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ON UNBOUNDED ORDER CONVERGENCE

Abstract

Order convergence in Riesz spaces is defined only for order bounded
sets; so does not apply, for example, to pointwise convergence in function
spaces. There exists a generalization to not necessarily order bounced
nets that includes the above pointwise convergence. In practice, appli-
cation of this generalization is rather involved. We show that in the
case of a Riesz space with a weak order unit, the definition takes a quite
simple form, readily applicable to proofs.

A central tool in the study of Riesz spaces is order convergence. This
is defined only for order bounded sets, so cannot be applied to situations in
which the nets concerned are not necessarily order bounded. For example, it
does not include pointwise convergence of nets in a Riesz space of functions
on a set X.

There exists a generalization of order convergence which applies to all nets
in a Riesz space and includes, among others, the above pointwise convergence
(and reduces, of course, to order convergence for order bounded nets). To my
knowledge, it was first defined and applied by H. Nakano ([4], [5]) (under the
name “individual convergence” in the second reference). Following DeMarr
[1], we will call it “unbounded order convergence”.

The various definitions of unbounded order convergence do not lend them-
selves easily to proofs of theorems. However, in our work on the Lebesgue
integral in the bidual of C(X) for X compact (cf. [3]), and in a planned se-
quel on measurability in a superspace of the bidual, we deal with spaces –
Dedekind complete spaces with a weak order unit – in which unbounded or-
der convergence has a simple characterization. We present the details in the
present note.
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Notation

N will denote the natural numbers, R the reals, and R+ the non-negative reals.
E will be a fixed Riesz space. a, b, c, d, e will denote elements of E, and λ, κ,
ρ elements of R. For notation and terminology not specially defined, we refer
the reader to [2] or any book on Riesz spaces.

Subsets of E will be denoted by A or B or by {aα}, it being understood
that the subscript runs through an index set A. However, if we speak of a net
{aα}, we will mean that A is a directed set, that is, it is endowed wit an order
≤ such that for each pair α1, α2, there exists α3 ≥ α1, α2.

If an (order bounded) set {aα} in E order converges to a ∈ E, we will
write

aα −→ a .

If E is Dedekind complete, order convergence can be described in terms of
lim supa aα and lim infα aα. Specifically

lim sup
α

aα = ∧α(∨β≥αaβ) ,

lim inf
α

aα = ∨α(∧β≥αaβ) ;

and the statement aα −→ a is equivalent to

lim inf
α

aα = a = lim sup
α

aα .

Given A ⊂ E, the disjoint Ad of A is the set {b ∈ E : |b| ∧ |a| = 0 for all
a ∈ A}. Ad is always a band. Suppose E is Dedekind complete. Then (by the
classical Riesz theorem) every band H of E is a projection band: E = H⊕Hd .
It follows that for every b ∈ E, we can talk about the component bH of b in
H. For B ⊂ E, we denote the set {bH : b ∈ B} by BH . Finally, if H is the
band generated by a single a ∈ E, we will feel free to write ba for bH and Ba
for BH .

1 Unbounded Order Convergence

We will use the following lemma for which we refer the reader to §§ 1,2 in [2].

1.1. For λ ∈ R+ and a0 ∈ E, the following operations on E preserve suprema
and infima:

a −→ λa , a −→ a+ a0 , a −→ a ∨ a0 , and a −→ a ∧ a0 .

It follows that they also preserve lim sup and lim inf, so, a fortiori, order
convergence.
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A net {aα} (not necessarily order bounded) in E will be said to converge
to a ∈ E unboundedly if for every pair b, c ∈ E with b ≤ c,

(aα ∧ c) ∨ b −→ (a ∧ c) ∨ b .

And we will write
aα

u−→ a .

Remarks.

(1) The above convergence can also be written (aα ∨ b) ∧ c −→ (a ∨ b) ∧ c.

(2) In the above definition, it suffices that the convergence hold for pairs b, c
such that b ≤ 0 ≤ c.

(3) For an order bounded net, unbounded order convergence clearly reduces
to order convergence.

Some elementary properties:

1.2. (1) If aα
u−→ a, then ρaα

u−→ ρa for all ρ ∈ R. In particular −aα
u−→ −a.

(2) If aα
u−→ a and dα

u−→ d, then

aα ∨ dα
u−→ a ∨ d ,

aα ∧ dα
u−→ a ∧ d .

One consequence: If aα ≤ dα for all α, then a ≤ d.

(3) Under unbounded order convergence, limits are unique: If aα
u−→ a and

aα
u−→ a

′
, then a = a

′
.

(4) If aα
u−→ a, dα

u−→ a, and aα ≤ eα ≤ dα for all α, then eα
u−→ a.

The verifications are straightforward.

Contained in the above are the following two simple properties. we state
them formally for reference below.

1.3. For a net {aα} in E and a ∈ E, the following are equivalent:

1◦ aα
u−→ 0 ,

2◦ |aα|
u−→ 0 .

The proof of the following is due to the referee. It replaces the previous
one in the original draft.
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1.4. If aα
u−→ a and dα

u−→ d, then

aα + dα
u−→ a+ d .

Proof. For each α,

0 ≤ |(aα + dα)− (a+ d)|

≤ |aα − a|+ |dα − d|

≤ 2|aα − a| ∨ 2|dα − d| .

By 1.3, 1.4, and (2) in 1.2, this last converges to 0 unboundedly. Hence by (4)
in 1.2,

|(aα + dα)− (a+ d)| u−→ 0 .

Applying 1.4 and 1.3 again gives us the desired result.

1.5. For a net {aα} in E and a ∈ E, the following are equivalent:

1◦ aα
u−→ a ;

2◦ (i) (aα)+
u−→ a+ ,

(ii) (aα)−
u−→ a− .

And they imply
|aα|

u−→ |a| .

Proof. Assume 1◦. Then by 1.3 and 1.4, |aα − a|
u−→ 0. Now

0 ≤ |(aα)+ − a+| ≤ |aα − a| for all α, so |(aα)+ − a+| u−→ 0

((4) in 1.2), so a+α
u−→ a+. Since −aα

u−→ −a, the same argument gives that

(aα)−
u−→ a−. That 2◦ implies 1◦ follows from 1.5 above. And the final

statement follows from | |aα| − |a| | ≤ |aα − a| and (4) in 1.2.

Remark. If in the above, a = 0, then the final statement is equivalent to the
first two.

We also record

1.6. If E is the direct sum of two bands: E = H1 ⊕ H2, the following are
equivalent:

1◦ aα
u−→ a ;

2◦ (i) (aα)H1

u−→ aH1
,

(ii) (aα)H2

u−→ aH2
.
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2 Weak Order Unit

In the present § we assume E contains a weak order unit, which we denote by
1 (for all a ∈ E, a ∧ 1 = 0 implies a = 0). Also that E is Dedekind complete.
This last assumption is for simplicity. Some of the following propositions
hold under weaker assumptions, but the spaces in which we are interested are
Dedekind complete.

2.1. For a net {aα} in E+, the following are equivalent:

1◦ aα
u−→ 0 ,

2◦ aα ∧ 1 −→ 0 .

Proof. Assume 2◦ holds. To establish 1◦, it suffices to show that for every
c ∈ E+, aα ∧ c −→ 0. We show the equivalent:

(i) lim sup
α

(aα ∧ c) = 0 .

(Since E is Dedekind complete, the left side exists.)

0 ≤ [lim sup
α

(aα ∧ c)] ∧ 1

= lim sup
α

(aα ∧ c ∧ 1) (1.1)

≤ lim sup
α

(aα ∧ 1)

= 0 . (2◦)

Thus [lim supα(aα ∧ c)]∧ 1 = 0. Since 1 is a weak order unit, we have (i).

Combining 1.3, 1.4, and the above gives us:

2.2 Theorem. For a net {aα} in E and a ∈ E, the following are equivalent:

1◦ aα
u−→ a ,

2◦ |aα − a| ∧ 1 −→ 0 .

We establish a second characterization of unbounded order convergence
in E (2.8 below). The reader will notice its resemblance to convergence in
measure.

Recall that for each a ∈ E, 1α denotes the component of 1 in the band
generated by a. So, for each a ∈ E and λ ∈ R, 1(a−λ1)+ is the component of
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1 in the band generated by (a− λ1)+. If E = RX , the space of real functions
on a set X (or more generally, a σ-order closed subset of RX), and 1 is the
constant function: 1(x) = 1 for all x, then for f ∈ E and λ ∈ R, 1(f−λ1)+ is
the characteristic function of the set {x ∈ X : f(x) > λ}. The components of
1 of the form 1(a−λ1)+ are thus generalizations of such characteristic functions.
This explains their role in the paper.

We record two properties which we will need. The first is an alternate form
of the statement that 1 is a weak order unit.

2.3. For a ∈ E, the following are equivalent:

1◦ 1α = 0 ,

2◦ a = 0 .

2.4. Given a ∈ E+, then for λ > 0,

1(a−λ1)+ ≤
1

λ
a .

Cf. (17.9) in [2] for a proof.

We proceed to develop our characterization.

2.5. Given a set {aα} in E+,

∧α1aα = 0 implies ∧α aα = 0 .

The converse is false.

Proof. For every α, 0 ≤ aα ∧ 1 ≤ 1aα , hence

0 ≤ (∧αaα) ∧ 1 = ∧α(aα ∧ 1) ≤ ∧α1aα = 0 .

Thus (∧αaα) ∧ 1 = 0, whence ∧αaα = 0. To see that the converse is false, set
an = 1

n1 (n = 1, 2, . . .).

However

2.6. For a set {aα} in E+, the following are equivalent:

1◦ For every λ > 0, ∧α1(aα−λ1)+ = 0 ,

2◦ ∧αaα = 0 .

Proof. Assume 1◦. We show ∧αaα ≤ λ1 for every λ > 0. Fix λ. By 2.5,
λα(aα−λ1)+ = 0. Hence ∧α(aα−λ1) ≤ 0, which can be written ∧αaα ≤ λ1.
The converse implication follows from 2.4.
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Remark. 1◦ is clearly equivalent to:

(1◦)
′
∧α 1(aα−n1) = 0 (n = 1, 2, . . .) .

2.7. Given a net {aα} in E+,

1aα −→ 0 implies aα
u−→ 0 .

The converse is false.

The proof is essentially the same as for 2.5, using 2.1.

However, again,

2.8 Theorem. For a net {aα} in E+, the following are equivalent:

1◦ For every λ > 0, 1(aα−n1) −→ 0 ,

2◦ aα
u−→ 0 .

Proof. Assume 1◦, and suppose first that {aα} is order bounded. We show
that

lim sup
α

aα ≤ λ1 for every λ > 0 .

Fix λ. By 2.7, (aα−λ1)+
u−→ 0. In particular, lim supα(aα−λ1)+ = 0, hence

lim supα(aα − λ1) ≤ 0, which can be written lim supα aα ≤ λ1.
Now drop the supposition that {aα} is order bounded. We show aα∧1→ 0

(hence, by 2.1, aα
u−→ 0). For every λ > 0,

0 ≤ 1(aα∧1−λ1)+ ≤ 1(aα−λ1)+ −→ 0 .

Since {aα∧1} is order bounded, it follows from the first part of the proof that
aα ∧ 1 −→ 0. As before, the converse implication follows from 2.4.

Remark. Again, 1◦ is clearly equivalent to:

(1◦)
′

1(aα−n1+) −→ 0 (n = 1, 2, . . .) .

3 A Useful Theorem

A Riesz space E is called laterly complete if for every set {aα} in E satisfying

aα1
∧ aα2

= 0 for α1 6= α2 ,
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∧αaα exists. We will say it is laterally σ-complete if this property holds for
countable sets {an}. For a set X, RX is an example of a laterly complete Riesz
space.

In the present §, we confine ourselves to E Dedekind σ-complete and to
sequences. Note that the results of §§ 1,2 hold for sequences when the space
E is Dedekind σ-complete.

Nakano states in [5] that if E is Dedekind σ-complete and laterally σ-
complete, then every sequence which order converges unboundedly is order
bounded – hence, as we have noted, order converges. We present a proof of
this theorem. Our original proof required that E have a weak order unit. The
referee supplied the following Lemma, enabling us to eliminate that condition.

3.1 Lemma. Given that E is Dedekind σ-complete and laterally σ-complete.
Then for a countable subset {an} of E, the band H generated by {an} has the
following properties:

(1) H is a projection band;

(2) H is Dedekind σ-complete;

(3) H is laterally σ-complete;

(4) H has a weak order unit.

Proof. As is well known, (1) follows from the Dedekind σ-completeness of
E; and (2) and (3) are straightforward. We prove (4).

With no loss of generality, we can assume {an} ⊂ E+. For each n =
1, 2, . . ., let Gn be the band of E generated by {a1, . . . , an}. Then (as for
(1)) the Gn’s are projection bands, and, denoting order closure by “cl”, H =
cl(∪nGn). Since ∪nGn =

∑
nGn, this can also be written H = cl(

∑
nGn).

Now set H1 = G1, and for each n > 1, set Hn = Gn ∩ (Gn−1)d. Then

The Hn’s are projection bands;

Hn ∩Hm = 0 for n 6= m;

H = cl(
∑
nHn).

Finally, set bn = (an)Hn (n = 1, 2, . . .). Then

(i) bn ∧ bm = 0 n 6= m ;

(ii) for each n, bn is a weak order unit for Hn.
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(i) is clear; we show (ii). Gn is the band generated by a1 ∨ . . . ∨ an, which
is therefore a weak order unit for Gn. It follows (a1 ∨ . . . ∨ an)Hn = bn.

Since H is laterally σ-complete, (i) gives us that b = ∨nbn exists in H, and
it follows easily from (ii) that it is a weak order unit for H.

3.2 (Nakano). If E is Dedekind σ-complete and laterally σ-complete, then
every sequence {an} in E which order converges unboundedly is order bounded.

Proof. With no loss of generality, we can assume that {an} ⊂ E+ and an
u−→

0 . From the Lemma, we can confine ourselves to the band of E generated by
{an}, so for simplicity, we will simply assume that E contains a weak order
unit 1.

By 2.8, 1(an−1)+ −→ 0. For each n, set

dn = ∧m≥n1(am−1)+ ,

Fn = the band generated by dn,

cn = 1− dn.

Then

dn ↓ 0 ;

F1 ⊃ F2 ⊃ . . . , with ∩n Fn = 0 ;

cn ↑ 1 ;

(F1)d ⊂ (F2)d ⊂ . . . , with E = cl
[∑

n(Fn)d
]

;

for each n,

(am)(Fn)d ≤ 1 for all m ≥ n .

Now set

e1 = c1, en = cn − cn−1 for n > 1 ;

Hn = the band generated by en (n = 1, 2, . . .).

Then

(i) Hn ∩Hm = 0 n 6= m ;

(ii)
∑n

1 Hi = (Fn)d ( n = 1, 2, . . .);

(iii) E = cl(
∑
nHn) ;
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(iv) for each n,

(am)Hn ≤ en for m ≥ n .

It follows from (iv) that for each n,

{(am)Hn : m = 1, 2, . . .} ≤ (∧nm=1(am)Hn) ∧ en .

Denote the right side by bn. The bn’s are mutually disjoint, hence, since E is
laterally σ-complete, b = ∨nbn exists. Then {an} ≤ b, and we are through.

3.3 Corollary. If E is Dedekind σ-complete and laterally σ-complete, then
for a sequence {an} in E and a ∈ E, the following are equivalent:

1◦ an
u−→ a ,

2◦ an −→ a .
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