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Abstract

In this paper refinements and extensions of properties that give generalized
derivatives the basic properties of ordinary derivatives are discussed; for instance
the Darboux, Baire-1, Denjoy, Zahorski properties.

1 Introduction

It is known that a finite approximate derivative, (ap)F’ = f : I = [a,b] = R, a < b,
shares many of the interesting properties of ordinary derivatives; ([5], [7], [9], [16]).

Properties such as:
(i
(ii) the Darboux or intermediate value property,

(iii) the mean value property,

i) the Baire-1 property,

(iv) the Denjoy or Denjoy-Clarkson property: and in addition,

(v) f(x) = F’'(x) on a dense open set in I.

Further: Weil [17] has strengthened (iv) to:

(vi) if f= (e, B) # 0, then {z; x € f~1(Ja, B[), f(z) = F'(x)} has positive measure;
and O’Malley [8] proved the surprisingly sharp property:

(vii) for every x in I there is an xg in I such that f(z) = F'(x).
Weil [18] has also proved:
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(viii) f has a certain property Z on I, a property stronger than the Zahorski property
M; [19].

It might be remarked that the Baire-1 property often seems crucial in the deduc-
tion of the other properties.

In a welcome attempt to reveal how the various properties arise Bruckner, O’Malley
& Thomson [2] have studied the unified notion of path derivatives, and Thomson
[15] has studied the more general notion of derivatives relative to simple systems,
proving various properties of derivatives under the external intersection condition,
(E.I.C. [m]), the intersection condition, (I.C.), and the non-porosity condition. The
Baire-1 property in particular is obtained in [2, 6.3, p. 113] under (E.I.C. [m]), and in
[15] under a wider condition [15, Lemma 9.7, p. 358]; the Darboux property is proved
by assuming the Baire-1 property [2, 6.4, p. 113], [15, 8.1, p. 352].

In this paper we show, amongst other things, that a semi-Baire-1 property and
all the properties (ii) through (viii) in stronger and more revealing forms extend to
functions like derivatives relative to limiting systems, (essentially two-sided simple
systems [15, p. 280]), under an interlocking condition wider than (I.C.), and often
a generalized non-porosity condition. The Baire-1 property may however fail even
under stronger conditions. This and other critical aspects of the present theory are
illustrated by appropriate examples.

2 Definitions and Lemmas

Throughout we suppose that F, f : I = [a,b] = R, a < b and T is a fixed limiting
system on R, by which we mean an arbitrary collection T = {T'(z);z € R} where
each T'(z) is a non-empty family of subsets of R such that, if A € T'(z), then x € A
and z is a two-sided limit point of A, and AN]e,d[€ T(z) for all ¢,d, ¢ < z < d.

For each 7(x) € T'(x), € I, we denote by I,(,) the family of all closed intervals
[u,v], v < v with u in 7(z) N [a,2z] and v in 7(x) N [z,b]. We define the extreme
T-derivates of F' on I by

TF ()= inf )[sup{F(”)_F(“); [, 0] € Lr(ay, u < UH

T(x)eT (x vV—Uu
Fv)—F

TF'(xr)= sup |inf M; [u,v] € In(gy, u <wpl.
T(z)eT (z) Uv—u

Clearly T(—F) (x) = —TF'(x). If TF/(LL‘) < TF'(x), then F is said to be T-derivable
at the point x. If TF/($) = TF'(x), then this common value is called the T-derivative
of F at x, TF'(x).

As well as finite or infinite T-derivatives we will also study T'-derivative-like func-
tions; that is, functions g that satisfy TF/(;E) < g(x) <TF'(x).
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Remark 2.1 In the absence of other conditions we can have that TF/(ZL‘) < TF'(x).
This cannot happen if T is filtering down; that is, if the intersection of two members
of T'(x) is also a member of T(x). However we do not assume this condition.

Remark 2.2 The definition of the T-derivative is unique, but this is not true for the
simple-derivatives. The simple system naturally associated with T is S = {S(x); x €
R}, where S(x) = {E;R2D ED7(x) € T(x)}}. Then, according to Thomson [15,
p. 281], F has an S-derivative « at a point x in I if for every n > 0 there is a
T(x) € T'(x) such that

|[F'(y) — F(x) — aly — x)| < nly — 2|

for ally in () N I. Clearly then F is T-derivable at x and Tfl(x) <a<TF(x),
but the converse is not true.

Remark 2.3 The weakest limiting system is Ty, where each Ty (x) consists of all sets
containing x and having x as a two-sided limit point. Clearly Tlfl(x) =max{D; F(z), D_F(x)},
and TV F' (r) = min{ D F(z), D~ F(x)}, with obvious modifications if x = a,b. Dar-

bouz and mean value properties of T} -derivative-like functions have been studied in

Sarkhel & Seth [12], and Bullen & Sarkhel [4].

Our main line of reasoning will be Baire’s theorem [10, (9.2), p. 54] and the par-
titioning property, which has many other interesting applications. (See [3] and [14].)

Let E C X C I. Following Sarkhel & Kar [11, §2], a sequence of sets { E,,} whose
union is E is called an E-form with parts E,; if further each part E, is closed in E,
then the E-form is said to be closed. An increasing E-form is called an E-chain. By
a perfect portion of E we shall mean a section E N [p, q] that is perfect and contains
both p and gq.

Every choice 7 = {7(x) € T(z);x € X} is called a T-full cover of E. A finite,
possibly empty, family @ = {([u;,v;], z;); [uj,v;] € I7(,)} is called a T-partition over
E (in I) if for all j the intervals Ju;, v;[ are pairwise disjoint, and z; € E; if further
Uj [uj,vj] = E, then w is called a 7-partition of E. We put

ol = (v —u;), D (f@) = fla;) (v —uy),
J J
A(F, @) = (F(v;) = F(uy)),
J
where all these sums are to be zero if @w = 0.

Given a neighborhood Jzi,x2[ of each point © € E we will call {r(x)n
Jx1,z2[} a refinement of T on E.
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Lemma 2.1 Let 7 be a T-full cover of a set E C I. If E is of measure zero, then
for every € > 0 there is a refinement A of T on E such that for every A-partition w
over E we have Y (|f], @) < € and |w| < e.

PROOF. Since |E| = 0, there are open sets G,, O E with |G,| < n™127", n =
1,2,3,.... It then suffices to take a refinement A on E such that A(x) is contained in
a component of G, if n — 1 < |f(z)] < n. O

We say that T is partitioning, or has the partitioning property on I if every T-full
cover 7 of I induces a 7-partition of I.

Lemma 2.2 If T is partitioning on I, then it is also partitioning on every sub-
interval [¢,d], ¢ < d, of I.

PROOF. Let A be any T-full cover of [c,d]. For each x € I\ [c,d] select 7(x) € T'(x)
such that 7(z) C | — oo, [ or 7(z) C |d,o0]; also let 7(c) = A(c), 7(d) = A(d), and
7(z) = Ma) N]e,d] for ¢ < x < d. Then 7 is a T-full cover of I, and hence there is a
7-partition of I which clearly induces a A-partition of [c, d]. O

The partitioning property arises from various intersection conditions, [2]. Fol-
lowing [2] and [15], we say that T satisfies the intersection condition, (I1.C.), on I
if for every T-full cover 7 of I there are §, > 0, x € I, such that if z,y € I and
0 <y—x < min{d,,d,}, then 7(z) N7(y) N [z,y] # 0. If A, ={x € I; 5, >n"'}
then {A,} is an I-chain. If 2,y € A, and 0 < y —x < n~ !, then 7(x) and 7(y)
intersect as above and so [z,y] has a T-partition of the form {([z,u],z), ([u,y],y)}.
We generalize this to the interlocking property, ILP, in terms of the interlocking
condition, ILC, as follows.

We say 7 satisfies ILC on a set A C I if for any two points < y in A there is
a set E Clz,y[, of measure zero, such that for any refinement A of 7 on E there is a
T-partition of [z,y] of the form {([z,u],z), ([v,y],y)} U w, where w is a A-partition
of [u,v] over E.

Then T is said to satisfy ILP on I if for every T-full cover 7 of I there is an
I-chain {A,} such that for each n there is a §, > 0 such that 7 satisfies ILC on
Ay, N J for every closed interval J with |J| < §,,. We then say that T satisfies ILP on
I via {(A,,0,)}.

The following result extends (4.7.3) of [2, p. 109].

Lemma 2.3 The interlocking property implies the partitioning property.

PROOF. Let an arbitrary T-full cover 7 of I satisfy ILP on I via {(A,,d,)}. Let
E denote the set of points x of I such that every neighborhood of = in I contains
a closed interval admitting no 7-partition. Then F is clearly closed, and it is easily
seen that the closure of every interval contained in I\ E has a T-partition. Hence E
is perfect, and we need only show that F is empty.
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Suppose that E # (). Then by Baire’s theorem some A,,, must be dense in some
perfect portion, E N [e,d] of E, with d — ¢ < §,,.

Let ¢ <u < v <d If ENJuv=0 then as remarked above [u,v] has a 7-
partition. If E N Ju,v[# 0 put u; = inf(E N Ju,v[) and v1 = sup(E N Ju,v[).
Then uy,v; € F and v < up < vy < v. Since E N Ju,u1[= 0 = E N Juy,v|, both
[, u1], [v1,v] have T-partitions, and because E is perfect u;,v; must be limit points
of E N Juy,v1[, and hence of A,, N Juj,vi[. Since {A4,} is an I-chain, there is an
A, D A, such that uy,v; € A,. Then there are points x,y € A,,, uy3 < z <y < vy,
such that x —uy < 6, and v1 — y < d,. Since uy, x,y,v1 € A,, there are, by ILC, 7-
partitions of both [uq, x], and [y, v1]. Also since z,y € A, and 0 < y—z < d—c < 6
we have, by ILC, a 7-partition of [z,y]. Hence it follows that every [u,v] Clc,d[ has
a 7-partition, and this contradicts the condition E N ]c, d[# 0. O

As observed by Thomson [15, p. 420], set porosity is precisely the right notion
to capture certain properties of generalized derivatives. The porosity of a set A at a
point x is the number

p(A,2) = limsup [sup{ (v = ., o[ C o — 6,0 4 [\ (AU {@)H .

We set pr(z) = sup{p(4,z); A€ T(x)}, and if pr(x) =0 for all x € I, then T is said
to be non-porous on I.

We say that T is non-porous in the generalized sense on I, (NPQ), if there is a
closed I-form {E,} such that for each n we have that sup{pr(z); z € E, } < 1.

Note The properties ILP and (NPG) are hereditary.
The following lemma greatly extends Theorem 4.4 of [2, p. 106].

Lemma 2.4 Hypotheses: © € E C I, E is closed, pr(z) < 1, F is monotone on

the closure of each component of I \ E, o € R and M = max{«, Tfl(x)}; m =
min{a, TF'(z)}.
Conclusions: (i) If F(v) — F(u) < a(v —u) for allu,v € E, u <z < wv, then

F/(x) < M/(l—pT(a:)) ‘szEO,
M@A —pr(x)) o M <O0;
if further x is a limit point of E, then

TF/(:L‘) < Oé/(l _pT(x)) ZfTE/(]}) > Ov
T e -pr(x) i TE(2) <0

(i) If F(v) — F(u) > a(v —u) for allu,v € E, u <x <w, then
@) > {m/(l—pT(x)) ifm <0,

£lz) 2 m(1 — pr(z)) ifm > 0;
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if further x is a limit point of E, then

IF () > {a/(l ~pr(@)  #TF (2) <0,
“la(l=pr(@)  FTF (@)=,

Note If E = {x}, then we can take any « in (i) and (ii). Hence, clearly, if F is
non-decreasing on I, then

TF' (z)(1 —pr(z)) < F'(z) and F (z) <

with equality holding if pr(x) = 0.

PRroOF. (i) First, ignoring the trivial case M = oo, let pr(z) < ¢ < 1 and M < §,
where 8 < 0 if M < 0. Suppose ¢ < z < b. Then there are 7(z) € T(z) and
t € 7(x) N ]z, b[ such that

Fly)—F(z) <Bly—=) if ye(EUr(z) N[z, (1)
d—c<qg(d—=z) if Je,d[Cla,t[\7(x), c> . (2)

Consider now any y €]z, t[\ (EUT7(z)), if there are any. Let ]r, s be the component
of Jz,t[\ E that contains y. Put

c= SUp((E Ur(z))Nlr, y[) and d = inf((E Ur(z))Nly, s]).

Then 2 <r <c<y<d<s<t c¢>ux Since by (2), d—y < q(d — x), there is
av e (EUT(z)) N[d,s] such that v —y < q(v — x); and so (1 —¢)(v —z) <y — =.
Again by (2), y — ¢ < q(y — x) and hence there is a u € (E U 7(z)) N [r, ] such that
y—u < q(y —x), whence (1 —q)(y — ) <u—x.

Now by hypothesis, F' is either non-decreasing or non-increasing on [r, s]. In the
first case, by the above and (1) F(y) — F(z) < F(v) — F(z) < (v — ), whence

<
N

<Bly—=z)/(1—q) if5>0,

F(y)_F(x){w(y—x) it 5 < 0.

In the second case, by the above and (1), F(y) — F(z) < F(u) — F(x) < B8(u — ),
whence
< Bly —x) if >0,

F(y)F(I){<5(1_q)(y_x) if B < 0.
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These, in conjunction with (1), clearly prove

B/(1—q) ifB>0,

DYF(z) < { .
B(l—q) if 5 <0.

By symmetry, if a < x < b, then

B/(1—q) ifB>0,

D F(x) < )
B(1—q) if g <0.

Fla) < {B/(lq) if 5> 0,
B(1—q) if 8 <0.
Letting ¢ — pr(z)+ and 8 — M+, the first two results follow. Next, let « be a
limit point of E on the right. Ignoring the trivial case when TF'(z) = —oo, take
v < TF'(z), where v > 0 if TF'(z) > 0. Then there is A\(x) € T'(x) and e € E N ], b]
such that

Fly) — F(z) > y(y —2) if y € Mz) N[z, €], (
s—r<q(s—=z)if Jr,s[Cz, e[\ A(z), r > z. (

R
=

Now, fixt € A(z) N ]z, e[. Ift € E, then by hypothesis and (3) a(t—z) > F(t)—F(x) >
~(t — x), from which a > .

If t ¢ E, let |r, s| be the component of |z, e[ \ E containing ¢. Then r,s € E and
z<r<t<s<e Letc=inf(Az)N ]rt]) and d = sup(A(z) N [t,s[). Since
by (4), ¢ —r < g(c — ), there is a u € A(x) N [c,t] such that u —r < ¢(u — x),
whence (1 — ¢)(u —x) <r —z. Again by (4) s — d < g(s — z), and hence there is a
v € Mx) N [t,d] such that s — v < g(s — ), whence (1 —¢)(s —z) < v — x.

Now by hypothesis, F' is either non-increasing or non-decreasing on [r, s]. In the
first case, by hypothesis and by the above and (3)

a(r—z) > F(r) = F(z) > F(u) = F(z) > y(u - ),

whence a(r —z) > y(r—z)/(1—¢q) or a > v/(1—q) if y < 0, and a(r—z) > v(r—x)
or a > v if v > 0. In the second case, by hypothesis and by the above and (3)

als — ) > F(s) - F(z) > F(v) - Fx) > 1(v - ),

whence a(s —x) > y(s —x) or a > v if v < 0, and a(s — z) > v(s — z)(1 — q) or
a>y(1-gq)ify>0.
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Thus we always have a > v/(1 —¢) if v < 0 and a > v(1 — ¢) if v > 0. Letting
v — TF'(z) and ¢ — pr(z)+, the second two results follow.

A similar proof holds if z is a limit point of E on the left.

(ii) This follows form (i) applied to —F. O

Generalizing a well-known property of Baire-1 functions, we shall say that the
function f is semi-Baire-1 on I if for every o € f(I) the level set f~!(a) contains a
point of continuity of f relative to the closure of f~!().

Finally we recall that a point x € I is termed a point of absolute continuity of the
function F'; an AC-point, if & has a neighborhood in I on which F'is AC. Also F is
called (ACG) on I if F is AC on each part of some closed I-form.

The following examples illustrate some of our ideas.

Example 2.5 Every bilateral system of paths [2, p. 100] P = {P,; x € R}, x €
P, C R and = a two-sided limit point of P,, generates a limiting system Tp which
is defined by Tp(x) = {P, N e, d[; ¢ < x < d}, which is filtering down. The notions
of P-derivative and Tp-derivative coincide. If P satisfies (I.C.), then Tp satisfies
(I1.C.), and hence also ILP. If P is non-porous, then so is Tp.

Example 2.6 If T,,(z) is the family of all measurable sets containing =, and having
density 1 at x, then T,y is a filtering down, non-porous limiting system satisfying
(1.C.), [2, p. 102]. The notions of approzimate derivative and T,,-derivative coincide.

Example 2.7 For each a > 0, we construct a limiting system T, which is non-
porous, and satisfies ILP but not (I.C.), and is or is not filtering down according as
« 1s rational or not.

Define

T () {Je,d[; e <z < d} if v € Q, and
ol {l,d[N(xz+tQ); c<z<d, t=1,a} ifx is irrational.
Clearly, T,, is a non-porous limiting system.

Let now T be any Ty-full cover of I. Let A, = {x € I; 7(z) is dense in|z—n~1 x+
n~ 1}, n=1,2,.... Clearly {A,} is an I-chain. Let x,y € A, and 0 <y —x <n~ 1.
Fiz a rational v €]z, y[. If X is any refinement of T on {r}, then \(r) is a neighborhood
of r. Also, T(x) is dense in |x,r[ and 7(y) is dense in |r,y[. So \(r) intersects both
7(z)N|z,r[ and T(y)N|r,y[. Hence, plainly, T satisfies ILP on I wvia {(A,,n"1)}.
Thus T, satisfies ILP.

But, consider any I-chain {E,}. Obviously some E,, must contain an uncountable
set B of irrationals. Then some & € B must be such that every neighborhood of &
contains uncountably many points of B; [6, p. 129]. Since £ + Q + aQ is countable,
every neighborhood of £ contains points n € B such that n ¢ €+ Q+ aQ. This means
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that [(£+Q)U (4 Q)] N [(n+Q)U(n+aQ)] = 0. Since &,n € B C E,, it follows
that T, cannot satisfy (I.C.) on I.

Lastly, if a is rational, then x +tQ = x + Q for t = 1, «; but if « is irrational,
then (z + Q) N (x + aQ) = {a}. Hence clearly T, is filtering down if « is rational,
but not if « is irrational.

3 Main Results

We begin with a monotonicity theorem.

Theorem 3.1 Suppose that T is partitioning on I.

(i) If TF (z) < 00 on I and TF < a a.e. on I, then F(z) — oz is non-increasing
on I.

(ii) If TE' () > —o0 on I and TE' > 8 a.e. on I, then F(x) — Bx is non-decreasing
on I.

PrOOF. (i) Let A = {z € I; Tfl(x) <a}, E=1\A, and € > 0. Assuming that

flz) > TF/(x) for all z € I, with f(z) = a+ ¢ for z € A, there is a T-full cover 7 of
I such that

F(v) = F(u) < f(z)(v —u) forall [u,v] € I, v €.

Again, since |E| = 0, by (2.1), 7 has a refinement A on I such that for every A-partition
wo over E we have Y (| f],wo) < € and |wp| < €.

Now let a < ¢ < d < b. By (2.2) [¢, d] has a A-partition, say w. Then w = w; Uwy
where t; and w( are A-partitions, (and so 7-partitions), over A and E respectively.
Hence, recalling the choice of f,7 and A\, we have

F(d) = F(e) = A(F.w) < ) (frw) = Y (frw) + D _(f, o)
< (a+ €)@ + Y (|f]: o)
< a(d— ) — almo| +elmn| + ¢
< a(d—c)+ |ale+ €|+ e
Letting € — 0+ we get F'(d) — F(c) < a(d — ¢), which proves (i).

(ii) This follows by applying (i) to —F. O
Next we prove the fundamental theorem of this paper.

Theorem 3.2 Suppose T satisfies ILP on I, and TF/(J?) < oo and TF'(x) > —o0
for allz € I. Then:
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(i) F lies between its one-sided extreme limits on either side, everywhere in I,

(i) F is (ACG) on 1, it is Darbouz on I, (ap)F'(z) exists finitely a.e. on I, and
F'(z) exists finitely a.e. on a dense open set in I,

(#ii) if F is of bounded variation, VB, on a closed set X C I and F|X is continuous,
then F is AC on X,

(iv) either F is strictly monotonic and AC on I, or F has a local extremum at some
AC-point of F on |a,bl.

Note Other variants of (iv) appear in [12, p. 14] and [4, p. 227].
PROOF. Part (i) is obvious. For (ii), assuming f(z) > TF (z) and —f(z) < TE'(z),
there are T-full covers 7, A of I such that

f(x)(v —w) for all [u,v] € Iy, v € 1,
—f(z)(v —wu) for all [u,v] € Iy, z € I.

Let 7, A satisfy ILP on I via {(A,,d,)}, {(Bn,nn)} respectively. Put

Then {E,} is an I-chain and both 7, A satisfy ILP on I via {(Ey, pn)}.

Let ,y € E,, 0 <y —x < pp, and Z C ]z, y[ be the zero measure set as required
by ILC of 7. By (2.1), given ¢ > 0 there is a refinement p of 7 on Z such that for
every u-partition w over Z we have Y (| f|,w) < e. By ILC of 7, there is a 7-partition
{([z, u],2), ([v,y],y)} Uw of [x,y] where w is a p-partition of [u,v]. Then by the
choice of f and 7 we have

Fly) - = (F(u) - F(x)) + A(F, w)+(F(y)—F(v))
Sf( u—x +Zf? _U>
<n(u— )—|—e—|—n(y—v).

Hence F(y) — F(z) < n(y — «). Similarly, from ILC of X\, F(y) — F(x) > —n(y — ).
Hence |F(y) — F(z)| < n(y — z), and F|E, is continuous.

Now, for any n, let J,, be any closed interval with 0 < |J,| < pp, and let 21 < y;
be any two points in the closure of E,,NJ,. There is E,, 2 E, such that x1,y1 € Ep,.
Since 0 < y; — x1 < p, and F|E,, is continuous, choosing points z,y € E,, close to
x1,y1 respectively it follows at once from above that |F(y1) — F(x1)| < n(y1 — x1).

These Lipschitz conditions evidently imply that F is (ACG) on I. Hence (ap)F’(z)
exists finitely a.e. on I, [10, p. 223 infra], and F'(z) exists finitely a.e. on a dense
open set in I (since by Baire’s theorem the AC-points of F' are dense in I). Again,
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since F' is (ACG) on [ it is Baire-1 on I, which by (i) implies that F' is Darboux on
I, [13, Theorem III, p. 21], [1, Theorem 6.1, p. 103].

(iii) This follows from [10, (6.7), p. 227], since being (ACG) F satisfies Lusin’s
condition (N) on I, [10, (6.1), p. 225].

(iv) Let E denote the set of points of I having no neighborhood in I on which
F' is strictly monotonic. Clearly F is closed. Routine arguments shows that F' is
strictly monotone on every component Ju, v[ of ]a, [\ E, and then (i) implies that F’
is strictly monotone and continuous on [u,v], and hence by (iii) F is AC on [u,v]. It
follows at once that, if F has an isolated point, ¢ say, then a < ¢ < b, ¢ is an AC-point
of F', and F has a strict local extremum at ¢, but if F is empty, then F is strictly
monotonic and AC on I.

Suppose now E is non-empty and perfect. Then, since by (ii) F is (ACG) on I,
by Baire’s theorem F' must be AC on some perfect portion E N [p,q| of E.

Since, as shown above, F' is monotone and AC on each closed interval contiguous
to E in [p, q], it easily follows that F' is VB and continuous on [p, ¢]. Hence by (iii)
F is AC on [p,q]. Also, since EN|p, q[# @, F is not strictly monotone on [p, q] and
hence F' must have a local extremum at some point ¢ € ]p, q. O

The above proof of (3.2)(ii) contains the germ of

Theorem 3.3 Suppose T satisfies ILP on I and is non-porous on I. If co #
TF/(x) < TF'(z) # —oco for all x in I, then F'(x) exists finitely for all x in a
dense open set in 1.

PROOF. From the proof of (3.2)(ii), F is Lipschitz on each part of some closed I-form.
So by Baire’s theorem, for every [c,d] C I with ¢ < d, there is a perfect portion [p, g]
of [¢,d] on which F' is Lipschitz, say |F(y) — F(x)] < N(y —xz) for p <2 <y < q.
Then G(z) = F(z) + Nz is non-decreasing on [p,q]. So for all z € ]p,q|, since
pr(xz) =0, using Note 2.4 for G we clearly have é/(z) = T@l(:r) = TF/(IL') + N and
G'(x) = TG (z) = TE'(z) + N. Since 0o # TF (z) < TF'(z) # —o0, it follows that
G'(x) exists finitely for all z in |p,¢q[. Hence F'(z) = G'(z) — N exists finitely for all
x in |p, q. O
We are now ready to analyze the Darboux property of derivatives.

Theorem 3.4 Hypotheses: T satisfies ILP on I, Tfl(x) < 00 and TF'(z) > —o0
for allx in I, the set D of points of I where F is T-derivable contains at least the AC-
points of F in]a, b, D. = {x € D; TF'(z) exists}, Dy = { € D,andxis an AC-point of F in ]a,b[}.
Conclusions:
(i) If Tfl(p) <a<TF'(q) for some a € R and p,q € I, with possibly p = q, then
for every Ju,v[C I with p,q € [u,v], F has an AC-point d € |u,v[ where TF'(d)
exists, so d € Dy, and equals «.
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(i) If Do C E C D, then every extended real-valued function g, satisfying Tf/(x) <
g(z) < TFE'(x) for all x in E is Darboux on E; in particular both TF and TF'
are Darboux on E.

(i4i) If Doe € E C Dy, then TF' is Darbouz on E.

PRrROOF. Clearly (i) implies both (ii) and (iii).

To prove (i) let G(z) = F(z) — ax for all x € I. Then Tél(p) = Tfl(p) —a<0
and TG'(q) = TF'(q) —a > 0, which together imply that G is not monotone on [u, v].
Since Té/(x) = TF/(gc) —a<ooand TG (z) = TF' () — a > —cc for all x € [u,v],
it follows from (3.2)(iv) that there is a d € Ju,v[, an AC-point of G, (hence also of
F), such that G(d) is a local extremum of G; so T@l(d) >0 and TG'(d) < 0. Since

by hypothesis F' is T-derivable at d, we get
0< TG (d)=TF (d)—a <TF'(d) — o = TG'(d) < 0.

Hence it follows that TF'(d) exists with value a. O
A similar result to this is the desired mean value property.

Theorem 3.5 Under the hypotheses of (3.4), F has an AC-point ¢ €|a,b] where
TF'(c) ezists and equals r = (F(b) — F(a)) /(b — a).

PRrOOF. This follows from the preceding proof, since now G(z) = F(z) — rz is not
strictly monotone on I because G(a) = G(b). O

Corollary 3.6 If in (3.4) it is assumed further that TEF'(z) > 0 for all z in D,
then F' is non-decreasing on I.

Next we prove the semi-Baire-1 property, in a form which also gives a strengthened
version of the O’Malley property [8].

Theorem 3.7 Suppose T satisfies ILP on I and is (NPG) in I, and Tfl(x) <
f(x) < TF'(x) for all x in I. Then f is semi-Baire-1 on I.

In fact, if E is the closure of f‘l(f(t)) for any t € I, then F has an AC-point c
inl,a<t<c<bora<c<t<b, such that f(c) = f(t) and F'(c) exists, (and so
does TF'(c)), with the value f(c) = f(t), and all of the functions f, TF ., TF,F I’
are continuous at c relative to E.

PROOF. We can assume without loss in generality that f(¢) = 0, for otherwise we
could consider the functions F(z) — f(t)z and f(z) — f(¢). Now F is T-derivable on
I, and TF (z) < 0o and TF'(z) > —oo for all z in I since f(z) is a finite function.
So by (3.4)(ii) f is Darboux on I.
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First suppose E has no perfect portion. Then E must have an isolated point c,
such that either a <t < c<bora < c<t<b, and then f(c) = f(¢t) = 0. Continuity
at ¢ relative to E is then trivial. Also, let @ < ¢ < d < b where ENc,d] = 0.
Since f~1(0) C E, the Darboux property of f implies that for all  €]c,d|, either
TF (z) < f(z) < 0 or 0 < f(z) < TF'(x). Hence by (2.3) and (3.1) F is monotone
on [e,d], and hence by (3.2)(i), (iii) F' is AC on [c,d]. Besides, pr(c) < 1 since T is
(NPG) on I, and Tfl(c) < f(¢) =0 < TF'(c). Hence from (2.4) we get F/ (c) = 0.
By symmetry, if a < ¢ < b, then F is AC on some [d, c|,d < ¢, and F’ (¢) = 0. Thus
¢ is an AC-point of F on I and F'(c) =0 = f(t).

Next suppose that F has a perfect portion. Then since T is (NPG) on I and, by
(3.2)(ii), F is (ACG) on I, so by Baire’s theorem there must exist a perfect portion
Ep of E and 0 < g < 1, such that pr(x) < ¢ for all z € Ey, and F is AC on FEj.

Now, given an € > 0 let n = ¢(1 — q)2/3. Then there are T-full covers 7, A of [
such that for all x € I we have

F(v) = F(u) < (f(z) +n)(v —u) forall [u,v] € Lr(y),

F(v) = F(u) > (f(z) —n)(v —u) forall [u,v] € I).
Let 7 and A satisfy ILP on I via {(4,,d,)} and {(B,, pn)} respectively. Then I is
the union of the sets

Eni=A, 0B, N f Y (lin,(i+1)m)), n=1,2,...,i=0,£1,£2,....
So by Baire’s theorem some FE,, ; must be dense in some perfect portion of Ey which
we can take as EgN[r,s] = EN|[r,s] with 0 < s —r < min{d,, p, }. Since f~1(0) C E,
it follows as before that F' is monotone and AC on each closed interval contiguous to
E in [r, s], and hence by (3.2)(iii) F is AC on [r, s].
Again, let z,y € E,, ;N [r,s], x <y. By ILC of 7 and (2.1), given § > 0 there is a

7-partition {([z, u], z), ([v,y],y)} Uw of [z,y], where w is a T-partition of [u, v] with
S(|If], @) < 6 and v —u < §. Then

F(y) = F(z) = (F(u) = F(z)) + A(F,@) + (F(y) - F(v))
< (fl@) +m)(u—a)+ > (fr@) +nv—u)+ (fy) +n)(y —v)
<(@E+2)nu—x)+d+n0+ (i+2)n(y —v)
< (@E+2)n(y — ) + i +2|nd + (1 + n)d.
Letting 6 — 0+ we get that F(y) — F(x) < (i + 2)n(y — «). Similarly from ILC of A
we get that F(y) — F(z) > (i — I)n(y — x).

Hence, since the set E,, ; is dense in EN|[r,s] and F is continuous on [r, s, for all
distinct z,y € E N [r, s] we have
PPl _

(i—1)n —y—z = i+ 2)n. (5)
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Now, since E is the closure of f~1(0) and E N |r, s[# 0, there is an e € E N |r, s[ such
that f(e) = 0. Then Tfl(e) <0< TF'(e) and pr(e) < 1. Hence by (5) and (2.4) we
get

(=Un g (420

1—pr(e) 1—pr(e)
So —2 <4 < 1. Hence by (1), for all distinct ,y € E N [r, s] we have
F(y) - F
gy < PO F@) _
y—x

Hence by (2.4), for all z € E N [r,s], if TE'(z) > 0, then TF (z) < TF'(z) <
3n/(1—q), and if TF (z) <0, then TE'(z) > TF (z) > —=3n/(1 — q), but always

min{—3n, TF'(x)}
1—pr(z)

max{3n, Tfl(x)} .

SE@ < Flo s == 0

Hence for all z € E N [r, s], considering all possible signs of TF'(z) and TF/(JC) we
get —3n/(1—¢)? < F'(z) < F/(x) <3n/(1—q)? Thus —e < F'(z) < F/(x) < € for
allz € EN|r,s].

Consequently, taking € to be 1,1/2,1/3,... in succession, we can find intervals
[T, 8] With end points in E, such that r, < 411 < Spi1 < 8p < 7 + 0L Fis
AC on [r1,s1], and —n~! < F'(z) < TF (2) < f(z) < TF'(z) < F (z) < n~! for all
x € EN|ry,Sy]. Then the point ¢ = limr,, = lim s,, evidently fulfills all the required
conditions . d

This permits sharper versions of the Darboux and mean value properties.

Corollary 3.8 Hypotheses: T satisfies ILP and is (NPG) on I, oo # TF/(.T) <
TF'(z) # —oco forallz in I, I, = {x € I, TF'(x) exists} and I,. = {x € L., x is an
AC-point of F in |a,b[ and F'(x) exists}. Conclusions:

(i) If TF/(p) < a < TF'(q) for some a € R and p,q € I, with possibly p = q, then
for every Ju,v[C I with p,q € [u,v], F has an AC-point d € |u,v[ where F'(d)
exists, so d € Iy, and equals c.

(i) If I,. € E C I, then every extended real-valued function g satisfying TF/(,T) <
g(z) <TFE'(z) for all x € E, is Darbouz on E.

(i4i) If I, € E C I, then TF' is Darboux on E.

(iv) There is a d € I, such that F(b) — F(a) = (b — a)F'(d).

PRrROOF. Clearly (i) implies (ii) and (iii). Now, assume that TF/(.T) < f(z) <TF'(z)

forall x € I. Then by (3.7), for every ¢ €]a, b[ there isa d € I, such that F’'(d) 7(0).
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Since f(c) = TF'(c) whenever TF’(c) exists, (i) and (iv) follow from (3.4)(i) and (3.5),
respectively. O

We may show by example that the function f in (3.7) may fail to be Baire-1 even
under stronger conditions.

Example 3.9 We shall construct a bounded F having a non-Baire-1 finite path
derivative Fp, on I, relative to a bilateral non-porous system of paths P satisfying
(1.C.), recall (2.5).

Let E be a non-dense perfect set with bounds a,b and let {]a,, b,[} be the sequence
of the distinct components of I \ E. By induction we define distinct sequences of
positive integers {1}, {2k}, {3k}, ... such that

by < <o+ <bp, < bp,, by, — by as k — oo, (6)
n _bn 1
M%Oask—)oo; (7)
ank_bn

and since they are distinct

m#p:m]#pk7]7k:1a2, (8)

First observe the following construction: for any n and any d, > b, there is
c1 € ENby,dy]. Let ¢j = b, + (a1 —bn)/j, j=2,3,.... Then b, < --- < co < 1,
and ¢; — b, as j — co. We can select ny such that b,, € Jca,c1], and then select
the integers ng,1 successively such that |an, ., by, [ intersects |cayj, ,c14j,[, where
Ji is the unique index such that an, €|ci4j,,¢;,). Clearly {ny} satisfies (6), and it
also satisfies (7) because

Any, — b"k+1 Cjr, — Co44y

2
< — =0 as k— oo.

0 <
Ap, — bn Cldj, — bn Jk

Now, takingn =1, so di > by, take dy = b say, we construct a sequence as above
and call it {1}. Suppose then for somen > 2 and p =1,2,...,n — 1 the sequences
{pr} have been defined so as to satisfy (6), (7) and (8) among them. Evidently we
can find d,, > by, such that |by,,d,[ does not contain any of the points by, for p =
1,2,...,n—1and k =1,2,.... Then we define {n;} as above with {by, } C |by,dy].
This completes the induction.

Now, for each n we define a strictly increasing two-way sequence
{tni}2_ oo 0 |an, by as follows:

n(by, — ay) )
tni = Gn — fi =0,-1,-2,...,
4= Gn + 2(n— 1) or ¢
bni = n—M for i=1,2,....

n+1)
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So ty,—j = an, and t, ; — by as j — co. Also we have

max{ bnyies = b ) nsits — tmi} < > —. (9)
tn,i+5 — Qn bn - tn,i n+ |Z‘

Let I, = U2 _ |ty 6itrs tn,Gitrs1] for m=0,1,...,5 only. Then I, , N1, s =0 for

1=—00

r #s. We define

R\)UEUU;y_ 1o ifz€E, ¢ {b,
Po=( {2} UL sUUg  Inps  ifz=byp,n=12...,
R ifz R\ E.

Using (6), (7) and (9) we readily verify that P = {P,; x € R} is a bilateral, non-
porous system of paths.

Also, if 6 : R =)0, 1] is such that §(by) < min{ |by —bpl, b2 —bnl, .-, |bn—1 —bnl }
for n > 2, then |by, — by| > min{d(by,),0(bn)} for all m # n and hence, clearly P
satisfies (I.C.) with respect to §.

Now, recalling (3), for each n we define n* = m if n = my, for some m and k,
and n* = n otherwise. Then we define

0 Zf IEEUU?:1]7I707
Flg)=¢z—b, if v€l,2,n=12 ...,
x—bp if x€ly,n=12 ..

Also we define F(z) on each of I,1, Ins, Ins in such a way that F becomes differ-
entiable on each of the intervals Jan, by [, and remains bounded on I. Then we see at
once that Fi(x) exists finitely for all x in I. (Note that (ng)* =n.) But Fp(b,) =1
for all m and Fp(z) =0 for all z € E,x ¢ {b,}, so Fp has no points of continuity
in E relative to E since {a,} and {b,} are disjoint dense subsets of E. Hence Fp is
not Baire-1 on I, though by (3.7) it is semi-Baire-1 on I.

Our next example shows that the O’Malley property is non-trivial insofar as it
may fail even for strictly increasing absolutely continuous F and for T satisfying (IC),
in the absence of the condition (NPG).

Example 3.10 It is not difficult to find a strictly increasing absolutely continuous
F, such that 0 < F'(x) < oo for all z in ]a,b] but with 0 = D F(a) < D" F(a) < cc.
Then there is a strictly decreasing sequence {an} in |a,b[ converging to a such that
(F(an) — F(a))/(an — a) — 0. We define a bilateral system of paths P by setting
P, =R forz # a, and P, =]—00,a]U{an}. Obviously P satisfies (1.C.), and Fp(x)
exists finitely for all x in I with Fp(a) = 0. But the O’Malley property fails at a,
since F'(a) does not exist and F'(x) > 0 for a <z <b.
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Next, we give a proof of a stronger version of the Weil property [17], inclusive of
the Denjoy property.

Theorem 3.11 Suppose T satisfies ILP on I and is (NPG) on I, and Tfl(x) < f(z)
< TF'(x) for all x in I. Then for everyt € I and o < f(t) < f3, every one-sided
neighborhood of t in I contains an interval J on which F is AC, (so f(x) = F'(x)
a.e. on J), such that |J N f~1(]a, B])| > 0.

PROOF. Let E denote the closure of f~ (f ) and Suppose that a <t <wv <b. By
(3. 7) F has an AC-point c¢ in [t, v[ such that f(c) = f(¢), (so a < f(c) < 8) and both
TF ,TF' are continuous at c relative to E N [t,v[. Then let ¢ < d < v be such that
F is AC on Jy = [¢, d], and

o< Tfl(x) < f(x) <TF'(z) < B for all x € EN Jy. (10)

If |[EN Jo| > 0, then by (10) |J N f~1(Ja, B[)| > 0 with J = Jp.

Suppose that |[E N Jy| = 0. Let J = [r,s] be the closure of a component of
Jo \ E. Since ¢ € E, clearly r € ENJy. So by (10) DTF(r) > TE'(r) > «a, and
D, F(r) < TF/(T) < B, which by (3.1)(i), (ii) imply, respectively

{z € J; TF (z) > a}| > 0 and |{z € J; TF'(z) < 8} > 0.
Since TFI(CE) < f(z) <TF'(z) for all z in J = [r, s] we get
H{x € J; f(z) > a}| >0 and |[{z € J; f(z) < B} > 0. (11)

But, since ]r,s[ﬁf’l(f(t)) = (), the Darboux property of f, (3.4)(ii), implies that
either f(z) < f(t) < B or f(x) > f(t) > a for x € |r,s[. Hence, by (11), in either
case |[J N f~1(Je, B[)| > 0.

Similarly, if a < u < t < b, we can find a J in some [d, ¢] C]u, t], and this completes
the proof of the theorem. O

Finally we will say that a function f has the property Z* on I, if for every c € I
and € > 0,n > 0 there is a neighborhood I of ¢ in I such that the following conditions
Z*,Z~ hold.

Z*: If f(x) > f(c) — € a.e. on a closed interval J C I then |A| —|B| < np(c, J),
where A ={z € J; f(z) > f(c)+ ¢} and B={x € J; f(c) —e < f(z) < f(c¢)}, and
ple,J) = max{|z —c|;x € J}.

Z—: If f(x) < f(c)+e€a.e. on aclosed interval J C I, then |A| — |B| < np(c, J),
where A= {z € J; f(x) < f(c) — €} and B={x € J; f(c) < f(z) < f(c) + €}.

We remark that f satisfies Z~ if and only if — f satisfies ZT. In another paper it
will be shown that property Z* is strictly stronger than the Zahorski-Weil property
Z; ([18, p. 528], has a misprint of < € for > €), and that every approximate Peano
derivative has the property Z*.
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Theorem 3.12 If T satisfies ILP on I and is non-porous on I and TF/(I') < fz) <
TF'(z) for all x in I, then f has the property Z* on I.

Proor. Considering — f and —F clearly we need only prove Z* for f.
Fixcel,e>0,n>0,put G(z) = F(x)—F(c)—(z—c)f(c) and g(z) = f(x)—f(c)
for z in I. Then G(c) = g(¢) =0, and
TG (¢) = TF (z) - f(¢) < g(x) < TF'(z) - f(¢) = TG'(x), wel.
Since TG' (c) <0< TG (¢), there are 7(c), A(c) € T(c) such that

Glg) | < 9 ifc£qelInt(c),

o (12)
qg—c|> 1 itc#qelIni(o).
Since pr(c) = 0, there is a neighborhood I of ¢ in I such that
s—r< gp(q [r,s]) if Jr,s[C I\ 7(c) or |r,s[CI.\ A(c). (13)
We show that for every J = [z,y] C I. for which G|J is continuous, there is a
[u,v] C J such that
u—z+y—v< gp(c,J) and G(v) — G(u) < %p(c,J). (14)

Ife <z <y,takev = inf{t € [z,y]; |t,y[N7(c) = 0} and u = sup{t € [z, v]; Jz,t[ N A(c) =
f}. Note that, if u # v, then v and w belong to the closures of A(c) N [u,v] and
7(c) N [u, v], respectively.

Ifr <y < ctakev = inf{t € [x,y]; It, y[NA(c) = 0} and u = sup{t € [z, v]; |z, t[N7(c) =
(}. Note that, if here u # v, then v and u belong to the closures of A(c) N [u, v] and
T N [u, v] respectively.

If v < ¢ <y take v = sup([¢,y] N 7(c)) and u = inf ([z, ] N 7(c)). Note that, now
both of u, v belong to the closure of 7(c) N [u,v].

In all cases, the first part of (14) follows at once from (13), and the second part
follows by noting that, if u # v, then continuity of G|[u,v] implies by (12) that
G(v) < (en/4)|v — c| and —G(u) < (en/4)|u — ¢|.

Now, let f(z) > f(c) — € a.e. on some J = [x,y] C I.. With A, B asin ZT, we
have A= {z € J; g(z) > €}, and B = {z € J; —e < g(z) < 0}.

Since TG'(x) > g(x) > —e a.e. on J, by (3.1) G(z) + ez is non-decreasing on J.
Hence, clearly, by ( .2)(i), (iii) G is AC on J. So there is a [u,v] C J satisfying (14),
and since g(z) = G'(x) a.e. on J and g(z) > 0 a.e. on J \ AU B, we have, further

G(v)fG(u):/ngdAﬂ[u,v]’fe|Bﬂ[u,v]|. (15)
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Since |A| - |B| S u—z+y—v+|AN[u,v]| - |[BN[u,v]
that |A| — |B| < np(c, J).
Thus f has the property ZT on I, and we are finished. O

, from (14) and (15) it follows

References

[1] A. M. Bruckner and J. G. Ceder, Darbouz continuity, Jber. Deutsch. Math.
Verein, 67 (1965), 93-117.

[2] A. M. Bruckner, R. J. O’'Malley and B. S. Thomson, Path derivatives: A unified
view of certain generalized derivatives, Trans. Amer. Math. Soc., 283 (1984),
97-125.

[3] P. S. Bullen, Some applications of partitioning covers, Real Analysis Exch., 9
(1983-1984), 539-557.

[4] P. S. Bullen and D. N. Sarkhel, On Darbouz and mean value properties, Canad.
Math. Bull., 30 (1987), 223-230.

[5] C. Goffman and C. J. Neugebauer, On approzimate derivatives, Proc. Amer.
Math. Soc., 11 (1960), 962-966.

[6] E. W. Hobson, The Theory of Functions of a Real Variable and the Theory of
Fourier Series, Vol. 1, Dover, New York, 1957.

[7] A. Khintchine, Recherches sur la structure des fonctions mesurables, Fund.
Math., 9 (1927), 217-279.

[8] R. J. O’Malley, The set where an approzimate derivative is a derivative, Proc.
Amer. Math. Soc., 54 (1976), 122-124.

[9] S. Marcus, On a theorem of Denjoy and on approximate derivative, Monatsh.
Math., 66 (1962), 435-440.

[10] S. Saks, Theory of the Integral , Dover, New York, 1964.

[11] D. N. Sarkhel and A. B. Kar, (PVB) function and integration, J. Austral. Math.
Soc., Ser. A, 36 (1984), 335-353.

[12] D. N. Sarkhel and P. K. Seth, On some generalized approzimative relative deriva-
tives, Rendiconti Circolo Mat. Palermo, 35(2) (1986), 5-21.

[13] H. K. Sen, Darboux’s property and its applications, Proc. Benares Math. Soc.,
(N.S.) 2 (1940), 17-23.



PROPERTIES OF DERIVATIVE-LIKE FUNCTIONS 759

[14] B. S. Thomson, On full covering properties, Real Analysis Exch., 6
(1980-1981), 77-93.

[15] B. S. Thomson, Derivation bases on the real line, II, Real Analysis Exch., 8
(1982-1983), 278-442.

[16] G. P. Tolstoff, Sur la dérivée approximative exacte, Rec. Math. (Mat. Sb.), (N.S.)
4 (1938), 499 504.

[17] C. E. Weil, On approzimate and Peano derivatives, Proc. Amer. Math. Soc., 20
(1969), 487-490.

[18] C. E. Weil, A property for certain derivatives, Indiana Univ. Math. J., 23 (1973-
74), 527-536.

[19] Z. Zahorski, Sur la prémiére dérivée, Trans. Amer. Math. Soc., 69 (1950), 1-54.



