
RESEARCH Real Analysis Exchange
Vol. 21(2), 1995–96, pp. 622–628

F. Balibrea, Department of Mathematics, University of Murcia,
30100 Murcia, Spain, e-mail: balibrea@@gaia.fcu.um.es

J. Smı́tal∗, Institute of Mathematics, Silesian University, 746 01 Opava, Czech
Republic, e-mail: smital@@fpf.slu.cz

A CHARACTERIZATION OF THE SET
Ω(f) \ ω(f) FOR CONTINUOUS MAPS OF

THE INTERVAL WITH ZERO
TOPOLOGICAL ENTROPY

Abstract

We give a characterization of the set of nonwandering points of a
continuous map f of the interval with zero topological entropy, attracted
to a single (infinite) minimal set Q. We show that such a map f can
have a unique infinite minimal set Q and an infinite set B ⊂ Ω(f)\ω(f)
(of nonwandering points that are not ω-limit points) attracted to Q and
such that B has infinite intersections with infinitely many disjoint orbits
of f .

Let I = [0, 1] be the compact unit interval, let C(I, I) be the class of
continuous maps I → I, and let E0(I, I) ⊂ C(I, I) be the class of maps with
zero topological entropy. A recent paper [3] contains a characterization of the
ω-limit sets ωf (x) of maps f in E0(I, I), showing the complexity of maximal
infinite ω-limit sets. We recall that there is a map f in E0(I, I) possessing a
maximal ω-limit set ω̃ = ωf (x) of the form Q ∪ P where Q is a Cantor set
and P a countably infinite set of isolated points in ω̃ such that P intersects
infinitely many (disjoint) orbits and such that ωf (x) = Q for any y ∈ ω̃ (i.e.,
Q is a minimal set for f).
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The main aim of this paper is to extend the above quoted results and
show that, for any map f in E0(I, I), the set Ω(f) \ ω(f) of non-wandering
points that are not ω-limit points can have a complicated structure. First,
in Theorem 8 below, for a map f in E0(I, I) we give a characterization of
the set of nonwandering points attracted to a given infinite minimal set Q.
The subsequent Theorem 9 illustrates ideas from Theorem 8 by an example.
More precisely, we exhibit a map f in E0(I, I) with unique infinite minimal
set Q, and with the most complex structure of the set Ω(f) \ Per (f); this set
is attracted to ω(f) \ Per (f) = Q.

In the sequel, we will use the standard terminology, as, e.g., in [2] or [3].
In particular, given a map f in C(I, I), a is a nonwandering point if, for
any neighborhood U of a, fn(U) intersects U for some n > 0. The set of
nonwandering points of f is denoted by Ω(f). By ωf (x) we denote the ω-
limit set of x, and by ω(f) =

⋃
{ωf (x);x ∈ I} the set of ω-limit points of f .

Concerning the basic properties of Ω(f), we refer to [2]. The following three
propositions, however, may not be known.

Proposition 1 If f ∈ C(I, I), then any point of Ω(f) \ ω(f) is isolated in
Ω(f).

Proof. See [5]; cf. also [2, Proposition IV.15]. �

Proposition 2 If f ∈ C(I, I), then ω(f) =
⋂∞

n=0 f
n(Ω(f)). Consequently,

there is no sequence {an}∞n=1 ⊂ Ω(f)\ω(f) such that f(an+1) = an, for any n.

Proof. See [2, Proposition V.10], cf. also [4]. �

Proposition 3 Let f ∈ E0(I, I) and let a ∈ Ω(f) \ ω(f). Then ωf (a) is an
infinite minimal set.

Proof. See [2, Theorem VI.34]. �

Before stating the next lemma we recall (cf., e.g., [2] or [3]) that if f ∈
E0(I, I) and if {In}∞n=1 is a decreasing sequence of minimal compact periodic
intervals such that, for any n, In has period 2n, then the set

M = Mf ({In}) =

∞⋂
n=1

2n⋃
i=1

f i(In) (1)

contains an infinite minimal ω-limit set Q with ωf (x) = Q for any x ∈ M
and conversely, any infinite minimal set Q is contained exactly in one set M
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of the form (1). In the sequel, we will denote the set M by Mf (x) provided
Q = ωf (x) and will call it a maximal simple set for f .

In fact, M is a simple set, according to the following inductive definition.
A compact set X ⊂ I is a simple set for f , if f maps X onto X and if either
X is a singleton or X admits a decomposition S ∪ T into compact portions
that are exchanged by f and such that each of S and T is a simple set for f2.
In particular, a periodic orbit is simple if it is a simple set; it follows that each
simple periodic orbit has period 2n, for some n ≥ 0. A map restricted to a
simple set is a simple map.

Now it is easy to see that if ωf (x) is a minimal set and if Mf (x) has repre-
sentation (1), then, for each n, the trajectory of x is eventually in Orb f (In),
the orbit of In. Thus if Ωf (x) denotes the set of points y in Ω(f) with
ωf (y) = ωf (x) then we have the following

Lemma 4 Let f ∈ E0(I, I) and let ωf (x) be an infinite minimal set. Then
Ωf (x) ⊂Mf (x).

Lemma 5 Let f ∈ E0(I, I), let M be given by (1) and let g ∈ C(I, I) be a
continuous extension of f |M . Let J be an interval intersecting two different
connected components of M . Then gk(J) ⊃ In, for some k and n.

Proof. Let M0 and M1 be disjoint components of M intersecting J . Then,
by (1), M0 and M1 are contained in two different components of Orbf (In), for
some n. Denote this components by J0 and J1, respectively. Now note that
J0 contains just two component intervals J ′, J ′′ from Orb f (In+1) and that
both these intervals are exchanged by f2

n

. Since J1 is invariant with respect
to f2

n

, we easily get that f2
n

(J) contains one of the intervals J ′, J ′′, say J ′.
Consequently, since f |M = g|M , we get g2

n

(J) ⊃ J ′ and since J ′ is periodic,
the result follows. �

The following lemma is useful when changing a map f ∈ E0(I, I), possess-
ing ω(f) with isolated points attracted to an infinite minimal set Q (like a
map constructed in [3]) to a map g ∈ E0(I, I) with an infinite set of points in
Ω(g) \ ω(g) attracted to Q.

Lemma 6 Let f ∈ E0(I, I), let Q = ωf (x) be an infinite minimal set and let
{an}∞n=1 ⊂ Ωf (x) \Q.

(i) There is a sequence {Un}∞n=1 of pairwise disjoint compact intervals such
that, for any n, Un ∩Mf (x) = {an}.

(ii) Let the points {an}∞n=1 have pairwise disjoint orbits. For each n, let
Vn 6= Un be a compact subinterval of Un containing an and let g be a map with
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the following properties:

g(y) =f(y) for y /∈
∞⋃

n=1

Un, (2)

g(Vn) =f(an), g(Un) = f(Un), (3)

and, for any interval Wn containing an,

g(Un \Wn) ⊃ f(Un \Wn). (4)

Then an /∈ Ω(g) while g(an) ∈ Ω(g), for any n.

Proof. (i) This property must be known but, since we cannot give a reference,
we include the argument. By Lemma 4, an ∈Mf (x). Let Mn be the connected
component of Mf (x) containing an. By (1), Mn ∩ Q 6= ∅ and since an /∈ Q,
Mn must be an interval. Moreover, by (1), f i(Mn) ∩Mn = ∅ whenever i > 0.
Hence an must be an end-point of Mn since it is nonwandering. Assume first
that Mn = [an, qn]. Then qn ∈ Q and for some εn > 0 we have [an − εn, an] ∩
Mf (x) = {an} since otherwise, for any ε > 0, [an − ε, an] contains infinitely
many connected components of Mf (x) and this would imply an ∈ Q̄ = Q
— a contradiction. Similarly find εn if Mn = [qn, an]. Finally, set Un =
[an − εn/2, an], or Un = [an, an + εn/2], respectively. Clearly, the intervals Un

are now pairwise disjoint.
(ii) First note that f(y) = g(y) for any y in Mf (x). Hence, keeping the

notation from part (i), by (3) we have gi(Vn ∪Mn) = gi(Mn) = f i(Mn) ⊂
Mf (x) is a connected component of Mf (x), disjoint from Vn ∪Mn, for any
i > 0. Consequently, an /∈ Ω(g), since Vn ∪Mn is a neighborhood of an.

Now set bn = f(an) = g(an) and let V be an open interval containing bn.
Assume, to the contrary, that V can be taken so small that

gi(V ) ∩ V = ∅ for any i > 0. (5)

Since f(Ω(f)) ⊂ Ω(f), bn is nonwandering for f . Hence there is an integer
k > 0 such that fk(V ) 6= gk(V ). Assume that k is a minimal such integer.
By (2), fk−1(V ) intersects some Um with am as an endpoint. Consider the
following two cases.

If am ∈ fk−1(V )(= gk−1(V )), then m 6= n since otherwise bn is in gk(V )
and gk(V ) intersects V , contrary to (5). But m 6= n implies that am is not in
the orbit of bn, since the orbits of am and an are disjoint. Consequently, gk(V )
intersects two different components of Mf (x). By Lemma 5 we immediately
get the result.
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So assume that, for any m, am /∈ fk−1(V ). Then by (4), gk(V ) ⊃ fk(V )
and since bn is a nonwandering point of f , (5) cannot be true — a contradic-
tion. �

Lemma 7 Let Q ⊂ (0, 1) be a Cantor set and let Ã, B̃ and D̃ be disjoint,
countable subsets of Q. Let Ã and D̃ be infinite and dense in Q and let B̃ be
either finite or dense in Q. Then there exists a simple map h ∈ C(Q,Q) such
that Ã and B̃ ∪ D̃ are full (i.e., backward and forward) orbits of h. Moreover,
these orbits allow enumerations Ã = {ãn}∞n=−∞ and B̃ ∪ D̃ = {b̃n}∞n=−∞ such

that B̃ = {b̃n}kn=0 where 0 ≤ k ≤ ∞ and h(ãn) = ãn+1 and h(b̃n) = b̃n+1, for
−∞ < n <∞.

Proof. If B̃ is infinit,e then the proof is a slight modification of the proof of
Theorem 3.7 in [3]. If B̃ has k elements where 0 < k <∞, choose m such that
2m > k and define periodic portions {Qn; 0 < n < 2m} of Q forming a simple
orbit (cf. [1]) such that Qn contains exactly one point of B̃, for 0 < n ≤ k and
then proceed as in the preceding case. �

Now we are able to give the main results. The following theorem gives a
characterization of nonwandering sets of a map with zero topological entropy,
attracted to a single infinite minimal ω-limit set.

Theorem 8 Let Q ⊂ (0, 1) be a Cantor set and A,B disjoint countable sets
of points in I \Q such that A is either empty or infinite. Then the following
two statements P1 and P2 are equivalent.

P1. There exists a map f ∈ E0(I, I) such that Q ∪ A ∪ B is the set of
nonwandering points of f attracted to Q and such that Q ∪ A is a (maximal)
ω-limit set for f and B = Ω(f) \ ω(f).

P2. (i) Every interval contiguous to Q contains at most two points of
A ∪B,

(ii) Each of the intervals [0,minQ], [maxQ, 1] contains at most one point
of A ∪B,

(iii) If A 6= ∅, then A is infinite and the intervals contiguous to Q that
intersect A are dense in the system of intervals contiguous to Q (with respect
to the natural ordering in I),

(iv) If B 6= ∅, then the system of intervals contiguous to Q that contain at
most one point of A ∪ B is dense in the system of intervals contiguous to Q
(with respect to the natural ordering in I).

Proof. P1⇒ P2: This implication is true when B = ∅, cf., e.g., Theorem 6.5
in [3]. So let B be nonempty. By (1) and Lemma 4, the points of A∪B must
be end-points of nondegenerate connected components of M = Mf (x), for any
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x in Q. To see this note that any interior point of M is wandering. Since
any component of M contains at least one point of Q, it follows that any
such component contains at most one point of A ∪ B. This implies (i) and
(ii). Property (iii) follows from Theorem 6.5 in [3]. To prove (iv) note that
by Proposition 2, there is a point b in B that has no preimage in Q ∪ A ∪ B.
But as above, b is an endpoint of a nondegenerate connected component of an
invariant set M . Hence there is a sequence {bn}∞n=0 of points in M such that
b0 = b and f(bn+1) = bn, for any n. By the continuity of f , each bn must be in
a non-degenerate component of M . Hence by (1), the intervals contiguous to
Q and containing points bn must be dense in the set of all intervals contiguous
to Q. To finish the proof denote by Mn the component of M containing bn.
An induction argument shows that Mn ∩ (A ∪B) = ∅, for n > 0.

P2 ⇒ P1: Assume first that B is infinite. By (iv) and (i), there is a
countably infinite set D ⊂ [minQ,maxQ] disjoint from Q ∪ A ∪ B and such
that any interval J ⊂ conv(Q) complementary toQ contains exactly two points
of A ∪B ∪D and D̄ ⊃ Q. Assign to every point p in A ∪B ∪D a point φ(p)
in Q such that there is no point from A ∪ B ∪ D between p and φ(p). Set
Ã = φ(A), B̃ = φ(B) and D̃ = φ(D). Let h, {ãn}∞n=−∞ and {b̃n}∞n=−∞ be as in
Lemma 7. Using techniques similar to those employed in [3] (cf. Theorem 4.1
and the proof of Theorem 6.2) we can get a map f ∈ E0(I, I) such that
f |Q = h and the points { an}∞n=−∞, { bn}∞n=−∞ are isolated ω-limit points
of f satisfying f(an) = an+1 and f(bn) = bn+1, for any n. In fact, for each
n, let Ma

n be the compact interval with an and ãn as end-points and let M b
n

be defined similarly with bn and b̃n. Then put M =
⋃∞

n=−∞{Ma
n ∪M b

n} ∪Q.

Extend h to a continuous map h̃ : M → M so that h̃ is linear on any {Ma
n}

and any {M b
n}, h̃(Ma

n) = Ma
n+1 and h̃(M b

n) = M b
n+1. Clearly, we get a simple

map h̃ and a suitable extension of h̃ yields f . Now applying Lemma 6 to f we
get a map g such that A and B have the desired properties.

If B is finite, the construction of g is similar with the exception that we
let M b

n = {b̃n} for n > k (i.e., we “blow up” only the points {b̃n}kn=−∞ for
some k > 0; cf. also Remark 6.4 in [3]). �

Theorem 9 There is a map F ∈ C(I, I) with zero topological entropy, pos-
sessing a unique maximal (with respect to inclusions) infinite ω-limit set
ωF (y), of the form Q ∪ P , where Q is a Cantor set and P is a countable set
of isolated points. Moreover, F has a countably infinite set W = Ω(F ) \ ω(F )
and also satisfies the following conditions.

(i) There is an infinite sequence {p0n}∞n=1 of points in P with mutually
disjoint orbits. More precisely, the orbit OrbF (p0n) = On of any p0n contains
a chain Pn = {pin}∞i=−∞ such that F (pin) = pi+1,n, for any i and Pn =
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On ∩ Ω(F ) ⊂ P if n is even while {pin}0i=−∞ ⊂ P and {pin}∞i=1 ⊂ Q for n
odd.

(ii) Every set of the form Q ∪ Pn(1) ∪ Pn(2) ∪ . . . where {n(i)} is a finite
or infinite set of positive integers, is an ω-limit set for F .

(iii) Consequently, the system SF (x) of ω-limit sets contained in ωF (y) =
Q∪P has the cardinality of continuum and in fact, contains chains of arbitrary
countable order type.

(iv) There is an infinite sequence {w0n}∞n=1 in W with mutually disjoint
orbits. Moreover, for any n, Orb (w0n) ∩ Ω(F ) = {win}∞i=0 and for any k ∈
N∪{∞} there are infinitely many n such that Wn = Orb(w0n)∩W = {win}ki=0.

(v) Ω(F ) = Q ∪ P ∪W ∪ Per(F ).

Proof. There is a map F with the above described properties, but with
W = ∅, cf. [3, Remark 6.4]. By applying Lemma 6 to a countable system of
orbits in P we get the result. �

Remark 1 By Proposition 3 and Theorem 8 we can describe the set Ω(f) \
ω(f) for maps in E0(I, I). In fact, by Lemma 4, this set is contained in the
union of a family of maximal simple sets and by Proposition 1, each such
maximal set contains a subinterva. Hence the family is countable. It is easy
to see that it can be infinite.
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