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A DESCRIPTIVE DEFINITION OF THE
KH-STIELTJES INTEGRAL†

Abstract

This paper gives a descriptive definition of Stieltjes integrals (on a
compact interval of the real line) in the frame of Kurzweil-Henstock
integration. Five conditions characterize the functions that are an in-
definite integral with respect to some continuous function of generalized
bounded variation.

1 Introduction

A descriptive definition of the Kurzweil-Henstock integral, involving differen-
tiability almost everywhere together with some null condition, is known since
a few years (cf. for instance [3]). A more complete fundamental theorem was
given by W. B. Jurkat and R. W. Knizia for the multidimensional weak inte-
gral in [4] and [5], where these authors introduced a useful and natural outer
measure associated to any (interval) function.

In a preceding paper [1], I gave such a fundamental theorem for the mul-
tidimensional integrals of J. Mawhin [6] and W. F. Pfeffer [8]. In the present
one, I propose a similar theorem for the Kurzweil-Henstock-Stieltjes integral
on a compact interval [a, b] ⊆ R. Five equivalent conditions thus characterize
the functions F : [a, b] → R which are an indefinite integral of some function
f : [a, b] → R relatively to U : [a, b] → R, cf. Theorem 4.7 and Corollary 5.6.
The function U is assumed to be continuous and VBG◦ (equivalently, VBG∗
in the sense of Saks [9]).
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Two difficulties arise in comparison with the non-Stieltjes case. First, the
use of VBG◦ functions requires technical adjustments in many proofs (often
along the same lines). Then, especially, a strong theorem on relative differen-
tiation is needed, cf. Theorem 3.2 (and [2] for a more general version).

At the end of the paper, as an application of the fundamental theorem, a
substitution theorem is given for the Kurzweil-Henstock integral, which uses
a measurable and bounded function f . Such a theorem is well-known for the
Lebesgue integral, but I have not found any reference for the KH-integral.

2 Preliminaries

Definition 2.1. A system S on a set A ⊆ [a, b] is given by a finite family of
intervals a ≤ a1 < b1 ≤ . . . ≤ ar < br ≤ b together with a family of associated
points xi ∈ [ai, bi ] ∩ A. Now let δ : A→ R+ be any gauge on the set A. One
says that the system S is δ-fine if [ai, bi ] ⊆

(
xi − δ(xi), xi + δ(xi)

)
for every

i = 1, . . . , r. We denote by S(A, δ) the set of all δ-fine systems S on A.

Definition 2.2. A division of the interval [a, b] is a system D on [a, b] which
satisfies bi = ai+1 for every i = 0, . . . , r (where b0 = a and ar+1 = b). Given
two functions f, U : [a, b]→ R one can form the Riemann-Stieltjes sum

S(f, U,D) =
r∑
i=1

f(xi)
(
U(bi)− U(ai)

)
.

Then one says that the function f is integrable relatively to the function U ,
or shortly that f is U -integrable, if there exists a number I ∈ R such that for
any ε > 0 there exists a gauge δ : [a, b]→ R+ with the property

|S(f, U,D)− I | < ε for every δ-fine division D of [a, b].

The integral I ∈ R is clearly unique, and denoted by
∫ b
a
f dU . The following

propositions 2.3 and 2.4 are well-known properties of the integral.

Proposition 2.3. Let f, U : [a, b] → R and a < c < b. Then f is integrable
relatively to the function U on the interval [a, b] if and only if both integrals∫ c
a
f dU and

∫ b
c
f dU exist. And one has

∫ b
a
f dU =

∫ c
a
f dU +

∫ b
c
f dU .

Proposition 2.4. Saks-Henstock Lemma Let f : [a, b] → R be integrable
relatively to the function U : [a, b] → R. We suppose given a gauge δ on the

interval [a, b] such that |S(f, U,D)−
∫ b
a
f dU | < ε for every δ-fine division D

of [a, b]. Then for any δ-fine system S one has the following inequalities:

1)
∣∣∑r

i=1

{
f(xi)

(
U(bi)− U(ai)

)
−
∫ bi
ai
f dU

}∣∣ ≤ ε,
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2)
∑r

i=1

∣∣f(xi)
(
U(bi)− U(ai)

)
−
∫ bi
ai
f dU

∣∣ ≤ 2ε.

Definition 2.5. Let F : [a, b] → R be any function. Given a system S on a
set A ⊆ [a, b] one forms the variational sum WF (S) =

∑r
i=1 |F (bi) − F (ai)|.

The F -outer measure of the subset A is the number

mF (A) = inf
δ

sup
{
WF (S)

/
S ∈ S(A, δ)

}
,

where δ runs over all gauges A → R+. The following proposition shows that
mF is a metric outer measure (for the proof see Proposition 3.3 in [1]).

Proposition 2.6. The functional mF has the following properties:

1) mF (A) ≥ 0 for every A ⊆ [a, b], and mF (∅) = 0,

2) A ⊆ B implies mF (A) ≤ mF (B),

3) mF

(⋃∞
n=1An

)
≤
∑∞

n=1mF (An) for every sequence of sets An ⊆ [a, b],

4) mF (A ∪ B) = mF (A) +mF (B) provided A and B are contained in two
disjoint open subsets of the interval [a, b].

Remark 2.7. As one could expect, in the special case where F (x) = x the
outer measure mF is the Lebesgue outer measure, cf. Proposition 3.4 in [1].

Definition 2.8. Let U : [a, b] → R be a fixed function. One says that a set
A ⊆ [a, b] is U -null if one can write A = D ∪N with D at most denumerable
and mU(N) = 0. As usual, a property is said to hold U -almost everywhere if
the exceptional set is U -null.

Proposition 2.9. For functions f, U : [a, b]→ R the following are equivalent:

1) f is U -integrable and
∫ x
a
f dU = 0 for every x ∈ (a, b],

2) the set E =
{
x ∈ [a, b]

/
f(x) 6= 0

}
satisfies mU(E) = 0.

Proof. (1 ⇒ 2) We show that each set En :=
{
x ∈ [a, b]

/
|f(x)| ≥ 1

n

}
satisfies mU(En) = 0. Given ε > 0 there exists a gauge δ : [a, b] → R+ such
that |S(f, U,D)| < ε for every δ-fine division D of [a, b]. Now let S be any
δ-fine system on En. By Saks-Henstock Lemma one obtains

1
nWU (S) =

r∑
i=1

1
n

∣∣U(bi)− U(ai)
∣∣ ≤ r∑

i=1

∣∣f(xi)
(
U(bi)− U(ai)

)∣∣ ≤ 2ε,

and this proves that mU(En) ≤ 2nε. So the assertion follows.
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(2⇒ 1) Let En :=
{
x ∈ [a, b]

/
n− 1 < |f(x)| ≤ n

}
. Then there exists for

each n ∈ N a gauge δn : En → R+ such that WU (S) < ε 1
n 2−n for any system

S ∈ S(En, δn). Taking arbitrary δ(x) if f(x) = 0 and δ(x) = δn(x) if x ∈ En,
one gets a gauge δ : [a, b]→ R+. For any δ-fine division D of [a, b] one has∣∣S(f, U,D)

∣∣ ≤ ∞∑
n=1

∑
xi∈En

∣∣f(xi)
(
U(bi)− U(ai)

∣∣ ≤ ∞∑
n=1

nWU (Sn) < ε.

Therefore f is U -integrable on [a, b] and
∫ b
a
f dU = 0.

3 Differentiation with Respect to VBGo Functions

Definition 3.1. Let F,U : [a, b]→ R be any functions. The lower and upper
derivatives of F with respect to U ,

DUF (x) = lim inf
y→x

F (y)− F (x)

U(y)− U(x)
and DUF (x) = lim sup

y→x

F (y)− F (x)

U(y)− U(x)
,

are defined for all x ∈ [a, b] such that U(y) 6= U(x) in a neighborhood of x.
The function F is differentiable relatively to U , or shortly U -differentiable, at
x if DF (x) = DF (x) ∈ R, this common value being denoted by FU

′(x).

We shall use the following version of the Denjoy-Young-Saks theorem:

Theorem 3.2. Let U : [a, b]→ R be any strictly increasing function. Then a
function F : [a, b] → R is U-differentiable at U-almost every point of the sets{
x ∈ [a, b]

/
DUF (x) > −∞

}
and

{
x ∈ [a, b]

/
DUF (x) <∞

}
.

Proof. This is a particular case of Théorème 7 in [2].

Definition 3.3. One says that a function F : [a, b]→ R is of bounded varia-
tion on a set E ⊆ [a, b], or VB◦ on E, if one has mF (E) <∞. One says that
the function F is of generalized bounded variation, or VBG◦, if there exists
a decomposition [a, b] =

⋃∞
n=1En (not necessarily disjoint) such that F is of

bounded variation on each subset En.

Remark 3.4. Since a function F : [a, b]→ R is continuous at x if and only if
mF ({x}) = 0, it follows that the set of discontinuities of a VBG◦ function is
at most denumerable.

Lemma 3.5. If a function F : [a, b]→ R is of bounded variation on a subset
E ⊆ [a, b], then there exist a strictly increasing function H : [a, b]→ R and a
gauge δ : E → R+ such that

x ∈ E and |y − x| < δ(x) imply
∣∣F (y)− F (x)

∣∣ ≤ ∣∣H(y)−H(x)
∣∣.
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Proof. There exists a gauge δ : E → R+ such that WF (S) < mF (E) + 1 for
every δ-fine system S on E. Then the function

H(x) := x+ sup
{
WF (S)

/
S ∈ S(E, δ) and S ⊆ [a, x]

}
satisfies the desired condition (easy verification).

Lemma 3.6. A function F : [a, b]→ R is of generalized bounded variation if
and only if there exists a strictly increasing function H : [a, b]→ R such that

|D|HF (x) := lim sup
y→x

∣∣∣∣ F (y)− F (x)

H(y)−H(x)

∣∣∣∣ <∞ for every x ∈ [a, b].

Proof. (⇒) By definition one has [a, b] =
⋃∞
n=1En with mF (En) < ∞ for

every n ∈ N. Considering for each integer n a function Hn : [a, b]→ R and a
gauge δn : En → R+ as in the preceding lemma, one defines the function

H(x) :=

∞∑
n=1

1

2n
· Hn(x)−Hn(a)

Hn(b)−Hn(a)
.

For x ∈ En one remarks that |D|HF (x) ≤ 2n
(
Hn(b)−Hn(a)

)
.

(⇐) For each set En :=
{
x ∈ [a, b]

/
|D|HF (x) < n

}
one easily proves the

inequality mF (En) ≤ n
(
H(b)−H(a)

)
.

Remark 3.7. According to a theorem of Ward (cf. [9] page 236) it follows
that a function F : [a, b]→ R is VBG◦ if and only if it is bounded and VBG∗
in the sense of Saks.

Lemma 3.8. Let H : [a, b] → R be a strictly increasing function and let A
be a subset of [a, b] with mH(A) = 0. If the function F : [a, b] → R satisfies
|D|HF (x) <∞ for every x ∈ A, then one has mF (A) = 0.

Proof. We show that mF (An) = 0, where An :=
{
x ∈ A

/
|D|HF (x) < n

}
.

Given ε > 0 there exists a gauge δ : An → R+ such that WH(S) < ε for every
system S ∈ S(An, δ). We may assume that x ∈ An and |y − x| < δ(x) imply
|F (y)−F (x)| < n |H(y)−H(x)|. Then WF (S) < nε for every S ∈ S(An, δ),
and this proves that mF (An) ≤ n ε.

Lemma 3.9. Let H : [a, b]→ R be a strictly increasing function. If a function
F : [a, b]→ R satisfies FH

′(x) = 0 for every x ∈ A, then mF (A) = 0.

Proof. Easy verification (cf. Lemme 5 in [2]).
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Proposition 3.10. Let F,U : [a, b] → R be two VBG◦ functions. Then F is
U -differentiable at U -almost every point of [a, b].

Proof. Let HF , HU : [a, b]→ R be strictly increasing functions as in 3.6 and
consider the function H(x) := HF (x) + HU (x). By Theorem 3.2 the interval
[a, b] can be decomposed into the disjoint union of

1) a set E1 where F and U are H-differentiable, and

2) a H-null set E2.

By 3.9 the set E0 =
{
x ∈ E1

/
UH
′(x) = 0

}
is U -null, and by 3.8 the set E2 is

U -null. Now if x ∈ E1 \E0, then one has FU
′(x) = FH

′(x) ·UH
′(x)−1.

4 The Fundamental Theorem

Throughout this section U : [a, b]→ R is a fixed continuous VBG◦ function.

Definition 4.1. A function F : [a, b] → R is called U -Lipschitzian on a set
E ⊆ [a, b], or LZU on E, if there exists C > 0 such that mF (A) ≤ C ·mU(A)
for every subset A ⊆ E. The function F is called generalized U -Lipschitzian,
or LZGU , if there exists some decomposition [a, b] =

⋃∞
n=1En such that F is

U -Lipschitzian on each subset En.

Similarly, a function F : [a, b] → R is called U -absolutely continuous on
a set E, or ACU on E, if for any ε > 0 there exists δ > 0 such that A ⊆ E
and mU(A) < δ imply mF (A) < ε. And it is called generalized U -absolutely
continuous, or ACGU , if there exists some decomposition [a, b] =

⋃∞
n=1En

such that F is U -absolutely continuous on each subset En.

Finally, one says that a function F : [a, b] → R is U -variationally normal,
or shortly U -normal, if mU(A) = 0 implies mF (A) = 0.

Lemma 4.2. If the function U is of bounded variation on the set E ⊆ [a, b],
then the function V (x) = mU

(
E ∩ [a, x]

)
is continuous.

Proof. Since U is continuous one has mU

(
E ∩ [c, d]

)
= mU

(
E ∩ (c, d)

)
for

every subinterval [c, d] ⊆ [a, b]. Now let xn be a strictly increasing sequence
with x0 = a and lim xn = x. We show that V (xn) converges to V (x). Using
the subadditivity of mU , cf. Proposition 2.6, one obtains

V (x) ≤
∞∑
n=1

mU

(
E ∩ [xn−1, xn)

)
=
∞∑
n=1

mU

(
E ∩ (xn−1, xn)

)
.

And using Proposition 2.6 once again one concludes that

s∑
n=1

mU

(
E ∩ (xn−1, xn)

)
= mU

(
E ∩

⋃s
n=1(xn−1, xn)

)
= V (xs)
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for every s ∈ N. Thus V (x) ≤ lim V (xs) ≤ V (x) and the assertion is proved.
The continuity on the right side of x is proved similarly, by considering the
function V (b)− V (x) = mU

(
E ∩ (x, b]

)
.

Lemma 4.3. Any LZGU function is ACGU, and any ACGU function is VBG◦

and U -variationally normal.

Proof. We show that if F : [a, b]→ R is ACU and the function U is VB◦ on
a set E ⊆ [a, b], then F is VB◦ on E (the other affirmations are evident). We
consider the function V (x) of the preceding lemma. By definition there exists
δ > 0 such that A ⊆ E and mU(A) < δ imply mF (A) < 1. And by continuity
of the function V we can choose a partition a = x0 < x1 < . . . < xn = b such
that V (xi) − V (xi−1) = mU

(
E ∩ [xi−1, xi ]

)
< δ for every i = 1, . . . , n. Thus

we obtain mF (E) < n, and the assertion is proved.

Proposition 4.4. Let f : [a, b] → R be integrable relatively to U . Then the
indefinite integral F (x) =

∫ x
a
f dU is LZGU.

Proof. We show that if the function U is VB◦ on the set E ⊆ [a, b], then F
is LZU on each subset En :=

{
x ∈ E

/
|f(x)| ≤ n

}
. So let A ⊆ En be a fixed

subset. Given ε > 0 there exist two gauges δ1 on [a, b] and δ2 on A such that

1)
∣∣S(f, U,D)−

∫ b
a
f dU

∣∣ < ε for every δ1-fine division D of [a, b],

2) WU(S) < mU(A) + ε for every system S ∈ S(A, δ2).

We consider the gauge δ : A→ R+ defined by δ(x) = min
(
δ1(x), δ2(x)

)
. Now

let S be any δ-fine system on A. By Saks-Henstock Lemma we have

WF (S) =
r∑
i=1

∣∣F (bi)− F (ai)
∣∣ ≤ r∑

i=1

∣∣f(xi)
(
U(bi)− U(ai)

)∣∣+

r∑
i=1

∣∣F (bi)− F (ai)− f(xi)
(
U(bi)− U(ai)

)∣∣ ≤ n(mU(A) + ε
)

+ 2ε.

Thus we obtain mF (A) ≤ n ·mU(A) + (n + 2) ε, and since ε is arbitrary this
proves that F is U -Lipschitzian on the set En.

For the next proposition it is useful to introduce some notations. Given a
function F on [a, b] we put EF =

{
x ∈ [a, b]

/
F is not U -differentiable at x

}
,

and we define the derivative DUF : [a, b]→ R by DUF (x) = FU
′(x) if x /∈ EF

and DUF (x) = 0 if x ∈ EF .

Proposition 4.5. Let F : [a, b] → R be a function such that mF (EF ) = 0.
Then the derivative DUF is integrable relatively to U . Furthermore, one has∫ x
a
DUf dU = F (x)− F (a) for every x ∈ (a, b].
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Proof. We show that
∫ b
a
DUf dU = F (b)− F (a). Let [a, b] =

⋃∞
n=1En be a

disjoint decomposition such that mU(En) <∞ for every n ∈ N. There exists
for each n a gauge δn

′ : En → R+ such that WU(Sn) < mU(En) + 1 for every
system Sn ∈ S(En, δn

′ ). Define εn > 0 by 2nεn
(
mU(En) + 1

)
= ε. For each

x ∈ En \EF there exists δn(x) > 0 such that |y − x| < δn(x) implies∣∣F (y)− F (x)− FU
′(x)

(
U(y)− U(x)

)∣∣ ≤ εn∣∣U(y)− U(x)
∣∣.

One may assume that δn(x) ≤ δn′ (x). And by hypothesis there exists a gauge
δ : EF → R+ such that WF (S) < ε for every system S ∈ S(EF , δ). One thus
gets a gauge δ : [a, b] → R+. Now let D be any δ-fine division of the interval
[a, b]. Then one has the following inequality:∣∣S(DUF,U,D)− F (b) + F (a)

∣∣ ≤∑xi∈EF

∣∣F (bi)− F (ai)
∣∣+

∞∑
n=1

∑
xi∈En\EF

∣∣FU
′(xi)

(
U(bi)− U(xi)

)
−
(
F (bi)− F (xi)

)∣∣+

∞∑
n=1

∑
xi∈En\EF

∣∣FU
′(xi)

(
U(xi)− U(ai)

)
−
(
F (xi)− F (ai)

)∣∣ <
ε+

∞∑
n=1

εnWU (Sn
+) +

∞∑
n=1

εnWU (Sn
−) ≤ ε+ 2

∞∑
n=1

2−nε = 3ε,

and this proves that DUF is integrable with respect to U .

Corollary 4.6. Let F : [a, b]→ R be a continuous function. If there exists a
denumerable set D ⊆ [a, b] such that F is U -differentiable on [a, b] \D, then
F (x) = F (a) +

∫ x
a
DUF dU for every x ∈ (a, b].

Proof. This is immediate since mF (D) = 0, cf. Remark 3.4.

Theorem 4.7. For a function F : [a, b]→ R the following are equivalent:

1) F is an indefinite integral relatively to U ,

2) F is LZGU,

3) F is ACGU,

4) F is VBG◦ and U -normal,

5) F is U -differentiable U -almost everywhere and U -normal.

Proof. This follows from Propositions 4.4, 4.3, 3.10 and 4.5 (another equiv-
alent condition will be given in Corollary 5.6).

Corollary 4.8. Let f : [a, b] → R be a U -integrable function and let F (x) =∫ x
a
f dU be its indefinite integral. Then FU

′(x) = f(x) U -almost everywhere.

Proof. By 2.9 the set
{
x ∈ [a, b]

/
f(x) 6= DUF (x)

}
is U -null.
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5 The Lusin Condition (N)

Let F : [a, b]→ R be fixed. We want to compare the two following conditions
(where m denotes the Lebesgue outer measure):

1) m(A) = 0 implies mF (A) = 0 (see Definition 4.1), and

2) m(A) = 0 implies m
(
F (A)

)
= 0, i.e. the Lusin condition (N).

Lemma 5.1. For any set A ⊆ [a, b] with mF (A) = 0 one has m
(
F (A)

)
= 0.

Proof. Given ε > 0 there exists a gauge δ : A → R+ such that WF (S) < ε
for every system S ∈ S(A, δ). By the so-called Covering Lemma (McLeod
[7] page 143) there exist two (possibly finite) sequences of non-overlapping
intervals In = [an, bn ] and of points xn ∈ In ∩A such that

In ⊆
(
xn − δ(xn), xn + δ(xn)

)
for every n, and A ⊆

⋃
n In.

For each n we define mn = inf(F, In) and Mn = sup(F, In), and we choose a
point yn ∈ In with Mn −mn ≤ 3 |F (yn) − F (xn)|. For every finite sum one
has

∑r
n=1(Mn−mn) ≤ 3WF (Sr) < 3ε. Therefore

∑
n(Mn−mn) ≤ 3ε, and

this shows that m
(
F (A)

)
≤ 3ε since F (A) ⊆

⋃
n [mn,Mn ].

Lemma 5.2. Let CF =
{
x ∈ [a, b]

/
y ≤ x ≤ z implies F (y) ≤ F (x) ≤ F (z)

}
.

If the function F is continuous on a subset A ⊆ CF satisfying m
(
F (A)

)
= 0,

then one has mF (A) = 0.

Proof. Given ε > 0 there exists by hypothesis a gauge η : F (A)→ R+ such
that Wid(T ) < ε for every system T ∈ S

(
F (A), η

)
, cf. Remark 2.7 (one may

also work with the usual definition of sets of measure zero). By continuity of
F there exists a gauge δ : A→ R+ such that x ∈ A and |y − x| < δ(x) imply∣∣F (y)− F (x)

∣∣ < η
(
F (x)

)
. If S is any δ-fine system on A, then one has

WF (S) =
r∑
i=1

(
F (bi)− F (xi) + F (xi)− F (ai)

)
= Wid(T1) +Wid(T2)

(use that xi ∈ CF for every 1 ≤ i ≤ r), and therefore mF (A) ≤ 2ε.

Proposition 5.3. For a subset A ⊆ [a, b] the following are equivalent:

1) mF (A) = 0,

2) F is continuous on A, m
(
F (A)

)
= 0 and mF (A) <∞.
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Proof. (2 ⇒ 1) Since F is of bounded variation on A there exists by 3.5 a
strictly increasing function H : [a, b] → R and a gauge δ : A → R+ such that
x ∈ A and |y − x| < δ(x) imply

∣∣F (y)− F (x)
∣∣ ≤ ∣∣H(y)−H(x)

∣∣. We remark
that this implies mF (N) = 0 for every subset N ⊆ A satisfying mH(N) = 0.
Since by Theorem 3.2 the set E =

{
x ∈ A

/
F is not H-differentiable at x

}
is

H-null we deduce that mF (E) ≤ mF (N) +mF (D) = 0.

By Lemma 3.9 the set A0 =
{
x ∈ A

/
FH
′(x) = 0

}
satisfies mF (A) = 0. So

it remains to consider the sets A± =
{
x ∈ A

/
±FH

′(x) > 0
}

. Obviously, one
has A+ ⊆

⋃∞
n=1An, where

An =
{
x ∈ A

/
x ∈ [y, z ] ⊆ (x− 1

n , x+ 1
n ) ⇒ F (y) ≤ F (x) ≤ F (z)

}
.

By the preceding lemma one obtains mF (An) = 0 for every n ∈ N (divide the
interval [a, b] into finitely many small intervals). Therefore mF (A+) = 0, and
similarly mF (A−) = 0, which proves the proposition.

Question 5.4. The example of Saks ([9] p. 224) shows that the hypothesis
mF (A) < ∞ cannot be released. But could one put in place of it the weaker
assumption that F is differentiable almost everywhere? Or in other words, is
there any function satisfying the Lusin condition (N) that is continuous and
differentiable almost everywhere when not VBG◦?

Definition 5.5. Let U : [a, b]→ R be a continuous VBG◦ function as in the
preceding section. One says that a function F : [a, b] → R satisfies the Lusin
condition U -(N) if m

(
U(A)

)
= 0 implies m

(
F (A)

)
= 0.

Corollary 5.6. For a function F : [a, b]→ R the following are equivalent;

1) F is an indefinite integral with respect to U ,

6) F is continuous, VBG◦ and it satisfies the Lusin condition U -(N).

Proof. Using Proposition 5.3 one obtains m
(
U(A)

)
= 0 iff mU(A) = 0, and

similarly m
(
F (A)

)
= 0 iff mF (A) = 0.

As another corollary of Proposition 5.3 we give the following substitution
theorem for the Kurzweil-Henstock integral (which might be proved also by a
more direct method):

Corollary 5.7. Let U : [a, b] → R be continuous and VBG◦, and consider
the interval [c, d] = U

(
[a, b]

)
. If the function f : [c, d]→ R is measurable and

bounded, then f ◦U is integrable relatively to U and
∫ b
a
f ◦U dU =

∫ U(b)

U(a)
f .
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Proof. Let F (y) =
∫ y
c
f be the indefinite integral of f . Clearly, the function

F is Lipschitzian, and this implies that F ◦U is LZGU . By the fundamental

theorem 4.7 we obtain
∫ U(b)

U(a)
f = F

(
U(b)

)
− F

(
U(a)

)
=
∫ b
a
DU(F ◦U ) dU . So

we are led to consider the following sets:

1) A =
{
x ∈ [a, b]

/
F ◦U is not U -differentiable at x

}
,

2) B =
{
x /∈ A

/
(F ◦U )U

′ (x) 6= f
(
U(x)

)}
,

3) C =
{
y ∈ [c, d]

/
F is not differentiable at y or F ′(y) 6= f(y)

}
,

One has mU(A) = 0 by Theorem 3.10 (use that U is continuous). And since
U(B) ⊆ C is of measure zero one gets mU(B) = 0 by Proposition 5.3. Hence
the set E =

{
x ∈ [a, b]

/
DU(F ◦U ) (x) 6= f

(
U(x)

)}
satisfies mU(E) = 0, and

the assertion follows from Proposition 2.9.

In particular, if U is an indefinite integral, i.e. U(x) = U(a) +
∫ x
a
g, then

(f ◦U ) · g is integrable and
∫ b
a

(f ◦U ) · g =
∫ U(b)

U(a)
f (left as an exercise).

References

[1] C.-A. Faure, A descriptive definition of some multidimensional gauge in-
tegrals, Czech. Math. J. 45 (1995), 549–562.
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[10] Á. Száz, The fundamental theorem of calculus in an abstract setting,
Tatra Mt. Math. Publ. 2 (1992), 167–174.


