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SUPERPOROSITY IN A CLASS OF
NON-NORMABLE SPACES

Abstract
Let M stand for the space of all S-measurable real functions on the
infitite o-finite measure space (X, S, 1) endowed with the (metrizable
but non-normable) topology of convergence in measure on sets of finite
measure. Some natural subsets (including the L,-spaces) are proved to
be sigma-superporous in M. The possibility of finding non-sigma-porous
meager sets in this non-normable setting is discussed.

1 Introduction

The concept of a porous set was introduced by Dolzenko in [2]. Since then
it has been thoroughly investigated and diversely generalized (see [14] or [11]
for a survey). It is possible to define several notions concerning porosity also
in metric spaces (see [14],[11]). It is known that in Banach spaces the ideal of
meager sets is strictly wider than that of the o-porous sets ([14]). It is true
also in closed non-locally compact convex subsets of a separable Banach space
([1])- Recently it has been established in dense in itself completely metrizable
spaces as well (cf. [16]).

The primary goal of the research presented in this paper is in the line of
the above results, i.e. to compare o-porous and meager sets, respectively in
some non-normable spaces. Such an attempt was made in [12] where the space
s of all real sequences endowed with the Fréchet metric

pr({antn, {bn}tn) = Z 2"

|an — bn|

m where {a/n}n; {bn}n €S

was scrutinized in this respect. This space is non-normable ([8, Exercise 276))
and it was shown in [12] e.g. that the set {{an}, € 57>, ®(a,) converges } is
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o-superporous in s for a residual family of functions ® in the space of all real
functions furnished with the uniform topology.

It is the purpose of this paper to carry on these investigations generaliz-
ing results of [12] for the space M of all measurable functions on an infinite
o-finite measure space (X, S, u) endowed with the (metrizable) topology of
convergence in measure on sets of finite measure (see [4]). We will show that
results quite analogous to those of exposed in [12] for s hold in this general-
ity as well. For instance, the set A(®) = {f € M; [{ [® o f]du* < +oo} is
o-superporous in M for a broad class of functions ® : R — R, where p* is the
outer measure induced by p and [ ; hdu* stands for the p*-upper integral of
the function h: X — R (see [3, Section 2.4]).

Further we show that A(xg\as) is o-superporous in M for every o-very
porous set M C R (xg\as is the characteristic function of R\ M) and that
A(xr\nm) is meager in M if M is meager at some point of R. In particular,
A(xr\nm) is meager in (s, pr) if and only if M is meager at some point of R.
This could provide a method for relating meager non-o-porous subsets of R
to meager non-o-porous subsets of M (resp. s) if the porosity of A(xr\as) in
M (resp. s) could be characterized in terms of M C R.

It is worth noticing here that a more familiar metrization of M by the
metric

m(f,g) = inf{e > 0; p({z € X;|f(z) — g(2)| 2 €}) <} (f,g € M)

which coincides with the topology of convergence in measure on X
(cf. [3, Section 2.3.8]), yields a setting where our considerations are not feasible
even for continuous ®’s. This question was studied in [17].

2 Preliminaries

In the sequel (X, S,u) will be an infinite o-finite measure space and p* the
outer measure induced by u. Without loss of generality we may suppose that
X =2, Xy, where {X,,}72, is a sequence of pairwise disjoint, S-measurable
sets such that 2 < u(X,,) < +oo for each n € N.

Denote by M (resp. M,,) the set of all S-measurable functions that are
finite almost everywhere (abbr. a.e.) on X (on X,,). We will identify members
of M provided they equal a.e. on X. If the sequence fr € M (k € N) converges
in measure to f € M, write f & f.

Denote by F,,, the space of all functions ® : R — R such that ® o f € M
for all f € M. It is known that JF,, contains the class of Borel-measurable
functions. Observe that F,, is a closed subspace of the complete metric space
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(F,d), where F = R® and

d(®,0) = min{l,ilelﬂg () — T ()|} (P, T e F).

Indeed, if a sequence ®,, € F,,, (n € N) d-converges to ® € F, then ®,,0f € M
converges pointwise to ®o f (for all f € M), thus ®o f € M and consequently
® € F,,. It follows that (F,,,d) is a complete metric space.

For & € F and p € N define

A(D) = {f EM;/ |® o fldu* < +oo} and
X
Ap(®) = {fEM;/ |® o fldu” <p}7
X
where f; fdu* is the upper integral of f with respect to p* (see [3, Sec-

tion 2.4]).
For f,g € M and n € N define

_ [ _Af-4a

> 1
p(f,9) = ; ml)n(ﬁg)-

For i, € N and M C R denote

Ay (M) = {f € M (f (M) N X)) >

M(fi) } 7

Aiyj(M) = {f Xi;f S AZJ(M)} and
Aio(M) = {f € My;p*(f 71 (M)) = u(Xi)} .

It is not hard to see that p (resp. p,) is a metric on M (resp. M,). It
can be shown similarly as for (s, pr) that (M, p) is non-normable (see [18]).

Convergence in measure implies p-convergence and the converse holds if
and only if the underlying measure space is finite. More precisely we have:

Lemma 1. Let fi, f € M (k € N). The following are equivalent:
(i) x5 f;

(ii) fr 5 f on every S-measurable set of finite measure;
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(iii) frlx, 2 flx, for alln € N.

PRrROOF. For (i)<(ii) see [4, Theorem 3]. The equivalence (i)« (iii) follows
easily from [7, Theorem 14, p. 122]. O

Remark 1. Observe that (M, p) is a complete metric space for each n € N
and the py-convergence of sequences from M, coincides with their convergence
in measure on X, ([5, Problem 42(4)]). Further the equivalence (i)< (iii)
in the previous lemma actually yields that (M, p) and the Tychonoff product
I1,,(My,, pn) are homeomorphic.

Lemma 2. (cf. [4]) (M, p) is a complete metric space.

Denote by By(y,r) the open ball about y € Y with radius » > 0 in the
metric space (Y, d). By B(z,r) we will denote the interval (z —r, z+7), where
x€R. For ECY,y €Y and r > 0 define

Y(y,r, E) = sup{r’ > 0;3y" € Y By(y',r") C Ba(y,r)\ E}.

We say that E is porous (very porous) at y if

E E
fmsup 227 E) S0 (imine 287 E) S
r—0+ r r—0+t T

0).
Further E is said to be superporous at y € Y (see [14], [15]), if EU F is porous
at y whenever F' C Y is porous at y.

A set E C Y is said to be globally very porous if there exist constants
0 < ag < 1 and r9 > 0 such that y(y,r,E) > agr for every y € E and
0<r<mrg ([14])

We say that E is superporous (very porous) if it is superporous (very
porous) at each of its points, further E is o-superporous (o-very porous) if
it is a countable union of superporous (very porous) sets. Superporosity was
defined in [15] in connection with the Z-density topology of Wilczynski and
others (cf. [13]).

Note that superporosity implies very porosity as observed in [15] (see [11,
Corollary 8.15] as well) and o-superporosity is equivalent to o-very porosity
which is further equivalent to o-globally very porosity ([11, Corollary 8.17)).

We will denote by cardY and P(Y) the cardinality and the power set,
respectively of the set Y, further ¢ will stand for the power of the continuum.
Denote by |I| the length of the interval I C R.
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3 Main Results

Lemma 3. Let {I;;q € N} be an enumeration of the open intervals with
rational endpoints. Let ®,4 = px1, for p,q € N. Then Ap(®,q) is superporous
in (M, p) for every p,q € N.

PrOOF. Choose p, ¢ € N and denote by t, the midpoint of I;. Let f € A,(®,q).
Suppose that ' C M is an arbitrary set porous at f. Then there exist
sequences 7,7, > 0 (n € N) and @ > 0 such that ar, < 7], < r, < 27",
further we get an f,, € M such that

Bp(fnvril) - Bp(fa ) \ F. (1)

Define p, = min{k € N;27% <7/} + 1 and g, = 277+ for all n € N.

Then we have ,
o> e, > %" (2)

Denote E,1 = X, N 5 ((t, — gl tg+ £114])) and Enz = X, \ Eyp and

define g, = fuxx\x,, + taXE.. + (tg + 511g))xE,, € M. It is clear that

1
@) = gn(@)| 2 511, for all @ € X, (3)

Since p(f 9n) = sratey Jx,, ToE2k dps, by the definition of £, X,

and (3), respectively we get

En
p(frgn) < (4)
|14 En
, > - —. 4
p(fn gn) S+ ‘Iq‘ 9 ( )
Put 6, = ﬁg‘lmp(ﬂl, gn) and pick an arbitrary h, € B,(gn,d,). Define
46,
D, =<z € X, ;|hn(z) — gn(z)| < ———— ¢ and Dy = X, \ D,,.
&en — 46,

Observe that D,, is well-defined, since by (4) ¢, = 8'%‘1){1' : w <

Then we have
1 |hn - gn'
5> plhns gn) > /
2P"N(Xpn) Do 1+ |hn - gn|

Z En / @d’u — 25n,N(DnO)’
21(Xp,.) Jpno En M Xp,)
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thus 11(Dpo) < $41(Xp,) hence pu(Dy) > Fp(X,,) > 1.
In view of (4) we get |hy(z) — gn(z)| < 5n4_626n < §|I4| for every x €
Dy, 80 hy(Dy) C (tq — 3|I4|,tg + 2|I4]) (see the definition of g,). Then

f; [®pg © hn|dp™ > f;n |®pg © h| dp* > pu(D) > p, s0

i € M\ Ap(®pg)- (®)

Using (4) we get €5, —p(fn, gn) > 5 > S 8_‘:‘1‘ P> Op, therefore B,(gn, 6x)

C By(fn,en) C By(fn,r,). Then in virtue of (5) and (1) there holds

By(gn;0n) C By(fns 1) \ Ap(®pg) C By(fymn) \ (F'U Ap(®pg))-
From (4’) and (2) we get

(F s F U A (D)) = 6 > (ol e (Ml Y
NAVERE) p\*pq)) Z On Z 5 = 8+|Iq‘ 4

. Y(f,r, FUA(Ppq)) gl y2a
thus h:if)&p e > () g

F U Ay(®,,) at f. m

Theorem 1. Let & € F be a function for which there exists to € RU {£oo}
such that

> 0, which proves the porosity of

hggg)lf |®(t)| > 0. (6)
Then A(®) is o-superporous in (M, p).

PROOF. In view of (6) there exists 5 > 0 and a bounded open interval I such
that
|®(t)| > 8 for all t € I. (7)

Let {Ji;k € N} be a partition of I consisting of open intervals. Choose an
f € A(®). Then by (7) we have

By ul(f~ = Bu(f~ / [®o fldu* <p

keN

for some p € N. Thus p(f~*(Jg)) < 1 for some k € N and hence u(f~1(1,)) <
1 for some open interval I, C J with rational endpoints. Consequently,

/X 1®,, 0 f]du* = pu(f~1(1,)) < p.
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so f € Ap(Ppq), whence A(®) C U, ,en Ap(Ppg), Which concludes the proof
by Lemma 3. O

As the following results show, there are also functions ®, not necessarily
satisfying (6), for which A(®) is still o-superporous (cf. Theorem 2):

Lemma 4. Let M C R be a globally very porous set. Then /LJ(M) 8 super-
porous in (M, p) for each i,j € N.

PrROOF. According to the assumption on M there exist 0 < ap; < 1 and
ro > 0 such that

y(z,r, M) > apr forall z € MU(R\ M) and all 0 <7 < rq. (8)

Choose f € A;j(M) and a set F C M which is porous at f. Then there
exist a > 0, sequences 1,7, > 0 and f,, € M such that r,, \, 0,ar, <1/, <

—it+1 . 3rg
Tn < 2 Ty and

B(fn,) € B(f,ra) \ F. (9)

It is not hard to find b, € R (1 < k < my,,, where m,, € N) and a partition
{Dni;1 <k <my} of X; such that for gno = fruxx\x, + 2pei bk XD, € M
there holds

/

Tn
P(fmgno) < Z (10)
We can actually choose by, € M U (R\ M) for every 1 < k < my,.
Put n, = 6327%, Then 7, < 79, so it follows from (8) that for each

1 < k < m,, there exists b;lk € R and r,; > 0 such that
ApTn S Tnk < n and B(b{nkarnk) C B(bnkann) \ M. (11)

Define g, = gnoxx\x; + 2pe VXD, € M. Then by (11) we have

Mn

P(gnos gn) < QWEXJ Z(/ |brg — bi| dpt)

Dk

My

1
21”( Z br — Vgl 1(Dinke) < % UTLZM nk)
), r;l
- n  cn
T 6 2ip! = 47

thus in view of (10)

(12)

/
P(frr gn) < p(frs Gno) + P(9n0, 9n) < 5"
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U.]u?"

We have 0 < apr < 1 < 37, thus T” > . Then putting d,, = o e
get by (12) that Tn = p(fnygn) = % > 0p, SO
By(gn,0n) C Bp(fn,70)- (13)

Choose h € A; ;(M) arbitrarily. According to (11) we have

1 * |h — gnl

p(h, gn) = / o’
2 p(X;) h=1(M)NX; L+ [h — gnl
| (g, T

Y M)NX;) ——
i (M) N Xi) 14+ min ru
1<k<m,

>
T 2u(X;)
1 p&) _avmn 1 ammn _
N ZiM(Xi) J 1+ amnm Qij L+ 1n "
It means by (13) that B,(gn,0n) C By(fu,75) \ A;j(M). Then in virtue
of (9) we get B,(gn,0n) C B,(f,r) \ (FUA; ;(M)). Consequently

anQry

65
which justifies the porosity of F U flm (M) at f. O

V(o7 FU = A; (M) > 6, >

Theorem 2. Let M be a o-very porous set. Then A(xr\a) is o-superporous
in (M, p).

ProOF. We may already suppose that M = J;—, My, where M}, is globally
very porous and ays, < 1 for all kK € N.
Choose f € A(xr\am). Then we have

oo = p(X) - / e o fldut = p(X) — pt(F R M)
< p( < (T (M) N X5),
i,k€EN

thus p* (f~1(M)NX;) > 0 for some i, k € N. It suffices now to pick j € N such
that p*(f~1(M) N X;) > ”(jil) Then clearly f € A; ;(My,), consequently

Alxam) ©€ | Aij(My),
1,5,kEN
which concludes the proof by Lemma 4. O

Now we turn to characterizing the meagerness of A(xg\ar) in (M, p) in
terms of properties of M. We will need the following
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Lemma 5. If M is meager at some point of R, then A, ;(M) is meager at
some point of (M, p;) for alli,j € N.

PrROOF. In the sequel we will use that the topology induced by p; on M; is
equivalent with the topology of convergence in measure on X;, i.e. with the
topology induced by the metric m; = m|a, xm; (see [5, Problem 42(4)]).

Suppose that there exists an interval U = B(tg,r) (to € R, > 0) such that
UNM = J,—, My for some nowhere dense sets M), C R (k € N). Without
loss of generality we may assume that M C My for all kK € N. Let fo = to
on X; and put V = By, (fo,7).

We will show that V' N A; ;(Mj) is nowhere dense in (M;, m;): take an
open ball B,,,(f,¢) in M;. We may already suppose that f € V and f equals
a simple function Y..", bsxp, where by,...,b,, € U and Dy,...,D,, is a
measurable partition of X;.

Then the nowhere density of M in R yields some b, € R and 0 < gy <

@ such that

B(V,,e0) C B(bs,e) \ My, for any 1 < s < m. (14)
Choose g € By, (f1,20) where fi =Y " b.xp,. Then by (14)

97 (My) € {z € Xi;|f1(z) — g(2)| > eo}-
Therefore p* (g~ (My)) < g9 < @, so g ¢ A; j(Myg). On the other hand
f1 € B, (f,€); thus,
(Z] 7& Bmi(fv 6) N Bmi(fhffo) - Bmi(f7 5) \Ai,j(Mk)a

which justifies the nowhere density of V N A; ;(Mg) in M,.

Finally, denote Vy = By, (fo,70) where ro = min{r, %} Pick h € A4; ;(M)N
Vo. Then h=Y(M \ U) C {x € X;;|h(z) — fo(z)| > 10}, so p* ("1 (M \ U)) <
ro < % < %)j’) Furthermore in view of the regularity of u* we get (cf. [3,
Section 2.1.5(1)])

wX5) <p (WY M)) < p* (Y M NU)) +p* (b1 (M\U)

7 <
w(Xi)
2j

< lim @t (h~ (M) +
k—o0

hence khm /L*(h_l(Mk» > H(;;i)7 so h € Ai’gj(M]d NV C Ai’gj(Mk) NV for
—00

some k € N. Therefore

Aiyj(M) NV C U Aing(Mk) nv
k=1
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which means that A; ;(M) is meager at fo in M,. O

Theorem 3. If M is meager at some point of R, then A(xgr\a) is meager in

(M, p).

PrOOF. Let ¢ty € R and r > 0 be such that B(tg,r) N M is meager in R.
Let V; = B, (fo,70) where fo =t on X and 0 < rg = min{r, %} Then by
Lemma 5 A; 2(M) N'V; is meager in (M;, p;) for all i € N.

Choose f € A(xg\p)- Then p*(f~1(R\M)) < +o00 and by the regularity of
p* there exists a p*-hull B of f~1(R\ M) (see [3, Section 2.1.4]). Consequently,
(BN X;) = p*(fTHR\ M) N X;) = p* (X \ (X 0 f~1(M))); thus,

o0 o0

+oo > (FTHR\M)) = w(B) =Y pu(BNX;) =Y p* (X\ (Xinf 1 (M))).
=1 =1

Then for all ¢ > m (m € N) we have

@ > 1> (X \ (XN fHM))) > p(X;) — et (XN 71 (M),

hence f|x, € A; o(M) for all i > m. Accordingly,

A(xr\m) C U P,, where P, = 1" " M; x TI°, A; o(M) for each m € N.

m=1

It suffices now to show by Remark 1 that P, is meager in P = II52, M;
for every m € N: Let U = I, U; x II3% ;M; be any basic open set of
the product topology on P such that n > m. Denote by V the open set
P U; X Vi x 5% oM € P. Then V. .C U and VN P, C I}, U; x
(Vg1 N Apg12(M)) x II52, 5 A; o(M), which is meager in P. It means by
Theorem 1.7. in [6] that P,, is meager in P. O

Corollary 1. A(xr\a) is meager in (s,pr) if and only if M is meager at
some point of R.

PRrROOF. The sufficiency follows from the previous theorem by putting X = N,
S = P(N) and the counting measure on N for p.

Conversely, suppose that M is non-meager everywhere in R. Then M
with the relative topology is a dense Baire subspace of R. Then the product
E = M" is a Baire space which is clearly dense in s ([6, Lemma 5.6]). Therefore
E is non-meager in s and hence A(xgr\a7) O F is non-meager in s. O
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Remark 2. In connection with the Corollary a question arises if a similar
characterization of A(xwr\ar) s possible also in M. Mimicking the above proof
and using Remark 1 it would be sufficient to prove that non-meagerness of M
everywhere in R implies non-meagerness of A; o everywhere in M, for each
i € N, further that M; is separable for each i € N. This last condition is
needed for the theorem on product of Baire spaces ([6, Lemma 5.6].), thus
we may consider the question only for separable measure spaces (X, S, ) (see
5, §41]).

It is not hard to show that this is really the case if each X; is a finite
disjoint sum of atoms, however in general the answer is not known to me.

Remark 3. Another question here arises in connection with finding necessary
conditions for o-porosity of A(xr\nr) in M (or at least in s). If we want to
use some argument similar to that of in the Corollary, we would need some
“porosity-Baire” product theorem as the mentioned result of Oxztoby ([9], [6]).
This ultimately breaks down to proving a porosity version of the well-known
Kuratowski-Ulam theorem on sections of nowhere dense subsets of the product
space ([10, Theorem 15.1]). More precisely, the questions are as follows:

(i) If X and Y are separable metric spaces and E is a porous subset of
X XY with (say) the box metric, then are the x-sections E, of E porous in'Y
except for a o-porous set in X ?

(ii) Call a metric space Z p-Baire if every nonempty open subset of Z is
non-c-porous. Is the property of being separably p-Baire (countably) produc-
tive?

The preceding theorems provide sufficient background for investigating the
class
U={deF; A(P) is o-superporous in (M, p)}.

Theorem 4. We have
(i) card (U N Fpp) = cardU = 2°
(i1) card (F\U) = 2° for (s, pr).

PROOF. (i) Every subset of the Cantor’s ternary set C'is very porous therefore
in view of Theorem 2 xg\p € U N F,, for every £ C C, further xp\ g # Xr\ &
provided E # E’. Consequently card (U N Fy,) > card P(C) = 2°. Further
clearly cardU < card F < card (RR) = 2¢.

(ii) If we restrict ourselves to (s, pp) only, then xg ¢ U for each E C C
since A(xg) = s\ A(xr\g) and (s, pr) is a nonmeager space by Lemma 2.
Thus again 2¢ = card P(C) < card (F \U) < card F < 2°. O

Further we have
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Theorem 5. U is residual in F.
PROOF. See [12, Lemma 2] and our Theorem 1. O

Remark 4. It is worth noticing that if we restrict our investigations onto
Fun only, then similar results hold. Actually, Lemma 3-4 and Theorem 1-2
hold without change, we need only to replace p* by p and the upper integral by
integral, respectively in the proofs.

We can also prove the analogue of Téth’s Theorem (Theorem 5) for F,:

Theorem 5° U N F,, is residual in (Fp, d).
PROOF. See Lemma 2 in [12]. The only difference is in proving the density of
Uy = {® € F,,; ® satisfies (6) for some ty € R} in (F,,, d), more precisely in
proving that ¥ = ®xp + xr\m € Fim, where ® € Fp,e >0and M = {t €
R; either ¢ ¢ (0,1) or t € (0,1) and [®(t)| > F}.

To show this pick f € M, c € R arbitrarily and observe that

@ o f)~([e, +00)), ife>3
(T o f)~ (e, +00)) = 4 (@ o f)~([e, +00)) U (F71((0, 1))
N(@o f)~H((=5 D)) ife<g
thus ¥ o f € M. O
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