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SOME PROPERTIES OF (Φ)-UNIFORMLY
SYMMETRICALLY POROUS SETS

Abstract

We prove that each perfect linear set contains a perfect set which
is (Φ)-uniformly symmetrically porous (Theorem 1). In the hyper-
space of all nonempty compact sets in [0, 1] (endowed with the Haus-
dorff distance), the (Φ)-uniformly symmetrically porous nonempty com-
pact sets form a Gδ residual subspace (Theorem 2). We infer that the
(Φ)-uniformly symmetrically porous perfect sets form a Gδ residual set
in the space of all perfect sets in [0, 1] (Theorem 3).

Each continuous increasing function Φ from [0, 1] into [0, 1] and fulfilling
Φ(0) = 0 is called a porosity index. The set of all porosity indices will be
denoted by G. The notion of (Φ)-uniformly symmetric porosity, introduced
in [H], constitutes (for the respective Φ ∈ G) a sharper version of bilaterally
strong porosity and strong symmetric porosity (cf. [H, Th. 3]). Our Theo-
rems 1 and 2 describe the behaviour of (Φ)-uniformly symmetrically porous
sets in connection with the families of perfect sets and compact sets. That
generalizes results known earlier for other kinds of porosity. Theorems 1 and 2
are used in the proof of Theorem 3 which states that a typical perfect set in
[0, 1] is (Φ)-uniformly symmetrically porous.

From now on, fix an arbitrary Φ ∈ G. Let n ∈ N. Following [H], we denote
by R(Φ, n) the set of all E ⊆ R for which there are numbers an, bn such that
for all x ∈ E we have:
(i) 0 < an < bn < 1/n,
(ii) Φ(bn − an) > an,
(iii) [x− bn, x− an] ∩ E = [x+ an, x+ bn] ∩ E = ∅.
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Let R(Φ) =
⋂∞
n=1R(Φ, n). Each set E ∈ R(Φ) is called (Φ)-uniformly sym-

metrically porous.

The definitions of other kinds of porosity can be found in [Z]. For instance,
if E ⊆ R, x ∈ R and r > 0 are fixed, denote by l(E, x, r) the length of the
longest interval (a, b) such that 0 < a < b < r and

(x− b, x− a) ∩ E = (x+ a, x+ b) ∩ E = ∅ .

Then E is called strongly symmetrically porous if

lim sup
r→0+

l(E, x, r)/r = 1

for each x ∈ E. Observe that, if Φ(x) = x2, then, by (i), (ii), we get

an/(bn − an) < bn − an < bn < 1/n .

Hence limn→∞ an/(bn − an) = 0 or, equivalently limn→∞(bn − an)/bn = 1.
This, by (iii), means that (Φ)-uniform symmetric porosity implies strong sym-
metric porosity.

Theorem 1 Every linear perfect set contains a perfect (Φ)-uniformly sym-
metrically porous set.

Proof. Fix any two decreasing sequences {xj}∞j=1 and {zj}∞j=1 of real num-
bers tending to zero. As Φ ∈ G, the sequence {Φ(zj)}∞j=1 is decreasing and
it tends to zero. Choose a subsequence {xnj}∞j=1 such that xnj < Φ(zj) for
every j. Put yj = xnj + zj for j ∈ N. Next pick a subsequence {ymj}∞j=1 such
that ymj

< 1/j for every j. Define aj = xnmj
and bj = ymj

for j ∈ N. Then

for each j ∈ N we have 0 < aj < bj < 1/j and Φ(bj − aj) > aj .

Now, let us turn to the main part of the proof. We may start with a
perfect set P ⊆ R which is bounded. We will define by induction a family
{Ps : s ∈ 2<ω} of perfect subsets of P where 2<ω stands for the set of all
finite sequences of zeros and ones. If s ∈ 2<ω, we will denote minPs = αs,
maxPs = βs and hn = min{βs − αs : s ∈ 2<ω, lh s = n} for n ∈ N ∪ {0}
where lh s is the length of s. Let P〈 〉 = P and fix n ≥ 0. Assume that perfect
sets Ps ⊆ P are defined for all s ∈ 2<ω with lh s < n. We shall define the
sets Ps_0 and Ps_1 for lh s = n (where s _ i is the respective extension of
the sequence s). Let kn be the least positive integer satisfying bkn + 2akn <
hn. Choose cs (respectively, ds) being a left-hand (respectively, right-hand)
condensation point of Ps∩(αs, αs+akn) (respectively, Ps∩(βs−akn , βs)). Put
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Ps_0 = Ps ∩ [αs, cs] and Ps_1 = Ps ∩ [ds, βs] for all s with lh s = n. Observe
that for t = s _ i and i ∈ {0, 1}, we have

βt − αt < akn (1)

and

αs_1 − βs_0 ≥ βs − αs − 2akn ≥ hn − 2akn > bkn + 2akn − 2akn = bkn . (2)

Having all sets Ps, s ∈ 2<ω, we define

Q =

∞⋂
n=1

Qn

where Qn =
⋃
{Ps : s ∈ 2<ω, lh s = n}. Then Q is a perfect subset of P .

Now we will show that the sequences {akn}∞n=1 and {bkn}∞n=1 witness that
Q ∈ R(Φ). For each n ∈ N, conditions (i) and (ii) are clear, by the choice
of the numbers ak and bk. It suffices to prove (iii). Fix n ∈ N and x ∈ Q.
Condition (iii) will be true, if
(iii’) [x− bkn , x− akn ] ∩Qn+1 = [x+ akn , x+ bkn ] ∩Qn+1 = ∅.
Since x ∈ Q, therefore x ∈ Qn+1 and thus x ∈ Pt for some t ∈ 2<ω, lh t = n+1.
Now, (iii’) can be derived from the following inequalities (compare (1) and (2)):

x− akn ≤ βt − akn < αt,

x+ akn ≥ αt + akn > βt,

(it means that the intervals [x − bkn , x − akn ] and [x + akn , x + bkn ] do not
meet Pt),

(bkn − akn) + αt − (x− akn) ≤ bkn − akn + akn = bkn ,

(bkn − akn) + x+ akn − βt ≤ bkn − akn + akn = bkn ,

(it means that the intervals [x − bkn , x − akn ] and [x + akn , x + bkn ] do not
meet the set Ps ⊆ Qn+1 closest to Pt). �

Note that the results analogous to Theorem 1 for strong symmetric porosity
in R and for strong porosity in a Polish space were proved in [B, Th. 1.4, 1.6].

Let K denote the space of all nonempty compact sets in [0, 1] endowed with
the Hausdorff metric ρ given by

ρ(H,F ) = max
{

sup
x∈H

d(x, F ), sup
y∈F

d(y,H)
}

where d is the usual metric on [0, 1]. It is known that K forms a Polish
space [K].
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Theorem 2 The (Φ)-uniformly symmetrically porous nonempty compact sets
in [0, 1] form a Gδ dense subset of K, and therefore it is a residual set in K.

Proof. Since the nonempty finite sets form a dense set (in K) which is a
subset of R(Φ), it suffices to show that R(Φ, n) ∩ K is open for each n ∈ N.
So, let n ∈ N and let F ∈ R(Φ, n)∩K. Assume that numbers an and bn fulfill
(i),(ii) and (iii). Put

U =
⋃
x∈F

((x− bn, x− an) ∪ (x+ an, x+ bn)).

Then U is open and bounded. We can express U as
⋃
j(cj , dj) where the

intervals (cj , dj) are pairwise disjoint. Since dj − cj ≥ bn − an for every j,
therefore U =

⋃p
j=1(cj , dj) for some p ∈ N. Observe that cj /∈ F and dj /∈ F

for j = 1, . . . , p. For instance, we will show that cj /∈ F . If cj = x − bn or
cj = x + an for some x ∈ F , condition cj /∈ F is clear by (iii). In the other
case, there is a sequence {xm}∞m=1 ⊆ F such that

cj = lim
m→∞

(xm − bn) or cj = lim
m→∞

(xm + an).

By the compactness of F , choose a subsequence xim tending to x ∈ F . Thus
cj = x− bn or cj = x+ an which again by (iii), yields that cj 6∈ F . Define

ε = (1/2) min{d(cj , F ), d(dj , F ) : j = 1, . . . , p}.

Then the ball B = {H ∈ K : ρ(H,F ) < ε} is contained in R(Φ, n)∩K. Indeed,
if H ∈ B then H ⊆ D where D =

⋃
x∈F (x − ε, x + ε). Consider any y ∈ H.

Then y ∈ (x− ε, x+ ε) for some x ∈ F . Observe that

[y−bn, y−an]∪ [y+an, y+bn] ⊆ [x−ε−bn, x+ε−an]∪ [x−ε+an, x+ε+bn]

⊆
p⋃
j=1

[cj − ε, dj + ε].

But
⋃p
j=1[cj − ε, dj + ε] ∩D = ∅, by the choice of ε. Since H ⊆ D, we have

[y − bn, y − an] ∩H = [y + an, y + bn] ∩H = ∅

which implies that H ∈ R(Φ, n) ∩K. �
Note that the result analogous to Theorem 2 for strongly porous sets was

obtained in [L]. The version for strongly shell porous sets in a complete space
X was shown in [V, Th. 2.1]. If X = R, strong shell porosity coincides with
strong symmetric porosity.
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It is known that the family Perf of all perfect subsets of [0, 1] is a Gδ
subset of K [K, §42, III, Th. 3]. Hence Perf is a Polish space, by the Alexandrov
theorem [K, §33, VI]. Now we establish a result which follows from Theorems 1
and 2.

Theorem 3 The perfect (Φ)-uniformly symmetrically porous sets in [0, 1] form
a Gδ dense subset of Perf , and therefore it is a residual set in Perf .

Proof. Since R(Φ)∩K is a Gδ set in K (by Theorem 2), therefore R(Φ)∩Perf
is a Gδ set in Perf . It suffices to show that R(Φ) ∩ Perf is dense in Perf . We
will utilize the fact that the topology in K can equivalently be generated by
the base consisting of sets of the form

U(J0, J1, . . . , Jm) = {F ∈ K : (F ⊆ J0) & (∀j ∈ {1, . . . ,m})(F ∩ Jj 6= ∅)}

where Jj , for j = 0, 1, . . . ,m, are open in [0, 1] (see [K, §42, II]). So, we will
find a set from R(Φ) ∩ Perf in a nonempty set U(J0, J1, . . . , Jm). We can
assume that J1 ∪ . . . ∪ Jm ⊆ J0 and that J1, . . . , Jm are pairwise disjoint
(if the last condition is not fulfilled, we choose distinct points xj ∈ Jj for
j = 1, . . . ,m and pairwise disjoint intervals J?j ⊆ Jj with xj ∈ J?j ). Now, for
each j ∈ {1, . . . ,m}, choose a perfect set Pj ∈ R(Φ), Pj ⊆ J?j (we can use

Theorem 1) and put P =
⋃m
j=1 Pj . Then P ∈ U(J0, J1, . . . , Jm). Additionally,

P ∈ R(Φ) (here we use the pairwise disjointness of J1, . . . , Jm) and obviously,
P ∈ Perf . �
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