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Komenského, Mlynská dolina, 842 15 Bratislava, Slovakia

Tibor Šalát, Katedra algebry a teórie č́ısel MFF UK, Univerzita
Komenského, Mlynská dolina, 842 15 Bratislava, Slovakia

REMARKS ON FUNCTIONS PRESERVING
CONVERGENCE OF INFINITE SERIES

Abstract

A function f : R → R preserves absolute convergence of series if for
each absolutely convergent series

∑∞
n=1 an its f -transform

∑∞
n=1 f(an)

is absolutely convergent. In this note, we shall study functions that
preserve absolute convergence of series.

1 Introduction

In papers [2], [4], [5] (Also see [3], pages 84–87.) functions f : R → R preserv-
ing convergence of infinite series are studied. The concept of such functions
can be introduced in this manner: If

∑∞
n=1an is a series of real numbers and

f : R → R, then the series
∑∞

n=1f(an) is called the f -transform of the series∑∞
n=1an. A function f : R → R is said to be a convergence preserving function

provided that
∑∞

n=1f(an) is convergent whenever
∑∞

n=1an converges.
In the paper [1] functions preserving convergence of series from certain

classes of series are investigated.
The purpose of these remarks is to extend these investigations. For exam-

ple we shall study functions that preserve absolute convergence of series. A
function f preserves absolute convergence of series if for each absolutely con-
vergent series

∑∞
n=1an its f -transform

∑∞
n=1f(an) is absolutely convergent.

Denote by F (cp) and F (acp) the class of all f : R → R that preserve con-
vergence and absolute convergence of series, respectively.
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In connection with classes F (cp) and F (acp) the idea of investigating similar
classes F (c,ac), F (ac,c) arises. Here F (c,ac), F (ac,c) denotes the class of all
f : R → R such that

∑∞
n=1|f(an)| < ∞ whenever

∑∞
n=1an converges and∑∞

n=1f(an) converges whenever
∑∞

n=1|an| < ∞, respectively. In the sense of
this notation the class F (cp) could be denoted by F (c,c) and F (acp) by F (ac,ac).

2 Fundamental properties of classes F (cp), F (acp), F (c,ac),
F (ac,c)

The following fundamental result proved originally in [2] by R. Rado (Also see
[3], pages 84–87, [4], [5].) describes the form of functions of the class F (cp).

Theorem A A function f : R → R belongs to F (cp) if and only if there are
a ∈ R and δ > 0 such that for each x ∈ (−δ, δ) we have f(x) = ax.

Theorem A will be often used in the following form. From Theorem A we
get the following proposition.

Proposition 2.1 We have F (cp) ⊂ F (acp).

Proof. If f ∈ F (cp), then according to Theorem A we have f(x) = ax for x ∈
(−δ, δ). It is now easy to check that if

∑∞
n=1|an| < ∞, then

∑∞
n=1|f(an)| < ∞.

□

Remark 2.2 The inclusion in Proposition 2.1 is proper. This fact will be
shown in the following examples.

Example 2.3 Put f(0) = 0, f(x) = x sin 1
x for x ̸= 0. Then evidently

|f(x)| ≤ |x| for each x ∈ R and so f ∈ F (acp). But in view of Theorem
A the function f does not belong to F (cp).

Example 2.4 Let a be a non-zero real number. Define g : R → R by

g(x) =

{
0 for x irrational

ax for x rational.

Then g ∈ F (acp) \ F (cp).

Example 2.5 It is easy to verify that the function f(x) = a|x|α (a, α are
positive constants) belongs to F (acp) if and only if α ≥ 1.
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The foregoing examples show that for F (acp) a result analogous to Theorem
A does not hold. Even by a little modification of Example 2.3 we get a
function belonging to F (acp) the four Dini derivatives of which at the point 0
are distinct. Of course all these Dini derivatives are finite as can be seen from
the following result.

Theorem 2.6 Let f : R → R be a function. Then the following conditions
are equivalent:

(i) f ∈ F (acp),

(ii) f ∈ F (ac,c),

(iii) f(0) = 0 and lim sup
x→0

|f(x)/x| < ∞.

Proof. (i) ⇒ (ii) is obvious.

(ii) ⇒ (iii). Since the series 0 + 0 + · · ·+ 0 + . . . converges absolutely, the
series

∑∞
n=1f(0) converges and so f(0) = 0. We prove the second part of (iii).

Suppose that

lim inf
x→0−

f(x)/x = −∞.

Then for each n ∈ N there exists an xn ∈ (−1/n2, 0) such that

f(xn)

xn
< −n (1)

Note that from this we have f(xn) > 0 and −1/n2xn > 1. Denote by vn the
least positive integer such that

vn ≥ − 1

n2xn
(2)

The definition of vn yields vn − 1 < −1/n2xn and hence

−vnxn < −xn +
1

n2
<

2

n2
. (3)

Construct the series

x1 + · · ·+ x1︸ ︷︷ ︸
v1−times

+x2 + · · ·+ x2︸ ︷︷ ︸
v2−times

+ · · ·+ xn + · · ·+ xn︸ ︷︷ ︸
vn−times

+ · · · =
∞∑
k=1

ak.
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This series converges absolutely because of (3) but the series
∑∞

k=1 f(ak)
diverges since, according to (1) and (2), we have

∞∑
k=1

f(ak) =

∞∑
n=1

vnf(xn) ≥
∞∑

n=1

(− 1

n2xn
)(−nxn) =

∞∑
n=1

1

n
= ∞.

Therefore lim inf
x→0−

f(x)/x > −∞. Similarly it can be proved that lim inf
x→0+

f(x)/x

> −∞, lim sup
x→0−

f(x)/x < ∞ and lim sup
x→0+

f(x)/x < ∞. Hence we have (iii).

(iii) ⇒ (i). There are a K > 0 and δ > 0 such that f(x) ≤ K|x| for |x| < δ.
Let

∑∞
n=1|an| < ∞. Then there is an m such that |an| < δ for n ≥ m. Then∑∞

n=m |f(an)| ≤ K
∑∞

n=m |an| < ∞ and
∑∞

n=1|f(an)| < ∞, as well. Hence f
belongs to F (acp). □

Remark 2.7 We see from Theorem 2.6 that each f ∈ F (acp) is continuous
at the point 0. Example 2.4 shows that the set of continuity points of such
function can be singleton.

In [5] it is noted that F (cp) is a linear space (with operation + and multi-
plication by real numbers in the usual way). For the class F (acp) we can prove
a stronger result.

Theorem 2.8 The class F (acp) is an algebra (of functions) closed with respect
to the composition of functions.

Proof. Obviously F (acp) is a linear space. Further, if f, g ∈ F (acp), then
g · f and also g ◦ f belong to F (acp). This is easy to shown. Let

∑∞
n=1|an| <

∞. Then by assumption
∑∞

n=1|f(an)| < ∞. Since
∑∞

n=1|g(an)| < ∞, the
sequence {|g(an)|}∞n=1 is bounded, say |g(an)| ≤ K for each n ∈ N. Hence∑∞

n=1|(g · f)(an)| =
∑∞

n=1|g(an)| · |f(an)| ≤ K
∑∞

n=1|f(an)| < ∞. Similarly∑∞
n=1|(g ◦ f)(an)| =

∑∞
n=1|g(f(an))| < ∞. □

Remark 2.9 It can be easily verified that also the class F (cp) is closed with
respect to composition of functions.

Note that F (c,ac) ⊂ F (cp). We give a characterization of the class F (c,ac).

Theorem 2.10 A function f : R → R belongs to F (c,ac) if and only if it is
identically equal to zero in a neighborhood of 0.

Proof. If f(x) = 0 in a neighborhood of 0, then obviously f belongs to
F (c,ac). Conversely, let f ∈ F (c,ac). Then the function f belongs to F (cp) and
so by Theorem A we have f(x) = ax in a neighborhood (−δ, δ) (δ > 0) of 0.
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If a ̸= 0, choose anm such that 1/m < δ. Then the series
∑∞

n=m(−1)n−1/n
converges but its f -transform a

∑∞
n=m(−1)n−1/n is not absolutely convergent.

Hence we have a = 0 and the theorem follows. □

Remark 2.11 From previous results we get the following relations

F (c,ac) ⊂ F (cp) ⊂ F (acp) = F (ac,c) (4)

The first of these inclusions is proper by Theorem A and Theorem 2.6 the sec-
ond inclusion is proper also by Theorem A and Theorem 2.6 (see also Examples
2.3 -2.5).

Finally, let us remark that F (acp) is an algebra (Theorem 2.8), further F (cp)

is not an algebra (e.g. f(x) = x belongs to F (cp) but f2(x) = x2 does not
belong to F (cp) - see Theorem A). It can be easily checked that F (c,ac) is an
algebra (Theorem 2.10) and that F (c,ac) is closed with respect to composition
of functions. Hence all classes in (4) are closed under the composition of
functions.

3 Topological properties of classes F (c,ac), F (cp) and F (acp)

We shall consider H = {f : R → R : lim
x→0

f(x) = 0 = f(0)} as a metric space

with the metric ρ of uniform convergence, ρ(f1, f2) = min{1, sup{|f1(x) −
f2(x)| : x ∈ R}}. This space is complete. (H is a closed set in the space of all
functions f : R → R with the metric ρ.)

In this part of the paper we shall study the position of F (acp) in H and
considering each of the classes F (cp), F (acp) as a subspace of H we shall also
describe the position of F (c,ac) in F (cp) and F (cp) in F (acp). In first place we
shall describe the position of the set F (acp) in the space H.

Theorem 3.1 The set F (acp) is a Fσ-set of the first Baire category in the
space H.

Proof. For k,m ∈ N we put

Fk,m = {f ∈ H : ∀x ∈ (−1/m, 1/m) : |f(x)| ≤ k|x|}.

It is easy to check that for fixed k,m the set Fk,m is closed in H. Further,
according to Theorem 2.6 we have

F (acp) =
∞∪
k=1

∞∪
m=1

Fk,m. (5)
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Hence F (acp) is an Fσ-set in H.
We prove that for fixed k,m the set Fk,m is nowhere dense in H. Since

Fk,m is closed, it suffices to prove that it is a co-dense set. To prove this it
is suffices to show that each ball K(f, ε) = {h ∈ H : ρ(f, h) < ε} (ε > 0)
of H contains an element of H \ Fk,m. We can assume that f ∈ Fk,m. Put
δ = min{1/m, ε/4k} and define g : R → R by

g(x) =

{
2kx for x ∈ (−δ, δ)

f(x) otherwise.

Then for |x| < δ we have |f(x)− g(x)| ≤ |f(x)|+ |g(x)| ≤ k|x|+ 2k|x| < 3kδ
and hence ρ(f, g) ≤ 3kδ < ε. Thus g belongs to K(f, ε) and simultaneously it
belongs to H \Fk,m by definition of Fk,m. From (5) we now see that F (acp) is
a set of the first category in H. □

Remark 3.2 By a small modification of the proof of Theorem 3.1 we can
show that the set F (acp) is of the first category even in the space (F (acp), ρ).

The following theorem ends our topological investigation concerning the
classes F (c,ac), F (cp) and F (acp).

Theorem 3.3 (i) The set F (c,ac) is dense and co-dense in each of the metric
spaces F (cp), F (acp) and H.

(ii) The set F (cp) is dense and co-dense in each of the metric spaces F (acp)

and H.

(iii) The set F (acp) is dense and co-dense in H.

Proof. It is easy to see that it is suffices to prove the following statements:

a) the set F (c,ac) is dense in H,

b) the set F (c,ac) is co-dense in F (cp),

c) the set F (cp) is co-dense in F (acp),

d) the set F (acp) is co-dense in H.

We prove a)-d).
a) Let f ∈ H and ε > 0. Then f(0) = 0 and f is continuous at 0. Therefore

there exists a δ > 0 such that |f(x)| < ε/2 for |x| < δ. Put

g(x) =

{
0 if |x| < δ

f(x) otherwise.
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Then g ∈ F (c,ac) by Theorem 2.10 and ρ(f, g) < ε.
b) Let f ∈ F (c,ac) and ε > 0. Then according to Theorem 2.10 there is a

δ > 0 such that f(x) = 0 for |x| < δ. Put g(x) =

{
x if |x| < min{δ, ε/2}
f(x) otherwise.

Then g ∈ F (cp) \F (c,ac) by Theorem A and Theorem 2.10 and simultaneously
ρ(f, g) < ε.

c) Let f ∈ F (cp) and ε > 0. Then according to Theorem A there is a δ > 0
and k ∈ R such that f(x) = kx if |x| < δ. Put η = min{δ, ε/2k}. Define

g(x) =


kx for x ∈ (−η, η) ∩Q
0 for x ∈ (−η, η) \Q
f(x) otherwise

where Q is the set of all rationals numbers. By Theorem A and Theorem 2.6
the function g belongs to F (acp) \ F (cp) and obviously ρ(f, g) < ε.

d) SinceH is a complete metric space and F (acp) is a set of the first category
in H, by Theorem 3.1, the set F (acp) is co-dense in H. □
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