]] =
h[P ]. As h is a homeomorphism, h[P ] is a compact perfect subset of R.

It is also worth noticing that the following strengthened versions of (A) are
false.

Proposition 3. The following properties are false.

(A′) For every subset S of R of cardinality c there exists a differentiable
function g : R→ R such that g[S] is a perfect set.

(C ′) For every subset S of R of cardinality c there exists a real analytic
function g : R→ R such that g[S] contains a perfect set.

Proof. Property (A′) fails for any dense set S ⊂ R of measure zero. Indeed,
by way of contradiction, assume that there exists a differentiable function
g : R → R for which g[S] is perfect. Then g is continuous and g[S] is closed.
In particular, g[S] ⊂ g[cl(S)] ⊂ cl(g[S]) = g[S]. Therefore, g[R] = g[S] is a
closed connected set of measure zero. So, g[S] is not perfect.

A set S for which (C ′) fails can be constructed by transfinite induction.
Indeed, let {〈fξ, Pξ〉 : ξ < c} be an enumeration all pairs 〈f, P 〉, where f is
a non-constant real analytic function and P is a perfect subset of R. By
induction choose a sequence 〈〈sξ, yξ〉 : ξ < c〉 such that, for every ξ < c,

(i) yξ ∈ Pξ \ fξ[{sζ : ζ < ξ}],

(ii) sξ ∈ R \
(
{sζ : ζ < ξ} ∪

⋃
ζ≤ξ f

−1
ζ (Yξ)

)
, where Yξ = {yζ : ζ ≤ ξ}.

The choice in (ii) can be made since every set f−1(y) is at most countable for
non-constant real analytic functions f .
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Then the set S = {sξ : ξ < c} is as required. Indeed, if f : R → R is
non-constant real analytic and P is a perfect subset of R, then P 6⊂ f [S],
since there exists a ξ < c such that 〈fξ, Pξ〉 = 〈f, P 〉 and, by construction,
yξ ∈ Pξ \ fξ[S].

Proposition 2 implies also the following result.

Corollary 4. Let S ⊂ R. If there exists a continuous function f : R→ R such
that f [S] contains a perfect set, then there is a C∞ function g : R → R with
the same property. Moreover, if S is nowhere dense, then g can be chosen so
that g[S] itself is perfect.

Proof. Let P ⊂ f [S] be nowhere dense, compact, and perfect. Let us first
show that

(•) f [S] = P for some continuous f whenever S is additionally nowhere
dense in R.

Indeed, assume that K = cl(S) is nowhere dense and let K0 = cl(S∩f−1(P )).
Then K0 ⊂ K and f � K0 : K0 → P maps S ∩ K0 onto P . By a version of
Tietze extension theorem for zero-dimensional spaces, there exists a continuous
extension F0 : K → P of f � K0.1 Let F : R → R be a continuous extension
of F0, which exists by the Tietze extension theorem. Then, F [S] = P , since
P = f [S ∩K0] ⊂ F [S] ⊂ F [K] ⊂ P . Thus, replacing f with F , if necessary,
we can assume that (•) holds.

Returning to the proof of the corollary, we apply Proposition 2 to the
function f � f−1(P ) to find a homeomorphism h and a C∞ function g such that
g � f−1(P ) = h◦f � f−1(P ). Then h[P ] = h[f [S∩f−1(P )]] = g[S∩f−1(P )] ⊂
g[S], so g[S] contains the perfect set h[P ]. Moreover, if S is nowhere dense,
then, by (•), there is an f such that S ∩ f−1(P ) = S and thereby, for this f ,
g[S] = h[P ].

The fact that property (A′) is false shows that in Corollary 4 the addi-
tional property that g[S] is a perfect set cannot be ensured in absence of an
additional assumption on S. Nevertheless, if we allow replacement of S with
its topological copies T ⊂ R, then we can always find a T and a C∞ function g
with g[T ] being perfect, as proved below. Here we require that the topological
spaces S and T be homeomorphic, not necessarily through homeomorphisms
of R.

1Explicitly, if (a, b) is a bounded component of R\K0, then F can be defined on K∩ [a, b]
by choosing a component (a′, b′) of (a, b)\K and defining F on [a, a′]∩K to be F0(a) and on
[b′, b]∩K to be F0(b). For an unbounded component (a, b) of R \K0, define F on (a, b)∩K
to be the appropriate F0(a) or F0(b).
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Fact 5. Let S ⊂ R. If there exists a continuous function f : R→ R such that
f [S] contains a perfect set, then there exists a topological copy T ⊂ R of S
and a C∞ function g : R→ R such that g[T ] is a perfect set.

Proof. As we are considering topological copies, we may assume S ⊂ (0, 1).
If S contains an open interval, then clearly there is a C∞ function g : R → R
such that g[S] = [0, 1]. So, assume that [0, 1] \ S contains a countable dense
subset D1. We assume also that 0 and 1 are in D1. Let D2 to be the set
of dyadic numbers in [0, 1], that is, rational numbers the form k

2n . By a well
known theorem, there is an order-preserving bijection ϕ : [0, 1] → [0, 1] such
that ϕ[D2] = D1.

Let ϕ0 : [0, 1] → [0, 1] be the classical Cantor function (i.e., nondecreasing
continuous function that maps the Cantor ternary set C onto [0, 1]) and denote
the end-point set of C by E. Observe that ϕ0 � (C \E) is an order-preserving
bijection of C \ E onto [0, 1] \ D2. So T = (ϕ ◦ ϕ0 � (C \ E))−1(S) is a
topological copy of S, and T is nowhere dense in R. Let f0 = f ◦ ϕ ◦ ϕ0.
Clearly f0[T ] = f [S] and f0 is continuous. Let f1 be a continuous extension
of f0 and apply Corollary 4 to complete the proof.

Is the conclusion of Corollary 4 true if we only assume the existence of a
continuous function f : S → R such that f [S] contains a perfect set? Certainly,
the answer is positive in any model of ZFC in which the property (A) holds.
However, in general, this is false for some models of ZFC, as shown by the
following result.

Proposition 6. Under the Continuum Hypothesis there exists a set S ⊂ R
for which there is a continuous function from S onto a perfect set, but such
that g[S] contains a perfect set for no continuous function g : R→ R.

Proof. Recall that a set S ⊂ R is concentrated on Q (the set of rational num-
bers) provided S ∩K is countable for every closed set K ⊂ R \Q. Rothberger
constructed, under the Continuum Hypothesis, a set S ⊂ R concentrated on
Q which can be mapped onto a perfect set by a continuous function from R\Q
into R. (See e.g. [8].)

However, if g : R→ R is continuous, then g[S] cannot contain a perfect set.
Indeed, by way of contradiction assume that g[S] contains a perfect set P0.
Let P be a family of cardinality c of pairwise disjoint perfect subsets of P0.
Then, there is a P ∈ P such that K = f−1(P ) is disjoint with Q. Therefore,
K∩S is countable and so is f [K∩S]. As P ⊂ P0 ⊂ f [S] implies f [K∩S] = P ,
we have the contradiction that some perfect set is countable.
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2 Proof of Proposition 2

We say that g : K → R is locally Lipschitz provided for every x ∈ K there is
an open set U 3 x in R and a constant L such that |g(a) − g(b)| ≤ L|a − b|
for all a, b ∈ K ∩ U . Proposition 2 is proved in two steps. First, in Lemma 7,
we show that every function f as in the assumption of Proposition 2 is outer-
homeomorphic to a locally Lipschitz function. Then, we show that Proposi-
tion 2 holds if we additionally assume that f locally Lipschitz function.

Lemma 7. Every continuous function f from a closed subset K of R into
a nowhere dense compact subset P of R is outer-homeomorphic to a locally
Lipschitz function g : K → R.

Proof. Let h0 : R → R be a homeomorphism such that h0[P ] is a subset of
the classical ternary Cantor set C. Replacing f with h0 ◦ f , if necessary, we
may assume that P = C, that is, that f : K → C.

The proof is a straightforward inductive construction. As usual, 2n denotes
the set of all maps from {0, . . . , n− 1} into {0, 1} and 2<ω =

⋃
n<ω 2n.

We say that a family J = {Js : s ∈ 2<ω} of closed intervals in [0, 1] is
an interval tree provided for every s ∈ 2n the intervals Jsˆ0 and Jsˆ1 are
disjoint subsets of Js and Jsˆ0 < Jsˆ1. Recall that for every interval tree
J = {Js : s ∈ 2<ω} the set RJ =

⋂
n<ω

⋃
s∈2n Js is perfect and nowhere

dense. Also, if I = {Is : s ∈ 2<ω} is an interval tree such that I∅ = [0, 1] and,
for every s ∈ 2n, Is \ (Isˆ0 ∪ Isˆ1) is the middle third subinterval of Is, then
RI is the classical ternary Cantor set C.

For every n < ω choose a δn ∈ (0, 1) such that |f(x)−f(y)| < 3−n for every
x, y ∈ [−n, n] ∩K with |x − y| < δn. Such a δn exists, since f � [−n, n] ∩K
is uniformly continuous. We will also assume that δn ↘ 0. Construct, by
induction on n < ω, the families Jn = {Js : s ∈ 2n} such that J = {Js : s ∈
2<ω} is an interval tree. In the inductive construction we will require that the
length of each interval in Jn is less than δn+1. Let h1 be a strictly increasing
function from P = C onto RJ that maps each set C ∩ Is into Js and let
h : R→ R be an increasing homeomorphism extending h1. This is our desired
homeomorphism.

Let g = h ◦ f . To see that h is locally Lipschitz it is enough to prove that
for every k < ω

(i) |g(x)− g(y)| < |x− y| for all x, y ∈ K ∩ [−k, k] with 0 < |x− y| < δk.

To see (i), fix x, y ∈ K ∩ [−k, k] with 0 < |x− y| < δk. Then, there exists
an n ≥ k such that |x − y| ∈ [δn+1, δn). So, |f(x) − f(y)| < 3−n, that is,
f(x) and f(y) must belong to the same Is for some s ∈ 2n. Then, by the
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construction of h, both g(x) = h(f(x)) and g(y) = h(f(y)) belong to Js, so
|g(x)− g(y)| < δn+1 ≤ |x− y|, finishing the proof.

Lemma 8. Let U ⊂ R be open, x ∈ U , and let ϕ̄, ḡ, and b̄ be functions from
R to R such that: ḡ is Lipschitz on U , b̄ is bounded on U , and ϕ̄′(ḡ(x)) = 0.
If either b̄ is a constant function or ϕ̄(ḡ(x)) = 0, then the function G(x̄) =
b̄(x̄) · ϕ̄(ḡ(x̄)) is differentiable at x and G′(x) = 0.

Proof. Let ε > 0. We need to find a δ > 0 such that∣∣∣G(y)−G(x)
y−x

∣∣∣ < ε whenever 0 < |x− y| < δ. (1)

This is certainly true when ḡ(y) = ḡ(x), since then, under each assumption,
we have G(y) = G(x). So, assume that ḡ(y) 6= ḡ(x). Then∣∣∣G(y)−G(x)

y−x

∣∣∣ = |b̄(y)|
∣∣∣ ϕ̄(ḡ(y))−ϕ̄(ḡ(x))

ḡ(y)−ḡ(x)

∣∣∣ ∣∣∣ ḡ(y)−ḡ(x)
y−x

∣∣∣ .
In particular, if L > 0 a Lipschitz constant for ḡ on U and M > 0 is a bound
for |b̄| on U , then for every y ∈ U with ḡ(y) 6= ḡ(x)∣∣∣G(y)−G(x)

y−x

∣∣∣ ≤ML
∣∣∣ ϕ̄(ḡ(y))−ϕ̄(ḡ(x))

ḡ(y)−ḡ(x)

∣∣∣ . (2)

Since ϕ̄′(ḡ(x)) = 0, we can find a δ > 0 such that (x − δ, x + δ) ⊂ U and∣∣∣ ϕ̄(z)−ϕ̄(ḡ(x))
z−ḡ(x)

∣∣∣ < ε
ML provided 0 < |z− ḡ(x)| ≤ δL. Then, for every y for which

ḡ(y) 6= ḡ(x) and |y − x| < δ we have 0 < |ḡ(y) − ḡ(x)| ≤ L|y − x| ≤ δL, so∣∣∣ ϕ̄(ḡ(y))−ϕ̄(ḡ(x))
ḡ(y)−ḡ(x)

∣∣∣ < ε
ML . Therefore, (1) follows from (2).

Proof of Proposition 2. Let f : K → P be as in the assumptions. By
Lemma 7, there is a homeomorphism h0 : R → R such that g0 = h0 ◦ f is
locally Lipschitz. Let ḡ : R→ R be the natural continuous linear extension of
g0, that is, such that ḡ is linear on each component interval of R\K, constant
on the unbounded components. It is easy to see that ḡ is still locally Lipschitz.
(However, for the endpoints of component intervals of R\K the local Lipschitz
constant may change.)

Let T = h0[P ]. Then T is compact, perfect, nowhere dense and ḡ[K] ⊂ T .
Let ϕ0 : R → R be a C∞ function such that ϕ0(x) = 0 for all x ∈ T and
ϕ0(x) > 0 for all x ∈ R \ T . Then ϕ : R→ R defined as ϕ(x) =

∫ x
0
ϕ0(t)dt is a

strictly increasing C∞ function such that ϕ(k)(x) = 0 for all k = 1, 2, 3, . . . and
x ∈ T . In fact, it is a homeomorphism between R and ϕ[R] and it is easy to
ensure also that ϕ[R] = R. Let g = ϕ ◦ ḡ. We will show that g is the required
function.
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Notice that h = ϕ ◦ h0 is a homeomorphism and the restriction condition
holds, as h ◦ f = ϕ ◦ h0 ◦ f = ϕ ◦ g0 = ϕ ◦ ḡ � K = g � K. To finish the proof,
it is enough to show that g is infinitely many times differentiable.

For k ≥ 1 let bk : R → R be defined as bk(x) =
(
ḡ(a)−ḡ(b)
a−b

)k
for every x

in a bounded component (a, b) of R \K, and bk(x) = 0 for all other points x.
Notice that each bk is locally bounded, since ḡ is locally Lipschitz. Define also
b0 as a constant 1 function. We will show, by induction on k < ω, that

(Ik) the kth derivative of g exists and is equal g(k)(x) = bk(x)ϕ(k)(ḡ(x)).

Clearly it is true for k = 0. So, assume (Ik) for some k < ω. We need to prove
that g(k+1)(x) = bk+1(x)ϕ(k+1)(ḡ(x)) for every x ∈ R.

For x ∈ K this follows immediately from Lemma 8 applied to ϕ̄ = ϕ(k),
ḡ, and b̄ = bk, since then g(k+1)(x) = G′(x) = 0 = bk+1(x)ϕ(k+1)(ḡ(x)). For
x from a bounded component (a, b) of R \ K the result holds, since on such

interval g(k)(x) =
(
ḡ(a)−ḡ(b)
a−b

)k
ϕ(k)(ḡ(x)) and ḡ is a linear function with the

slope ḡ(a)−ḡ(b)
a−b . Finally, the formula holds for an unbounded component of

R\K (if it exists), since on such interval ḡ is constant and bk+1 is equal 0.

Remark 9. For the compact set K = [0, 1], connections between outer-
homeomorphisms and differentiation of real valued functions are discussed
in A. M. Bruckner’s book [1]. Of course, closed subsets of R need not be
bounded. Consequently, the need for the proof of Lemma 7 for unbounded
closed sets K presented itself. Also, for [0, 1], there is the corresponding no-
tion of inner-homeomorphism. Connections between inner-homeomorphisms
and differentiation are discussed in the books by Bruckner [1] and by C. Goff-
man, T. Nishiura and D. Waterman [6].
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