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SOME PROPERTIES OF (9)-UNIFORMLY
SYMMETRICALLY POROUS SETS

Abstract

We prove that each perfect linear set contains a perfect set which
is (®)-uniformly symmetrically porous (Theorem 1). In the hyper-
space of all nonempty compact sets in [0,1] (endowed with the Haus-
dorff distance), the (®)-uniformly symmetrically porous nonempty com-
pact sets form a Gs residual subspace (Theorem 2). We infer that the
(®)-uniformly symmetrically porous perfect sets form a G5 residual set
in the space of all perfect sets in [0, 1] (Theorem 3).

Each continuous increasing function ® from [0, 1] into [0, 1] and fulfilling
®(0) = 0 is called a porosity index. The set of all porosity indices will be
denoted by G. The notion of (®)-uniformly symmetric porosity, introduced
in [H], constitutes (for the respective ® € G) a sharper version of bilaterally
strong porosity and strong symmetric porosity (cf. [H, Th. 3]). Our Theo-
rems 1 and 2 describe the behaviour of (®)-uniformly symmetrically porous
sets in connection with the families of perfect sets and compact sets. That
generalizes results known earlier for other kinds of porosity. Theorems 1 and 2
are used in the proof of Theorem 3 which states that a typical perfect set in
[0,1] is (®)-uniformly symmetrically porous.

From now on, fix an arbitrary ® € G. Let n € N. Following [H], we denote
by R(®,n) the set of all E C R for which there are numbers a,,, b,, such that
for all x € E we have:

(i) 0 < ap <b, <1/n,
(ii) ®(by, — an) > an,
(iii) [z — b,z —ap] N E =[x + ap,z + b, N E = 0.
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Let R(®) = (),—, R(®,n). Each set E € R(®) is called (®)-uniformly sym-
metrically porous.

The definitions of other kinds of porosity can be found in [Z]. For instance,
if E CR, 2z € R and r > 0 are fixed, denote by {(E,x,r) the length of the
longest interval (a,b) such that 0 < a < b < r and

(x—bx—a)NE=(x+a,z+bNE=0.
Then F is called strongly symmetrically porous if

limsup {(E,z,r)/r =1
r—0+

for each z € E. Observe that, if ®(z) = 22, then, by (i), (ii), we get
an/(bp —an) <bp —a, <b, <1/n.

Hence lim,, o an,/(by, — an) = 0 or, equivalently lim,, o (b, — a,)/b, = 1.
This, by (iii), means that (®)-uniform symmetric porosity implies strong sym-
metric porosity.

Theorem 1 FEvery linear perfect set contains a perfect (®)-uniformly sym-
metrically porous set.

PROOF. Fix any two decreasing sequences {x;}52, and {z;}32, of real num-
bers tending to zero. As ® € G, the sequence {®(2;)}72, is decreasing and
it tends to zero. Choose a subsequence {z,,}52; such that z,, < ®(z;) for
every j. Put y; = x,, + z; for j € N. Next pick a subsequence {y,,,}72; such
that y,,,, < 1/j for every j. Define a; = Tn,, and b; = y,; for j € N. Then
for each j € N we have 0 < a; < b; <1/j and ®(b; — a;) > a;.

Now, let us turn to the main part of the proof. We may start with a
perfect set P C R which is bounded. We will define by induction a family
{Ps : s € 2<¥} of perfect subsets of P where 2<% stands for the set of all
finite sequences of zeros and ones. If s € 2<%, we will denote min P, = ay,
max P; = 85 and h, = min{f3s — as : s € 2<%, lhs = n} for n € NU {0}
where lh s is the length of s. Let Py = P and fix n > 0. Assume that perfect
sets P, C P are defined for all s € 2<% with lhs < n. We shall define the
sets Ps—o and Ps—; for lhs = n (where s —~ i is the respective extension of
the sequence s). Let k, be the least positive integer satisfying by, + 2ap, <
hy. Choose ¢4 (respectively, ds) being a left-hand (respectively, right-hand)
condensation point of PsN (o, as+ay, ) (respectively, PsN(Bs —ay, , Bs)). Put
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Ps o= PsNas,cs] and Ps~; = PN [ds, Bs] for all s with Th s = n. Observe
that for t = s ~ i and i € {0,1}, we have

By — oy < ay, (1)
and
Q51 — Bs~0 = Bs — as — 2a, > hy — 2ag, > b, + 2ay, — 2ay, =bg,. (2)

Having all sets Ps, s € 2<%, we define

n=1

where @, = J{Ps : s € 2<% lhs = n}. Then Q is a perfect subset of P.
Now we will show that the sequences {ag, }52; and {bg, }52,; witness that
Q@ € R(®). For each n € N, conditions (i) and (ii) are clear, by the choice
of the numbers a; and by. It suffices to prove (iii). Fix n € N and z € Q.
Condition (iii) will be true, if

(ili") [z = b, , T — ar, ] N Qni1 = [z + ag,, v + bk, ] N Qpi1 = 0.

Since x € Q, therefore z € Q11 and thus x € P, for some ¢t € 2<¢ 1Iht = n+1.
Now, (iii’) can be derived from the following inequalities (compare (1) and (2)):

T—ag, < Bi—ap, <o,
r+ap, > ox+ag, > b,

(it means that the intervals [z — by, ,x — ag, ] and [z + ak,,,z + b, ] do not
meet P;),
(bk, — ak,) + o — (z — ax,) bk, — ak, + ak, = bk,

<
(br, — ar,) +x +ap, =B <

by, — ak, + ak, = b,

(it means that the intervals [z — by, , @ — ag, ] and [z + ag,,, 2z + by, ] do not

meet the set P C Q11 closest to Py). O
Note that the results analogous to Theorem 1 for strong symmetric porosity

in R and for strong porosity in a Polish space were proved in [B, Th. 1.4, 1.6].
Let K denote the space of all nonempty compact sets in [0, 1] endowed with

the Hausdorff metric p given by

p(H, F) = max{sup d(z, F), sup d(y, H)}
zeH yeF

where d is the usual metric on [0,1]. It is known that K forms a Polish
space [K].
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Theorem 2 The (®)-uniformly symmetrically porous nonempty compact sets
in [0,1] form a G5 dense subset of K, and therefore it is a residual set in K.

PROOF. Since the nonempty finite sets form a dense set (in K) which is a
subset of R(®), it suffices to show that R(®,n) N K is open for each n € N.
So, let n € N and let F' € R(®,n) NK. Assume that numbers a,, and b,, fulfill
(i),(ii) and (iii). Put

U= U ((x = bp,x — an) U (x+ apn,x + by)).
z€F

Then U is open and bounded. We can express U as |J;(c;,d;) where the
intervals (c;,d;) are pairwise disjoint. Since d; — ¢; > b, — a,, for every j,
therefore U = U?:l(cj,dj) for some p € N. Observe that ¢; ¢ F and d; ¢ F
for j = 1,...,p. For instance, we will show that ¢; ¢ F. If ¢; = x — b, or
¢; = ¢ + ap, for some x € F, condition ¢; ¢ F is clear by (iii). In the other
case, there is a sequence {x,,}>°_; C F such that

¢; = lim (zy, —by)ore; = lim (z, + an).

m
m—»00 m—»00

By the compactness of F', choose a subsequence z;,, tending to z € F'. Thus
¢j = — by or ¢; = x + a, which again by (iii), yields that ¢; ¢ F. Define

e = (1/2) min{d(c;, F),d(d;, F) : j =1,...,p}.

Then the ball B = {H € K: p(H, F) < ¢} is contained in R(®,n)NK. Indeed,
if H € B then H C D where D = |J,cp(z —¢,2 +¢). Consider any y € H.
Then y € (r — ¢,x + ¢) for some x € F'. Observe that

[y_bnvy_an]u[y""anay'i'bn] c [x—s—bn,x+5—an]U[x—s—l—amx—i—s—i—bn]

p
C U[cj —&,d; +el.
j=1

But Ji_,[c; —&,d; +¢] N D = 0, by the choice of . Since H C D, we have
[y —bn,y—an) NH =[y+a,,y+b,]NH =10

which implies that H € R(®,n) NK. O

Note that the result analogous to Theorem 2 for strongly porous sets was
obtained in [L]. The version for strongly shell porous sets in a complete space
X was shown in [V, Th. 2.1]. If X = R, strong shell porosity coincides with
strong symmetric porosity.
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It is known that the family Perf of all perfect subsets of [0,1] is a Gy
subset of K [K, §42, ITI, Th. 3]. Hence Perf is a Polish space, by the Alexandrov
theorem [K, §33, VI]. Now we establish a result which follows from Theorems 1
and 2.

Theorem 3 The perfect (®)-uniformly symmetrically porous sets in [0, 1] form
a Gy dense subset of Perf, and therefore it is a residual set in Perf.

PROOF. Since R(®)NK is a Gy set in K (by Theorem 2), therefore R(®)NPerf
is a Gs set in Perf. It suffices to show that R(®) N Perf is dense in Perf. We
will utilize the fact that the topology in K can equivalently be generated by
the base consisting of sets of the form

U(Jo,Jl,...,Jm :{FEK(FgJ(ﬁ&(VJE{l,,m})(FﬂJj7é@)}

where Jj, for j 1,...,m, are open in [0,1] (see [K, §42, II]). So, we will
find a set from R(®) N Perf in a nonempty set U(Jy, J1,...,Jm). We can
assume that J; U...U J,, C Jy and that Jy,...,J, are pairwise disjoint
(if the last condition is not fulfilled, we choose distinct points z; € J; for
J=1,...,m and pairwise disjoint intervals J* C J; with z; € Jj*) Now, for
each j € {1,...,m}, choose a perfect set P; € R(®),P; C J; (we can use
Theorem 1) and put P = U;n:l Pj. Then P € U(Jy, Ji,...,Jm). Additionally,

)
07
(

P € R(®) (here we use the pairwise disjointness of Ji, ..., Jp,) and obviously,
P € Perf. O
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