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Conditions for equality of Hausdorff and packing
measures on R"

Abstract
This note answers the question, for which Hausdorff functions h may
the h-Hausdorff and h-packing measures agree on some subset A of R",
and be positive and finite. We show that these conditions imply that h is
a regular density function, in the sense of Preiss, and that for each such
function there is a subset of R™ on which the h-Hausdorff and h-packing
measures agree and are positive and finite.

In [8] and [10], Taylor and Tricot introduced a new family of measures,
namely packing measures, which complement the well-known Hausdorfl mea-
sures. For any Hausdorff function, that is, any non-decreasing function h :
(0,00) — (0,00) with A(0+) = 0, we may define the Hausdorff and packing
measures associated with this function.

In [7], Saint Raymond and Tricot considered the implications of equality
on subsets of R™ of the Hausdorff and packing measures associated with some
function h(r) = r°. They showed that if the two measures are positive and finite
on some subset A of R™, then they agree on A if and only if s is an integer and
A is s-rectifiable.

In this note we extend the above result. We show that the Hausdorff functions
h for which there may exist a subset of R™ on which Hausdorff and packing
measures are equal, and positive and finite, are precisely those named regular
density functions by D. Preiss, (see [6]). For this work we use theorems which
adapt and extend the standard density-type theorems, and draw heavily on the
concepts and results of [6] and [4].

We now review the definitions and results needed for what follows. For
definitions of Hausdorff measure, H" , we refer the reader to [3, 4.9].

By a packing of a subset S of R we mean a finite or countable collection of
closed balls {B(z;,r;) : x; € S} such that, for each i # j,

B(x;, ;) N B(xj,r;) = 0.
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A §-packing is a packing such that for each i, diam B(x;,r;) <.
If h is a Hausdorff function then P"(S), the h-packing measure of S, may be
defined thus;

PI(S) =sup {Z h(diam B(x;,r;)) : {B(x;,7;)} a é-packing of S} )
Py (8) = lim P;'(S),
6—0

P"(S) =inf {i PISy) : S C Ds} .

We shall write H® and P?® for the measures constructed from the function
h(r) =rs.

By a measure . we shall mean a non-zero Borel regular outer measure on R™,
such that the Borel sets are p measurable. If y is also locally finite we shall call
u a Radon measure. We note that u is locally finite if and only if every compact
subset of R™ has finite y-measure. By B(z,r) and U(x,r) we shall mean the
closed and open balls, respectively, centered at x with radius r, by 0B(x,r)
the boundary of these balls, and by B(A,r) the set of all points at distance no
greater than r from the set A. We write spt p for the smallest closed subset
C of R™ such that p (R™\ C) = 0, and pu|4 for the measure on R™ defined by
1la(S) = n(AnNS) for each subset S of R™. In the definitions and notation
below we follow [3] and [6].

(i) If his a Hausdorff function, u measures R™, and « € R™, we define ﬁh(u, x)
and Qh(,u,x), the upper and lower h-densities of p at x, by the formulae

Eh(u, x) = limsup uB(z,r)/h(2r)
N0

and
D"(p,x) = lim inf B (@, 7)/h(2r).

If the upper and lower h-densities of i at = coincide and are positive and
finite, we denote their common value by D"(u,z), and say that x is an
h-density point of .

A Hausdorff function b is said to be a density function (in R™) if there is a
measure p over R™ such that p almost every z € R™ is an h-density point
of u.

A density function h will be called regular (in the sense of Preiss) if
lim,~ o h(tr)/h(r) exists for each t > 0. We refer the reader to [6, 6.5]
for a complete characterization of regular density functions in terms of
limiting conditions near zero.



144 H. JOYCE

(ii) We shall use the notation limg_,e0 i = p, Or g — p for the usual notion
of weak convergence of measures, see for example [3, 1.21].

(iii) If T : R™ — R™ is Borel measurable and p measures R™, we define T[u],
the image of p under T, by

TIu(E) = u(T~Y(E)) for every Borel set E C R™.

Let z € R™ and r € R\ {0}. We define the map T, , : R — R™ by
Tor(z) = (2 —x)/r.

(iv) Let pu measure R™ and = € R™. We say that a locally finite measure ¢ is a
tangent measure of p at x if there are sequences ;N\, 0 and ¢ > 0 such
that ¢ = limy_y00 ¢k T v, [10], and write ¢ € Tan(u, z). (Tangent measures
in this form were introduced by D. Preiss in [6].)

(v) A measure g on R™ is said to be uniformly distributed if uB(z,r) =
uB(y,r) < oo whenever z,y € spt pand 0 < r < oco.

(vi) Let 1 be a Radon measure on R™. Then z € spt pu is called a symmetric
point of p if for every p > 0

/ zdp(z) = xuB(z, p).
B(z,p)

(vii) A Radon measure p on R™ is called flat if p = ¢H™|y for some ¢ > 0 and
some m-dimensional affine subspace V of R, (1 <m < n).

We now have all the concepts required to state both the theorem of Saint
Raymond and Tricot, (see [7]), for functions h(r) = ¥, and the results from [6]
and [4] that we will need.

Theorem 1 If A C R" satisfies P°(A) < oo, then H*(A) = P*(A) if and only
if the density D*(H®|a,x) exists and equals 1 for P* almost all x € A. (This in
turn implies that s is an integer, and that A is s-rectifiable.)

Lemma 1 Let X be a separable metric space, and let h be a reqular density
function. Then H"(A) < P"(A) for all subsets A of X.

A proof of the above lemma for the functions h(r) = r* may be found in
[3, 5.12]. Since the proof given there also works for regular density functions,
we omit the proof of Lemma 1. For the proofs of Lemma 2 and Theorem 2 we
refer the reader to [6, 1.11(4), 2.12] respectively. Theorem 3 follows from the
definition of a regular density function and [6, 4.11(1), 4.11(4)], and Theorem 4
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from [6, 6.1(5), 4.7(1)]. The reader may wish to note that in [6], the notation
M., is used for the set of all flat measures on R™, see [6, 3.7(1)], and U,, for the
set of all uniformly distributed measures on R™ which have 0 in their support,
see [6, 3.1(2)]. Theorem 5 is proved in [4].

Lemma 2 If yup — p are measures on R™ then for each compact set D C R™
and each open set G C R",

(D) > lim sup (D),

k—o0

1(G) <liminf ug(G).
k—o0

Theorem 2 Let p measure R™. Then u almost every x € R™ is a point of
translational invariance of Tan(u,x), that is, u almost every © € R™ has the
following property: Whenever 1p € Tan(u,z) and u € spt ¢ then

T’U«,l [w] € Tan(u, Z‘)

Theorem 3 If u measures R™, h is a reqular density function, and p almost
every point of R™ is an h-density point of u, then at p almost every point x
of R™, every tangent measure to p at x is flat. Conversely, if p almost every
point of R™ is an h-density point of u, and at p almost every point of R™, every
tangent measure to u at = is flat, then h is a regular density function.

Theorem 4 If u is a locally finite measure on R™ and almost every point of
R™ 4s an h-density point of u, then at almost every point of R™, every tangent
measure P to p at x is uniformly distributed, with 0 € spt .

Theorem 5 Let o be a Radon measure on R™. If for u almost every point x
in R™, every tangent measure to p at x has 0 as a symmetric point, then at
almost every point x in R™, every tangent measure to p at x is flat.

To prove our result for more general Hausdorff functions h we need two simple
density lemmas for the measures %" and P", which replace the standard density
lemmas for H® and P°. We state Lemma 3 without proof, referring the reader
to [3, 6.10]. The result proved there is again only for functions h(r) = r*, but
generalizes without trouble to all other Hausdorff functions.

Lemma 3 If A C R" satisfies 0 < P"(A) < oo, then for P"|4 almost every
xz e R”,
D" (P"|a,2) > 1.

The proof of Lemma 4 requires the following covering theorem, which is due
to Morse, see [5].
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Theorem 6 Let p be a Radon measure in R, A CR", 0 < «a <1, and let B
be a family of closed balls in R™ such that for each point y of A and each r >0
we may find a ball B(x,s) € B with s < r and y € B(z,as). Then there is a
countable collection of disjoint balls {B;} C B such that (A \ |, B;) = 0.

Lemma 4 Let A C R" satisfy H"(A) < oo. Then, for H"|4 almost every =,
forany 0 < a <1 andt > 1 there is r > 0 such that, for every s <r and every
y € B(xz,as),

h
M (By,5)04) _
h(2s) -
In particular,
D" (H"a,2) < 1.

PRrROOF. Since H" is regular we may assume that A is H" measurable. For
0<a<1andt>1write

Apy ={x € A:for each r > 0, there are s < r and y € U(z, as)
such that H" (AN B (y,s)) > t h(2s)}.
It is sufficient to show that H" (A,) =0 for any 0 < o < 1 and ¢ > 1.
Fix 0 < a <1 and ¢t > 1, choose € > 0, and let K be a compact subset of
At satisfying H(K) > (1 — e)H" (Aas). We may now choose §; N\, 0, and

use Theorem 6 to choose disjoint balls {B; ; }Joil ={B (¥, ri,j)};); for each 4,
such that

(i) KN B(yiy,or;) #0,

(i) 7i; < 6:/2,
(iil) H" (AN B ;) >th(2r;;),
(iv) HM (K \U;B; ;) = 0.

If y € Ujs U, Biyj, then dist(K,y) < 6. Soif y € sy Uisy U, Biyj, then
dist(K,y) = 0, so y € K. Therefore T

W (Aay) >HME) = H" [ () U UBis

E>1i>k j

= lim H" AHUUBW» > lim sup #" AmUBk,j

k—
* i>k j k=00 j
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zlimsupZHh (AN By ;) > limsup ch (2ry,5)
k

k—oo 54 — j=1

>tlimsup Hf, | KN J B, | = tH" (K)

k—
o J

>t(1—e)H" (Any) -

Letting £ \, 0, we see that H" (A, ) = 0. The second statement of the lemma
follows immediately.

Theorem 7 Let A C R, and u = P"|4 = H"|4 be a positive finite measure.
Then, for p almost every x € A, every tangent measure to p at x is flat and h
is a reqular density function.

ProOF. Write A* for those points of A which are exceptional points of neither
Lemma 3 nor Lemma 4, at which all tangent measures have 0 in their support
and are uniformly distributed, and which are points of translational invariance
of Tan(u,x). Then u(A*) = u(A), and every point of A* is an h-density point
of u.
Fix x € A*. We now show that for each z € R", each p > 0, and each tangent
measure ¢ to u at x,
Bz, p) < VB0, p). 1)

Fix ¢ € Tan(u, z) and p > 0. Since 1 is uniformly distributed and 0 € spt v, it
only remains to show the required inequality for z & spt ).
We first suppose that z € U(0, p). Since

= lim ¢ Tyr, [t
k— o0
we have by Lemma 2 that
YU (z,p) < likm inf U (z + 112, T P).
—00

Since z € B(0, ap) for some a < 1, since x is an exceptional point of neither
Lemma 3 nor Lemma 4, and since x+riz € U(x, rp), we see that for each ¢ > 1
there is a number k; such that if & > k; then

wU(x +riz,rep) < uB(x + iz, rep) < tuB(xz, mip).
Therefore

YU(z,p) < likminf U (z + rz,mep) < limsup cpuB(z,rip) < »B(0, p).
— 00

k—o0
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Replacing p by p + §/2 in the above calculations, we see that
YU(2,p+0/2) <9B(0,p+5/2).
The measure 1 is Radon, so for each € > 0 we may find 6 > 0 such that
WU(0, p+8) < $B(0, p) + &,
S0
WB(z,p) < $U(z,p +6/2) <UB(0, p+6/2) < $U(0,p +6) < $B(0, p) + <.
The choice of € > 0 was arbitrary, so

VB(z,p) <¥B(0,p).

Now suppose that z € 9B(0, p); then for each p; > p we have z € U(0, p1), and
YB(z,p1) < ¢¥B(0, p1). Therefore

$B(2,p) < $B(0, p1) for each py > p,
and
pP1>p

The third case we must consider is that where z ¢ B(0, p). If B(z, p)Nspt ¢ =
(), the inequality ¥ B(z, p) < ¥ B(0, p) is obvious. If B(z, p) N spt ¥ # ), we may
choose w € B(z,p) Nspt ¥ and use the fact that x is a point of translational
invariance of Tan(u, z) to see that

Tw,l['(/)]B(Z - va) S Tw,l[w]B(Ovp)v

and so
YB(z,p) < YB(w, p) < ¢B(0, p).

So every measure v in Tan(y, ) indeed satisfies inequality (1).
It is now not hard to show that 0 is a symmetric point of each measure

¥ € Tan(u, x).
Fix ¢ in Tan(p, ) and let p > 0. For y € R™, define

Fly) = / (7 — 12— 9IP) X5y ()6 2).
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Then by Fubini’s Theorem and equation (1),
o0
Pl = [0 55 (02 = e = ulP) xi () > ¢}
2
:/ VB (y, Vo = t) dt
op2
g/o VB (0, N t) dt = F(0).

Since F is easily seen to be differentiable on B(y, p), this implies that 0 is
a maximum for F and that VF(0) = =2 [, »zdi(z) = 0, that is, 0 is a
symmetric point of 1. The result then follows from Theorem 5 and the second
implication of Theorem 3.

Lemma 5 If p is a Radon measure on R™, A is a compact subset of R™, h is a
reqular density function, and D" (u,x) > 1 for all x € A, then u(A) > P'(A).
PROOF. Since p is Radon, pu(A) < co. For t < 1 and § > 0 write

Ars={x € A: uB(x,r) > th(2r) whenever r < §/2}.

Fix t < 1 and 6 > 0, then for every 0 < n <,

1B(Avs.n) > tP)(Ars),
w(Clos A;s) > tPl(Ars) =tPl(Clos As),

since if {B(z;,7;)} is an n-packing of A, s, then uB (z;,7;) > th(2r;), and the
compact set B(A¢ ,n) contains the disjoint union | B(z;,7;). (The last equality
just uses the well-known fact, see for example [3, 5.10], that if h is a regular
density function, then Pl'(S) = Pl(Clos S) for each subset S of R™.)

By assumption, A = (Js-, Clos(A;s) for each ¢ < 1. The measures p and
P are Borel regular and Ap1/n € Ag1j(ns1) for each n, so for each t < 1,

PMA) =P"(| Clos Ay 1/n) = lim P"(Clos Ay1/n)

-1 n—oo
< lim P (Clos A1/n) < t*lnlgn;o p (Clos Ay 1)

=t (| Clos Ag1/n) =t~ u(A).

n=1

Since t < 1 was arbitrary, we have u(A) > P"(A), as required.
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Lemma 6 If p is a Radon measure on R™ and for each x € A, D" () <1
and all tangent measures to p at x are flat, then for each x € A,

D
gi\r"% (sup {lzﬁllfza(brrl)l)) cx € D, diam(D) < e, D compact, com)ex}) <1

PROOF. Suppose not, then for some x € A, without loss of generality x = 0, we
may find numbers ¢ > 0, t > 1, rp \, 0, compact convex sets Dy, of diameter
1 and containing 2, m € {1,...,n} and an m-dimensional linear subspace V of
R"™, such that

(i) D — D (a nonempty compact convex set with diam(D) < 1) in the
Hausdorff metric,

(H) Ckaﬂ”k [M] - Hm|V € Tan(u,x),
(iil) p(rpDg)/h(rk) >t for each k.

Write By = Clos (UIZk Dl), then Ejy1 C Ej, and H™|yv(Ex) — H™|v(D).

Also,
w(riEy) > u(rDy) > th(ry), for each .

Since
H™y = lim Ty, (1],
l—o0

we may use Lemma 2 to see that

H™|v (Ex) > limsup qu(r Ey) for each k.

l—o0

Choose kp so large that whenever k > k1,

(1+1¢)

H" v (Er) < —5—H"|v(D).

Then, using the isodiametric inequality, for each k > k; we have

1 1
(1+1¢) ( +t)7-[m|v(D)Zlimsupcm(mEk)-

2 2 l—00

H™|vB(0,1/2) >

Since Ey41 C Ej for each k,

lim sup ¢ u(r Ey) > limsup ¢;u(r Ep).

=00 l—o0

Therefore

1+t
(1+ )H”L|VB(0, 1/2) > limsup ¢ u(r E;) > limsup ¢t h(ry).

2 l—o0 l—o0
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Since by assumption bh(u, x) <1 for each z € A,

limsup p (B(z,71/2)) h(r) ™t < 1.

l—o0

Therefore

@Hmh/B(O, 1/2) >tlimsup quB(z,7/2)
=00
>tliminf ¢ uU(x,r/2)
l—00
21" |v (U (0,1/2)).

Sot < (1+t)/2, and t < 1, which is a contradiction.

Lemma 7 If i is a Radon measure on R™ and A C R"™ such that for every point
of A

D
ii\r‘r% (Sup {h(d'iim)m :x € D, diam(D) < e, D compact, com)ex}) <1,
then

u(A) < H'(A).

For a proof of this lemma we refer the reader to [2, 2.10.17(2)].
We are now in a position to prove our main result.

Theorem 8 If A C R" and u = H"a = P"|a is a positive finite measure,
then h is a regular density function and p has h-density 1 almost everywhere.
Conversely, for each reqular density function h, there is a positive finite measure
p on R™ with h-density 1 almost everywhere, such that u = H"| 4 = P"|4 for
some A C R™.

PROOF. Lemmas 3 and 4 together imply that if u = H"|4 = P"|4, and pu is
positive and finite, then p has density 1 almost everywhere. Theorem 7 implies
that h is regular.

In [6, 6.5], for each regular density function h there is given a construction of
a Radon measure 1 on R™ which has positive finite constant h-density p almost
everywhere in R”. We normalize p to have h-density 1 almost everywhere and
write D for the set where the h-density of p is 1. Now D is a Gs set with
u(D) > 0, so we may find a compact subset C' of D with u(C) > 0. Then
Lemma 5 tells us that u|c(S) > P c(9) for all closed subsets S of R™.

Theorem 3 ensures that, for u|c almost every z, every tangent measure to p|c
at x is flat, and so we may use Lemmas 6 and 7 to show that u|c(S) < H"|c(9)
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for all measurable subsets S of R™. Since h is regular Lemma 1 implies that
HM(A) < P'(A) for all A C R™. Therefore P"|¢, plc and H"|c agree on
closed, and therefore on all, subsets of R".
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