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NOTES ON ABSOLUTELY CONVERGENT
INTEGRATION

Abstract

We show that there exists an absolutely convergent integral which
properly includes the Lebesgue integral and that any such integral does
not have positive property as a functional.

Let I = [a, b] be a fixed compact interval on R. We consider only real
valued measurable functions defined on I.

Definition 1. Let T be a functional operation by which there corresponds
to each closed interval J ⊂ I a linear class K(T, J) of measurable functions
defined on J , and to each function f of K(T, J) a real number T (f, J). A func-
tional operation T is called an absolutely convergent integral if the following
conditions are fulfilled:

(i) The operation T (f, J) is linear on K(T, J).

(ii) If f ∈ K(T, J), J ′ ⊂ J then f ∈ K(T, J ′).

(iii) If J1 and J2 are abutting intervals and if f ∈ K(T, J1) ∩K(T, J2) then
f ∈ K(T, J1 ∪ J2) and

T (f, J1 ∪ J2) = T (f, J1) + T (f, J2).

(iv) If f ∈ K(T, J), J = [c, d] then F (x) = T (f, [c, x]) is continuous on J .

(v) If f ∈ K(T, J) then |f | ∈ K(T, J).

Definition 2. Given two absolutely convergent integrals T1 and T2, we shall
say that T2 includes T1 if f ∈ K(T1, J) then f ∈ K(T2, J) and T1(f, J) =
T2(f, J) for any interval J ⊂ I, and write T1 ⊂ T2.
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The Lebesgue integral is an absolutely convergent integral. The following
problem arises: Is there any absolutely convergent integral which properly
includes the Lebesgue integral? We shall show that the answer to this ques-
tion is “yes”, however any such integral has no longer positive property as a
functional.

Theorem 1. There is an absolutely convergent integral which properly in-
cludes the Lebesgue integral.

To prove the theorem, we need the following lemma.

Lemma 1. There is a measurable function ψ : I → (0,∞) such that (L)
∫
J
ψ

= +∞ for any subinterval J of I.

The construction of such a function will be given later.

Proof of Theorem 1. For J = [c, d], let

K(T, J) = {g : g = f + pψ, f ∈ L(J), p ∈ R},

where ψ is the function obtained in Lemma, and define

T (g, J) = (L)

∫
J

f + p(d− c).

Then K(T, J) is a linear class and we can see easily that T satisfies conditions
(i)∼(iv). To show that if f + pψ ∈ K(T, J) then |f + pψ| ∈ K(T, J), it is
sufficient to prove |f + ψ| ∈ K(T, J) (f ∈ L(J)).

Let A = {x ∈ J : f(x) + ψ(x) ≥ 0} and B = {x ∈ J : f(x) + ψ(x) < 0}.
Then the sets A and B are measurable. Let

g(x) =

{
f(x) (x ∈ A),

−f(x)− 2ψ(x) (x ∈ B).

We can write

g(x) = f(x)χA(x) + (−f(x)− 2ψ(x))χB(x),

and for x ∈ B, 0 < ψ(x) < −f(x). Consequently ψ(x)χB(x) is L-integrable
on J and hence g ∈ L(J). On the other hand, by the definition of g, we have
|f + ψ| = g + ψ. It follows that |f + ψ| ∈ K(T, J). Since K(T, J) includes
L(J) strictly, the proof is complete.

Proof of Lemma 1. For simplicity, we assume [a, b] = [0, 1]. Let {tk} be a
sequence with 0 < tk <

1
2 .
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We define the sequence of sets as follows:

I11 = [0, t1], I21 = [1− t1, 1]

E1 = I11 ∪ I21
I12 = [0, t1t2], I22 = [t1 − t1t2, t1], I32 = [1− t1, 1− t1 + t1t2], I42 = [1− t1t2, 1]

E2 = I12 ∪ I22 ∪ I32 ∪ I42
· · · · · · · · · · · · · · · · · · · · · · · · · · · .

Repeating this process we can define Ijk and Ek = ∪2kj=1I
j
k. Then the set

E = ∩∞k=1Ek is perfect and

m(Ijk) = t1t2 · · · tk, m(E) = lim
k→∞

2kt1t2 · · · tk.

If we choose tk = 1
2 −

1
2(k+1)2 (k = 1, 2, . . . ) then m(E) = 1

2 by the formula

Π∞k=2(1− 1
k2 ) = 1

2 . Change the notations E and Ijk for E1 and Ij1k respectively,
that is,

E1 = ∩∞k=1E1k, E1k = ∪2
k

j=1I
j
1k.

Next we set [0, 1]−E1k = ∪2k−1

j=1 I
j
2k, where Ij2k are complementary closed inter-

vals of E1k, and construct a perfect set Ej
2k on each Ij2k such that m(Ej

2k) =
1
2 ·m(Ij2k). Putting E2 = ∪k ∪j Ej

2k, we have

m(E2) = m(E1
21) +

∑∞

k=1

∑2k

j=1
m(E2k

2k )

=
1

2
|I121|+

∑∞

k=1
2k · 1

2
|Ij2k|

=
1

2
(1− 2t1) +

∑∞

k=1
2k−1t1t2 · · · tk(1− 2tk+1)

=
1

23
+
∑∞

k=1

1

22

(
1

k + 1
− 1

k + 2

)
=

1

22
.

Similarly we can define the set E3 on [0, 1]−E1∪E2 such that m(E3) = 1
23 and

so on. The sets En thus obtained are non-overlapping and m(∪∞n=1E
n) = 1,

that is, m([0, 1]− ∪∞n=1E
n) = 0.

Now we define the function ψ : [0, 1]→ (0,∞) as follows:

ψ(x) =


1

t1t2 · · · tk
(x ∈ Ek),

1 (x ∈ [0, 1]− ∪∞n=1E
n),
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where tk = 1
2−

1
2(k+1)2 . Since ψ is positive and measurable, it remains to show

that (L)
∫
J
ψ = +∞ for any subinterval J of [0, 1].

For any J , there is an interval Ijnm ⊂ J . Since∫
Ij
nm

ψ =
∑∞

k=n

∫
Ek∩Ij

nm

ψ

=
∑∞

k=n

m(Ek ∩ Ijnm)

t1t2 · · · tk
>
∑∞

k=n

1

2k
|Ijnm|2k

=
∑∞

k=n
|Ijnm| = +∞,

we have
∫
J
ψ = +∞.

Theorem 2. If T is any absolutely convergent integral which includes strictly
the Lebesgue integral, then T is not positive.

Proof. Suppose that if f ∈ K(T, J) and f ≥ 0 then T (f, J) ≥ 0.
For any f ∈ K(T, J) with f ≥ 0, we set for each n

fn(x) =

{
f(x), if 0 ≤ f(x) ≤ n,

n, if f(x) > n.

Then fn ∈ L(J), fn ≤ fn+1 for every n and fn → f (n → ∞) on J . Since
L(J) ⊂ K(T, J) and T is positive, we have L(fn, J) ≤ L(fn+1, J) ≤ T (f, J).
By the monotone convergence theorem of the Lebesgue integral, we have f ∈
L(J). Thus we have showed that if f ∈ K(T, J) and f ≥ 0 then f ∈ L(J).

Let f ∈ K(T, J). Then by (v), |f | ∈ K(T, J), and hence |f | ∈ L(J) that
is, f ∈ L(J) which implies K(T, J) ⊂ L(J). This is a contradiction.
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