Claude-Alain Faure, Université de Lausanne, Section de mathématiques, CH-1015 Lausanne-Dorigny, Switzerland

A DESCRIPTIVE DEFINITION OF THE KH-STIELTJES INTEGRAL[†]

Abstract

This paper gives a descriptive definition of Stieltjes integrals (on a compact interval of the real line) in the frame of Kurzweil-Henstock integration. Five conditions characterize the functions that are an indefinite integral with respect to some continuous function of generalized bounded variation.

1 Introduction

A descriptive definition of the Kurzweil-Henstock integral, involving differentiability almost everywhere together with some null condition, is known since a few years (cf. for instance [3]). A more complete fundamental theorem was given by W. B. Jurkat and R. W. Knizia for the multidimensional weak integral in [4] and [5], where these authors introduced a useful and natural outer measure associated to any (interval) function.

In a preceding paper [1], I gave such a fundamental theorem for the multidimensional integrals of J. Mawhin [6] and W. F. Pfeffer [8]. In the present one, I propose a similar theorem for the Kurzweil-Henstock-Stieltjes integral on a compact interval $[a,b]\subseteq\mathbb{R}$. Five equivalent conditions thus characterize the functions $F:[a,b]\to\mathbb{R}$ which are an indefinite integral of some function $f:[a,b]\to\mathbb{R}$ relatively to $U:[a,b]\to\mathbb{R}$, cf. Theorem 4.7 and Corollary 5.6. The function U is assumed to be continuous and VBG $^{\circ}$ (equivalently, VBG $_*$ in the sense of Saks [9]).

Key Words: gauge integral, Stieltjes sums, fundamental theorem of calculus Mathematical Reviews subject classification: Primary 26A39, 26A42; Secondary 26A45 Received by the editors September 15, 1994

[†]The Managing Editors apologize to the author for the delay in publication of this article.
*This work was done at the Catholic University of Louvain (Belgium) and it was supported by a grant from the Swiss National Science Foundation.

Two difficulties arise in comparison with the non-Stieltjes case. First, the use of VBG° functions requires technical adjustments in many proofs (often along the same lines). Then, especially, a strong theorem on relative differentiation is needed, cf. Theorem 3.2 (and [2] for a more general version).

At the end of the paper, as an application of the fundamental theorem, a substitution theorem is given for the Kurzweil-Henstock integral, which uses a measurable and bounded function f. Such a theorem is well-known for the Lebesgue integral, but I have not found any reference for the KH-integral.

2 Preliminaries

Definition 2.1. A system S on a set $A \subseteq [a, b]$ is given by a finite family of intervals $a \le a_1 < b_1 \le ... \le a_r < b_r \le b$ together with a family of associated points $x_i \in [a_i, b_i] \cap A$. Now let $\delta : A \to \mathbb{R}_+$ be any gauge on the set A. One says that the system S is δ -fine if $[a_i, b_i] \subseteq (x_i - \delta(x_i), x_i + \delta(x_i))$ for every i = 1, ..., r. We denote by $S(A, \delta)$ the set of all δ -fine systems S on A.

Definition 2.2. A division of the interval [a,b] is a system D on [a,b] which satisfies $b_i = a_{i+1}$ for every $i = 0, \ldots, r$ (where $b_0 = a$ and $a_{r+1} = b$). Given two functions $f, U : [a,b] \to \mathbb{R}$ one can form the Riemann-Stieltjes sum

$$S(f, U, D) = \sum_{i=1}^{r} f(x_i) (U(b_i) - U(a_i)).$$

Then one says that the function f is integrable relatively to the function U, or shortly that f is U-integrable, if there exists a number $I \in \mathbb{R}$ such that for any $\varepsilon > 0$ there exists a gauge $\delta : [a,b] \to \mathbb{R}_+$ with the property

$$|S(f, U, D) - I| < \varepsilon$$
 for every δ -fine division D of $[a, b]$.

The integral $I \in \mathbb{R}$ is clearly unique, and denoted by $\int_a^b f \, dU$. The following propositions 2.3 and 2.4 are well-known properties of the integral.

Proposition 2.3. Let $f, U : [a, b] \to \mathbb{R}$ and a < c < b. Then f is integrable relatively to the function U on the interval [a, b] if and only if both integrals $\int_a^c f \, dU$ and $\int_c^b f \, dU$ exist. And one has $\int_a^b f \, dU = \int_a^c f \, dU + \int_c^b f \, dU$.

Proposition 2.4. Saks-Henstock Lemma Let $f:[a,b] \to \mathbb{R}$ be integrable relatively to the function $U:[a,b] \to \mathbb{R}$. We suppose given a gauge δ on the interval [a,b] such that $|S(f,U,D) - \int_a^b f \, \mathrm{d}U| < \varepsilon$ for every δ -fine division D of [a,b]. Then for any δ -fine system S one has the following inequalities:

1)
$$\left|\sum_{i=1}^r \left\{ f(x_i) \left(U(b_i) - U(a_i) \right) - \int_{a_i}^{b_i} f \ dU \right\} \right| \le \varepsilon$$
,

2)
$$\sum_{i=1}^{r} \left| f(x_i) \left(U(b_i) - U(a_i) \right) - \int_{a_i}^{b_i} f \ dU \right| \leq 2\varepsilon.$$

Definition 2.5. Let $F:[a,b] \to \mathbb{R}$ be any function. Given a system S on a set $A \subseteq [a,b]$ one forms the variational sum $W_F(S) = \sum_{i=1}^r |F(b_i) - F(a_i)|$. The F-outer measure of the subset A is the number

$$m_F(A) = \inf_{\delta} \sup \{W_F(S) / S \in \mathcal{S}(A, \delta)\},\$$

where δ runs over all gauges $A \to \mathbb{R}_+$. The following proposition shows that m_F is a metric outer measure (for the proof see Proposition 3.3 in [1]).

Proposition 2.6. The functional m_F has the following properties:

- 1) $m_F(A) \ge 0$ for every $A \subseteq [a, b]$, and $m_F(\emptyset) = 0$,
- 2) $A \subseteq B$ implies $m_F(A) \le m_F(B)$,
- 3) $m_F(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} m_F(A_n)$ for every sequence of sets $A_n \subseteq [a,b]$,
- **4)** $m_F(A \cup B) = m_F(A) + m_F(B)$ provided A and B are contained in two disjoint open subsets of the interval [a,b].

Remark 2.7. As one could expect, in the special case where F(x) = x the outer measure m_F is the Lebesgue outer measure, cf. Proposition 3.4 in [1].

Definition 2.8. Let $U:[a,b] \to \mathbb{R}$ be a fixed function. One says that a set $A \subseteq [a,b]$ is U-null if one can write $A = D \cup N$ with D at most denumerable and $m_U(N) = 0$. As usual, a property is said to hold U-almost everywhere if the exceptional set is U-null.

Proposition 2.9. For functions $f, U : [a, b] \to \mathbb{R}$ the following are equivalent:

- 1) f is U-integrable and $\int_a^x f \ dU = 0$ for every $x \in (a, b]$,
- **2)** the set $E = \{x \in [a,b] / f(x) \neq 0\}$ satisfies $m_U(E) = 0$.

PROOF. $(1 \Rightarrow 2)$ We show that each set $E_n := \{x \in [a,b] / |f(x)| \geq \frac{1}{n}\}$ satisfies $m_U(E_n) = 0$. Given $\varepsilon > 0$ there exists a gauge $\delta : [a,b] \to \mathbb{R}_+$ such that $|S(f,U,D)| < \varepsilon$ for every δ -fine division D of [a,b]. Now let S be any δ -fine system on E_n . By Saks-Henstock Lemma one obtains

$$\frac{1}{n}W_{U}(S) = \sum_{i=1}^{r} \frac{1}{n} |U(b_{i}) - U(a_{i})| \le \sum_{i=1}^{r} |f(x_{i})(U(b_{i}) - U(a_{i}))| \le 2\varepsilon,$$

and this proves that $m_U(E_n) \leq 2n\varepsilon$. So the assertion follows.

 $(2 \Rightarrow 1)$ Let $E_n := \{x \in [a,b] / n - 1 < |f(x)| \le n\}$. Then there exists for each $n \in \mathbb{N}$ a gauge $\delta_n : E_n \to \mathbb{R}_+$ such that $W_U(S) < \varepsilon \frac{1}{n} 2^{-n}$ for any system $S \in \mathcal{S}(E_n, \delta_n)$. Taking arbitrary $\delta(x)$ if f(x) = 0 and $\delta(x) = \delta_n(x)$ if $x \in E_n$, one gets a gauge $\delta : [a, b] \to \mathbb{R}_+$. For any δ -fine division D of [a, b] one has

$$\left| S(f, U, D) \right| \le \sum_{n=1}^{\infty} \sum_{x_i \in E_n} \left| f(x_i) \left(U(b_i) - U(a_i) \right) \right| \le \sum_{n=1}^{\infty} n W_U(S_n) < \varepsilon.$$

Therefore f is U-integrable on [a, b] and $\int_a^b f dU = 0$.

3 Differentiation with Respect to VBG^o Functions

Definition 3.1. Let $F, U : [a, b] \to \mathbb{R}$ be any functions. The *lower* and *upper* derivatives of F with respect to U,

$$\underline{\mathbf{D}}_U F(x) = \liminf_{y \to x} \frac{F(y) - F(x)}{U(y) - U(x)} \text{ and } \overline{\mathbf{D}}_U F(x) = \limsup_{y \to x} \frac{F(y) - F(x)}{U(y) - U(x)},$$

are defined for all $x \in [a,b]$ such that $U(y) \neq U(x)$ in a neighborhood of x. The function F is differentiable relatively to U, or shortly U-differentiable, at x if $\underline{D}F(x) = \overline{D}F(x) \in \mathbb{R}$, this common value being denoted by $F'_U(x)$.

We shall use the following version of the Denjoy-Young-Saks theorem:

Theorem 3.2. Let $U: [a,b] \to \mathbb{R}$ be any strictly increasing function. Then a function $F: [a,b] \to \mathbb{R}$ is U-differentiable at U-almost every point of the sets $\{x \in [a,b]/\underline{D}_U F(x) > -\infty\}$ and $\{x \in [a,b]/\overline{D}_U F(x) < \infty\}$.

PROOF. This is a particular case of Théorème 7 in [2].

Definition 3.3. One says that a function $F:[a,b] \to \mathbb{R}$ is of bounded variation on a set $E \subseteq [a,b]$, or VB° on E, if one has $m_F(E) < \infty$. One says that the function F is of generalized bounded variation, or VBG° , if there exists a decomposition $[a,b] = \bigcup_{n=1}^{\infty} E_n$ (not necessarily disjoint) such that F is of bounded variation on each subset E_n .

Remark 3.4. Since a function $F : [a, b] \to \mathbb{R}$ is continuous at x if and only if $m_F(\{x\}) = 0$, it follows that the set of discontinuities of a VBG° function is at most denumerable.

Lemma 3.5. If a function $F:[a,b] \to \mathbb{R}$ is of bounded variation on a subset $E \subseteq [a,b]$, then there exist a strictly increasing function $H:[a,b] \to \mathbb{R}$ and a gauge $\delta: E \to \mathbb{R}_+$ such that

$$x \in E$$
 and $|y - x| < \delta(x)$ imply $|F(y) - F(x)| \le |H(y) - H(x)|$.

PROOF. There exists a gauge $\delta: E \to \mathbb{R}_+$ such that $W_F(S) < m_F(E) + 1$ for every δ -fine system S on E. Then the function

$$H(x) := x + \sup \{W_F(S) / S \in \mathcal{S}(E, \delta) \text{ and } S \subseteq [a, x]\}$$

satisfies the desired condition (easy verification).

Lemma 3.6. A function $F:[a,b] \to \mathbb{R}$ is of generalized bounded variation if and only if there exists a strictly increasing function $H:[a,b] \to \mathbb{R}$ such that

$$|D|_H F(x) := \limsup_{y \to x} \left| \frac{F(y) - F(x)}{H(y) - H(x)} \right| < \infty \text{ for every } x \in [a, b].$$

PROOF. (\Rightarrow) By definition one has $[a,b] = \bigcup_{n=1}^{\infty} E_n$ with $m_F(E_n) < \infty$ for every $n \in \mathbb{N}$. Considering for each integer n a function $H_n : [a,b] \to \mathbb{R}$ and a gauge $\delta_n : E_n \to \mathbb{R}_+$ as in the preceding lemma, one defines the function

$$H(x) := \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{H_n(x) - H_n(a)}{H_n(b) - H_n(a)}.$$

For $x \in E_n$ one remarks that $|D|_H F(x) \le 2^n (H_n(b) - H_n(a))$.

(⇐) For each set $E_n := \{x \in [a, b] / |D|_H F(x) < n\}$ one easily proves the inequality $m_F(E_n) \le n(H(b) - H(a))$.

Remark 3.7. According to a theorem of Ward (cf. [9] page 236) it follows that a function $F:[a,b] \to \mathbb{R}$ is VBG° if and only if it is bounded and VBG_{*} in the sense of Saks.

Lemma 3.8. Let $H:[a,b] \to \mathbb{R}$ be a strictly increasing function and let A be a subset of [a,b] with $m_H(A)=0$. If the function $F:[a,b] \to \mathbb{R}$ satisfies $|D|_H F(x) < \infty$ for every $x \in A$, then one has $m_F(A)=0$.

PROOF. We show that $m_F(A_n) = 0$, where $A_n := \{x \in A / |D|_H F(x) < n\}$. Given $\varepsilon > 0$ there exists a gauge $\delta : A_n \to \mathbb{R}_+$ such that $W_H(S) < \varepsilon$ for every system $S \in \mathcal{S}(A_n, \delta)$. We may assume that $x \in A_n$ and $|y - x| < \delta(x)$ imply |F(y) - F(x)| < n |H(y) - H(x)|. Then $W_F(S) < n \varepsilon$ for every $S \in \mathcal{S}(A_n, \delta)$, and this proves that $m_F(A_n) \le n \varepsilon$.

Lemma 3.9. Let $H:[a,b] \to \mathbb{R}$ be a strictly increasing function. If a function $F:[a,b] \to \mathbb{R}$ satisfies $F'_H(x) = 0$ for every $x \in A$, then $m_F(A) = 0$.

PROOF. Easy verification (cf. Lemme 5 in [2]).

Proposition 3.10. Let $F, U : [a, b] \to \mathbb{R}$ be two VBG° functions. Then F is U-differentiable at U-almost every point of [a, b].

PROOF. Let $H_F, H_U : [a, b] \to \mathbb{R}$ be strictly increasing functions as in 3.6 and consider the function $H(x) := H_F(x) + H_U(x)$. By Theorem 3.2 the interval [a, b] can be decomposed into the disjoint union of

- 1) a set E_1 where F and U are H-differentiable, and
- 2) a H-null set E_2 .

By 3.9 the set $E_0 = \{x \in E_1 / U'_H(x) = 0\}$ is *U*-null, and by 3.8 the set E_2 is *U*-null. Now if $x \in E_1 \setminus E_0$, then one has $F'_U(x) = F'_H(x) \cdot U'_H(x)^{-1}$.

4 The Fundamental Theorem

Throughout this section $U:[a,b]\to\mathbb{R}$ is a fixed continuous VBG° function.

Definition 4.1. A function $F:[a,b]\to\mathbb{R}$ is called U-Lipschitzian on a set $E\subseteq [a,b]$, or LZ_U on E, if there exists C>0 such that $m_F(A)\leq C\cdot m_U(A)$ for every subset $A\subseteq E$. The function F is called generalized U-Lipschitzian, or LZG_U , if there exists some decomposition $[a,b]=\bigcup_{n=1}^{\infty}E_n$ such that F is U-Lipschitzian on each subset E_n .

Similarly, a function $F:[a,b]\to\mathbb{R}$ is called *U*-absolutely continuous on a set E, or AC_U on E, if for any $\varepsilon>0$ there exists $\delta>0$ such that $A\subseteq E$ and $m_U(A)<\delta$ imply $m_F(A)<\varepsilon$. And it is called generalized *U*-absolutely continuous, or ACG_U , if there exists some decomposition $[a,b]=\bigcup_{n=1}^\infty E_n$ such that F is U-absolutely continuous on each subset E_n .

Finally, one says that a function $F:[a,b] \to \mathbb{R}$ is *U*-variationally normal, or shortly *U*-normal, if $m_U(A) = 0$ implies $m_F(A) = 0$.

Lemma 4.2. If the function U is of bounded variation on the set $E \subseteq [a, b]$, then the function $V(x) = m_U(E \cap [a, x])$ is continuous.

PROOF. Since U is continuous one has $m_U(E \cap [c,d]) = m_U(E \cap (c,d))$ for every subinterval $[c,d] \subseteq [a,b]$. Now let x_n be a strictly increasing sequence with $x_0 = a$ and $\lim x_n = x$. We show that $V(x_n)$ converges to V(x). Using the subadditivity of m_U , cf. Proposition 2.6, one obtains

$$V(x) \le \sum_{n=1}^{\infty} m_U(E \cap [x_{n-1}, x_n)) = \sum_{n=1}^{\infty} m_U(E \cap (x_{n-1}, x_n)).$$

And using Proposition 2.6 once again one concludes that

$$\sum_{n=1}^{s} m_{U} (E \cap (x_{n-1}, x_{n})) = m_{U} (E \cap \bigcup_{n=1}^{s} (x_{n-1}, x_{n})) = V(x_{s})$$

for every $s \in \mathbb{N}$. Thus $V(x) \leq \lim V(x_s) \leq V(x)$ and the assertion is proved. The continuity on the right side of x is proved similarly, by considering the function $V(b) - V(x) = m_U(E \cap (x, b])$.

Lemma 4.3. Any LZG_U function is ACG_U , and any ACG_U function is VBG° and U-variationally normal.

PROOF. We show that if $F:[a,b] \to \mathbb{R}$ is AC_U and the function U is VB° on a set $E \subseteq [a,b]$, then F is VB° on E (the other affirmations are evident). We consider the function V(x) of the preceding lemma. By definition there exists $\delta > 0$ such that $A \subseteq E$ and $m_U(A) < \delta$ imply $m_F(A) < 1$. And by continuity of the function V we can choose a partition $a = x_0 < x_1 < \ldots < x_n = b$ such that $V(x_i) - V(x_{i-1}) = m_U(E \cap [x_{i-1}, x_i]) < \delta$ for every $i = 1, \ldots, n$. Thus we obtain $m_F(E) < n$, and the assertion is proved.

Proposition 4.4. Let $f:[a,b] \to \mathbb{R}$ be integrable relatively to U. Then the indefinite integral $F(x) = \int_a^x f \, \mathrm{d}U$ is LZG_U .

PROOF. We show that if the function U is VB° on the set $E \subseteq [a, b]$, then F is LZ_U on each subset $E_n := \{x \in E \mid |f(x)| \leq n\}$. So let $A \subseteq E_n$ be a fixed subset. Given $\varepsilon > 0$ there exist two gauges δ_1 on [a, b] and δ_2 on A such that

- 1) $|S(f,U,D) \int_a^b f dU| < \varepsilon$ for every δ_1 -fine division D of [a,b],
- 2) $W_U(S) < m_U(A) + \varepsilon$ for every system $S \in \mathcal{S}(A, \delta_2)$.

We consider the gauge $\delta: A \to \mathbb{R}_+$ defined by $\delta(x) = \min(\delta_1(x), \delta_2(x))$. Now let S be any δ -fine system on A. By Saks-Henstock Lemma we have

$$W_{F}(S) = \sum_{i=1}^{r} |F(b_{i}) - F(a_{i})| \le \sum_{i=1}^{r} |f(x_{i})(U(b_{i}) - U(a_{i}))| + \sum_{i=1}^{r} |F(b_{i}) - F(a_{i}) - f(x_{i})(U(b_{i}) - U(a_{i}))| \le n(m_{U}(A) + \varepsilon) + 2\varepsilon.$$

Thus we obtain $m_F(A) \leq n \cdot m_U(A) + (n+2)\varepsilon$, and since ε is arbitrary this proves that F is U-Lipschitzian on the set E_n .

For the next proposition it is useful to introduce some notations. Given a function F on [a,b] we put $E_F = \{x \in [a,b] / F \text{ is not } U\text{-differentiable at } x\}$, and we define the derivative $D_UF : [a,b] \to \mathbb{R}$ by $D_UF(x) = F_U'(x)$ if $x \notin E_F$ and $D_UF(x) = 0$ if $x \in E_F$.

Proposition 4.5. Let $F:[a,b] \to \mathbb{R}$ be a function such that $m_F(E_F) = 0$. Then the derivative D_UF is integrable relatively to U. Furthermore, one has $\int_a^x D_U f \, dU = F(x) - F(a)$ for every $x \in (a,b]$.

PROOF. We show that $\int_a^b D_U f dU = F(b) - F(a)$. Let $[a,b] = \bigcup_{n=1}^\infty E_n$ be a disjoint decomposition such that $m_U(E_n) < \infty$ for every $n \in \mathbb{N}$. There exists for each n a gauge $\delta_n' : E_n \to \mathbb{R}_+$ such that $W_U(S_n) < m_U(E_n) + 1$ for every system $S_n \in \mathcal{S}(E_n, \delta_n')$. Define $\varepsilon_n > 0$ by $2^n \varepsilon_n (m_U(E_n) + 1) = \varepsilon$. For each $x \in E_n \setminus E_F$ there exists $\delta_n(x) > 0$ such that $|y - x| < \delta_n(x)$ implies

$$|F(y) - F(x) - F'_{U}(x) (U(y) - U(x))| \le \varepsilon_n |U(y) - U(x)|.$$

One may assume that $\delta_n(x) \leq \delta'_n(x)$. And by hypothesis there exists a gauge $\delta: E_F \to \mathbb{R}_+$ such that $W_F(S) < \varepsilon$ for every system $S \in \mathcal{S}(E_F, \delta)$. One thus gets a gauge $\delta: [a, b] \to \mathbb{R}_+$. Now let D be any δ -fine division of the interval [a, b]. Then one has the following inequality:

$$\begin{split} \left| S(D_U F, U, D) - F(b) + F(a) \right| &\leq \sum_{x_i \in E_F} \left| F(b_i) - F(a_i) \right| + \\ \sum_{n=1}^{\infty} \sum_{x_i \in E_n \setminus E_F} \left| F'_U(x_i) \left(U(b_i) - U(x_i) \right) - \left(F(b_i) - F(x_i) \right) \right| + \\ \sum_{n=1}^{\infty} \sum_{x_i \in E_n \setminus E_F} \left| F'_U(x_i) \left(U(x_i) - U(a_i) \right) - \left(F(x_i) - F(a_i) \right) \right| < \\ \varepsilon + \sum_{n=1}^{\infty} \varepsilon_n W_U(S_n^+) + \sum_{n=1}^{\infty} \varepsilon_n W_U(S_n^-) \leq \varepsilon + 2 \sum_{n=1}^{\infty} 2^{-n} \varepsilon = 3\varepsilon, \end{split}$$

and this proves that $D_U F$ is integrable with respect to U.

Corollary 4.6. Let $F:[a,b] \to \mathbb{R}$ be a continuous function. If there exists a denumerable set $D \subseteq [a,b]$ such that F is U-differentiable on $[a,b] \setminus D$, then $F(x) = F(a) + \int_a^x D_U F \, \mathrm{d}U$ for every $x \in (a,b]$.

PROOF. This is immediate since $m_F(D) = 0$, cf. Remark 3.4.

Theorem 4.7. For a function $F:[a,b] \to \mathbb{R}$ the following are equivalent:

- 1) F is an indefinite integral relatively to U,
- 2) F is LZG_{U} .
- 3) F is ACG_{II} .
- 4) F is VBG° and U-normal,
- 5) F is U-differentiable U-almost everywhere and U-normal.

PROOF. This follows from Propositions 4.4, 4.3, 3.10 and 4.5 (another equivalent condition will be given in Corollary 5.6).

Corollary 4.8. Let $f:[a,b] \to \mathbb{R}$ be a *U*-integrable function and let $F(x) = \int_a^x f \, \mathrm{d}U$ be its indefinite integral. Then $F_U'(x) = f(x)$ *U*-almost everywhere.

PROOF. By 2.9 the set $\{x \in [a,b]/f(x) \neq D_U F(x)\}$ is *U*-null.

5 The Lusin Condition (N)

Let $F:[a,b]\to\mathbb{R}$ be fixed. We want to compare the two following conditions (where m denotes the Lebesgue outer measure):

- 1) m(A) = 0 implies $m_F(A) = 0$ (see Definition 4.1), and
- 2) m(A) = 0 implies m(F(A)) = 0, i.e. the Lusin condition (N).

Lemma 5.1. For any set $A \subseteq [a,b]$ with $m_F(A) = 0$ one has m(F(A)) = 0.

PROOF. Given $\varepsilon > 0$ there exists a gauge $\delta : A \to \mathbb{R}_+$ such that $W_F(S) < \varepsilon$ for every system $S \in \mathcal{S}(A, \delta)$. By the so-called Covering Lemma (McLeod [7] page 143) there exist two (possibly finite) sequences of non-overlapping intervals $I_n = [a_n, b_n]$ and of points $x_n \in I_n \cap A$ such that

$$I_n \subseteq (x_n - \delta(x_n), x_n + \delta(x_n))$$
 for every n , and $A \subseteq \bigcup_n I_n$.

For each n we define $m_n = \inf(F, I_n)$ and $M_n = \sup(F, I_n)$, and we choose a point $y_n \in I_n$ with $M_n - m_n \le 3 |F(y_n) - F(x_n)|$. For every finite sum one has $\sum_{n=1}^r (M_n - m_n) \le 3 W_F(S_r) < 3\varepsilon$. Therefore $\sum_n (M_n - m_n) \le 3\varepsilon$, and this shows that $m(F(A)) \le 3\varepsilon$ since $F(A) \subseteq \bigcup_n [m_n, M_n]$.

Lemma 5.2. Let $C_F = \{x \in [a,b] / y \le x \le z \text{ implies } F(y) \le F(x) \le F(z) \}$. If the function F is continuous on a subset $A \subseteq C_F$ satisfying m(F(A)) = 0, then one has $m_F(A) = 0$.

PROOF. Given $\varepsilon > 0$ there exists by hypothesis a gauge $\eta : F(A) \to \mathbb{R}_+$ such that $W_{\mathrm{id}}(T) < \varepsilon$ for every system $T \in \mathcal{S}\big(F(A), \eta\big)$, cf. Remark 2.7 (one may also work with the usual definition of sets of measure zero). By continuity of F there exists a gauge $\delta : A \to \mathbb{R}_+$ such that $x \in A$ and $|y - x| < \delta(x)$ imply $|F(y) - F(x)| < \eta(F(x))$. If S is any δ -fine system on A, then one has

$$W_F(S) = \sum_{i=1}^{r} (F(b_i) - F(x_i) + F(x_i) - F(a_i)) = W_{id}(T_1) + W_{id}(T_2)$$

(use that $x_i \in C_F$ for every $1 \le i \le r$), and therefore $m_F(A) \le 2\varepsilon$.

Proposition 5.3. For a subset $A \subseteq [a,b]$ the following are equivalent:

- 1) $m_F(A) = 0$,
- 2) F is continuous on A, m(F(A)) = 0 and $m_F(A) < \infty$.

PROOF. $(2 \Rightarrow 1)$ Since F is of bounded variation on A there exists by 3.5 a strictly increasing function $H: [a,b] \to \mathbb{R}$ and a gauge $\delta: A \to \mathbb{R}_+$ such that $x \in A$ and $|y-x| < \delta(x)$ imply $|F(y)-F(x)| \leq |H(y)-H(x)|$. We remark that this implies $m_F(N) = 0$ for every subset $N \subseteq A$ satisfying $m_H(N) = 0$. Since by Theorem 3.2 the set $E = \{x \in A \mid F \text{ is not } H\text{-differentiable at } x\}$ is H-null we deduce that $m_F(E) \leq m_F(N) + m_F(D) = 0$.

By Lemma 3.9 the set $A_0 = \{x \in A / F_H'(x) = 0\}$ satisfies $m_F(A) = 0$. So it remains to consider the sets $A_{\pm} = \{x \in A / \pm F_H'(x) > 0\}$. Obviously, one has $A_{+} \subseteq \bigcup_{n=1}^{\infty} A_n$, where

$$A_n = \left\{ x \in A / x \in [y, z] \subseteq \left(x - \frac{1}{n}, x + \frac{1}{n} \right) \Rightarrow F(y) \le F(x) \le F(z) \right\}.$$

By the preceding lemma one obtains $m_F(A_n) = 0$ for every $n \in \mathbb{N}$ (divide the interval [a, b] into finitely many small intervals). Therefore $m_F(A_+) = 0$, and similarly $m_F(A_-) = 0$, which proves the proposition.

Question 5.4. The example of Saks ([9] p. 224) shows that the hypothesis $m_F(A) < \infty$ cannot be released. But could one put in place of it the weaker assumption that F is differentiable almost everywhere? Or in other words, is there any function satisfying the Lusin condition (N) that is continuous and differentiable almost everywhere when not VBG° ?

Definition 5.5. Let $U:[a,b] \to \mathbb{R}$ be a continuous VBG° function as in the preceding section. One says that a function $F:[a,b] \to \mathbb{R}$ satisfies the *Lusin condition U-(N)* if m(U(A)) = 0 implies m(F(A)) = 0.

Corollary 5.6. For a function $F:[a,b] \to \mathbb{R}$ the following are equivalent;

- 1) F is an indefinite integral with respect to U,
- **6**) F is continuous, VBG° and it satisfies the Lusin condition U-(N).

PROOF. Using Proposition 5.3 one obtains m(U(A)) = 0 iff $m_U(A) = 0$, and similarly m(F(A)) = 0 iff $m_F(A) = 0$.

As another corollary of Proposition 5.3 we give the following substitution theorem for the Kurzweil-Henstock integral (which might be proved also by a more direct method):

Corollary 5.7. Let $U:[a,b] \to \mathbb{R}$ be continuous and VBG° , and consider the interval [c,d] = U([a,b]). If the function $f:[c,d] \to \mathbb{R}$ is measurable and bounded, then $f \circ U$ is integrable relatively to U and $\int_a^b f \circ U \, dU = \int_{U(a)}^{U(b)} f$.

PROOF. Let $F(y) = \int_c^y f$ be the indefinite integral of f. Clearly, the function F is Lipschitzian, and this implies that $F \circ U$ is LZG_U. By the fundamental theorem 4.7 we obtain $\int_{U(a)}^{U(b)} f = F(U(b)) - F(U(a)) = \int_a^b D_U(F \circ U) \, \mathrm{d}U$. So we are led to consider the following sets:

- 1) $A = \{x \in [a, b] / F \circ U \text{ is not } U\text{-differentiable at } x\},\$
- 2) $B = \{x \notin A / (F \circ U)'_{U}(x) \neq f(U(x))\},$
- 3) $C = \{ y \in [c, d] / F \text{ is not differentiable at } y \text{ or } F'(y) \neq f(y) \},$

One has $m_U(A) = 0$ by Theorem 3.10 (use that U is continuous). And since $U(B) \subseteq C$ is of measure zero one gets $m_U(B) = 0$ by Proposition 5.3. Hence the set $E = \{x \in [a,b] / D_U(F \circ U)(x) \neq f(U(x))\}$ satisfies $m_U(E) = 0$, and the assertion follows from Proposition 2.9.

In particular, if U is an indefinite integral, i.e. $U(x) = U(a) + \int_a^x g$, then $(f \circ U) \cdot g$ is integrable and $\int_a^b (f \circ U) \cdot g = \int_{U(a)}^{U(b)} f$ (left as an exercise).

References

- [1] C.-A. Faure, A descriptive definition of some multidimensional gauge integrals, Czech. Math. J. **45** (1995), 549–562.
- [2] C.-A. Faure, Sur le théorème de Denjoy-Young-Saks, C. R. Acad. Sci. Paris Série I Math. **320** (1995), 415–418.
- [3] J. Jarník and J. Kurzweil, A general form of the product integral and linear ordinary differential equations, Czech. Math. J. 37 (1987), 642– 659.
- [4] W. B. Jurkat and R. W. Knizia, A characterization of multi-dimensional Perron integrals and the fundamental theorem, Can. J. Math. 43 (1991), 526–539
- [5] W. B. Jurkat and R. W. Knizia, Generalized absolutely continuous interval functions and multi-dimensional Perron integration, Analysis 12 (1992), 303–313.
- [6] J. Mawhin, Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields, Czech. Math. J. 31 (1981), 614– 632.

- [7] R. M. McLeod, The generalized Riemann integral, Mathematical Association of America, Washington D.C., 1980.
- [8] W. F. Pfeffer, The divergence theorem, Trans. Amer. Math. Soc. 295 (1986), 665–685.
- [9] S. Saks, Theory of the integral, Dover, New York, 1964.
- [10] Á. Száz, The fundamental theorem of calculus in an abstract setting, Tatra Mt. Math. Publ. 2 (1992), 167–174.