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A DESCRIPTIVE DEFINITION OF THE
KH-STIELTJES INTEGRAL'

Abstract

This paper gives a descriptive definition of Stieltjes integrals (on a
compact interval of the real line) in the frame of Kurzweil-Henstock
integration. Five conditions characterize the functions that are an in-
definite integral with respect to some continuous function of generalized
bounded variation.

1 Introduction

A descriptive definition of the Kurzweil-Henstock integral, involving differen-
tiability almost everywhere together with some null condition, is known since
a few years (cf. for instance [3]). A more complete fundamental theorem was
given by W. B. Jurkat and R. W. Knizia for the multidimensional weak inte-
gral in [4] and [5], where these authors introduced a useful and natural outer
measure associated to any (interval) function.

In a preceding paper [1], I gave such a fundamental theorem for the mul-
tidimensional integrals of J. Mawhin [6] and W. F. Pfeffer [8]. In the present
one, I propose a similar theorem for the Kurzweil-Henstock-Stieltjes integral
on a compact interval [a,b] C R. Five equivalent conditions thus characterize
the functions F : [a,b] — R which are an indefinite integral of some function
f:[a,b] = R relatively to U : [a,b] — R, cf. Theorem 4.7 and Corollary 5.6.
The function U is assumed to be continuous and VBG® (equivalently, VBG,
in the sense of Saks [9]).
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Two difficulties arise in comparison with the non-Stieltjes case. First, the
use of VBG® functions requires technical adjustments in many proofs (often
along the same lines). Then, especially, a strong theorem on relative differen-
tiation is needed, cf. Theorem 3.2 (and [2] for a more general version).

At the end of the paper, as an application of the fundamental theorem, a
substitution theorem is given for the Kurzweil-Henstock integral, which uses
a measurable and bounded function f. Such a theorem is well-known for the
Lebesgue integral, but I have not found any reference for the KH-integral.

2 Preliminaries

Definition 2.1. A system S on a set A C [a,b] is given by a finite family of
intervals a < a1 < b1 < ... <a, < b, <b together with a family of associated
points x; € [a;,b;] N A. Now let § : A — R be any gauge on the set A. One
says that the system S is 6-fine if [a;,b;] C (z; — 0(z;), x; + 6(x;)) for every
i=1,...,7. We denote by S(A4, ) the set of all i-fine systems S on A.

Definition 2.2. A division of the interval [a, b] is a system D on [a, b] which
satisfies b; = a;41 for every ¢ = 0,...,r (where by = a and a,4+1 = b). Given
two functions f,U : [a,b] — R one can form the Riemann-Stieltjes sum

=

S(f,U,D) = ) f(l“i)(U(bi) - U(ai))'

7

1

Then one says that the function f is integrable relatively to the function U,
or shortly that f is U-integrable, if there exists a number I € R such that for
any € > 0 there exists a gauge ¢ : [a,b] — R with the property

|S(f,U,D) — I| < e for every d-fine division D of [a, b].

The integral I € R is clearly unique, and denoted by fab fdU. The following
propositions 2.3 and 2.4 are well-known properties of the integral.

Proposition 2.3. Let f,U: [a,b] = R and a < ¢ < b. Then f is integrable
relatively to the function U on the interval [a,b] if and only if both integrals

f:de and fcbde exist. And one has ffde = facde + fcbde.

Proposition 2.4. Saks-Henstock Lemma Let f : [a,b] — R be integrable
relatively to the function U : [a,b] — R. We suppose given a gauge § on the

interval [a,b] such that |S(f,U, D) — fjde\ < ¢ for every d-fine division D
of [a,b]. Then for any 0-fine system S one has the following inequalities:

1) [ S {f@) (Ub:) —Ula)) — [V fdU}| <,
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2) Y0 [ @) (Ubs) = Ular) = [} f dU| < 2.

Definition 2.5. Let F': [a,b] — R be any function. Given a system S on a
set A C [a,b] one forms the variational sum Wg(S) = >"_, |F(b;) — F(a;)].
The F-outer measure of the subset A is the number

mp(A) = irgf sup{Wr(S)/S € S(A,6)},
where § runs over all gauges A — R . The following proposition shows that
mp is a metric outer measure (for the proof see Proposition 3.3 in [1]).
Proposition 2.6. The functional mg has the following properties:
1) mp(A) >0 for every A C [a,b], and mp(0) =0,
2) A C B implies mp(A) < mp(B),
3) mr(Up_ 1 An) < 302 mp(Ay) for every sequence of sets Ay, C [a,b],

4) mp(AUB) = mp(A) + mp(B) provided A and B are contained in two
disjoint open subsets of the interval [a,b].

Remark 2.7. As one could expect, in the special case where F(z) = z the
outer measure mp is the Lebesgue outer measure, cf. Proposition 3.4 in [1].

Definition 2.8. Let U : [a,b] — R be a fixed function. One says that a set
A C [a,b] is U-null if one can write A = DU N with D at most denumerable
and my (V) = 0. As usual, a property is said to hold U-almost everywhere if
the exceptional set is U-null.

Proposition 2.9. For functions f,U : [a,b] — R the following are equivalent:
1) f is U-integrable and f;f dU =0 for every x € (a,b],
2) the set E = {z € [a,b] / f(z) # 0} satisfies my(E) = 0.

PROOF. (1 = 2) We show that each set E, := {z € [a,b] / | f(z)] = L}
satisfies my(E,) = 0. Given € > 0 there exists a gauge 0 : [a,b] — R such
that |S(f,U, D)| < € for every d-fine division D of [a,b]. Now let S be any
d-fine system on FE,,. By Saks-Henstock Lemma one obtains

M=
S|

LWy(S) = Y L|U(bs) - Ulas)] < ; | f(we) (U(bs) — Ulas))] < 26,

i=1

and this proves that my(E,) < 2ne. So the assertion follows.
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(2=1) Let E,:={z € [a,b] /n— 1< |f(z)| <n}. Then there exists for
each n € N a gauge d,, : E,, — R such that Wy (S) < 8%2_" for any system
S € S(E,,d,). Taking arbitrary §(z) if f(x) =0 and §(z) = §,(z) if x € E,,,
one gets a gauge 0 : [a,b] — R. For any J-fine division D of [a, b] one has

18

[SGLU.D)| € & T, [F@) (U0) = Ula)| < 3 nWo(S,) <=

n=1

Therefore f is U-integrable on [a,b] and f:de =0. O

3 Differentiation with Respect to VBG® Functions

Definition 3.1. Let F,U : [a,b] — R be any functions. The lower and upper
derivatives of ' with respect to U,

o Fly) — F(x) = . Fly) — F(x)
DyF(x) =1 f ——~————< and DyF(z)=1 —_— <
RuFa) =Bt )~ ¢ P T G o)
are defined for all z € [a,b] such that U(y) # U(z) in a neighborhood of z.
The function F is differentiable relatively to U, or shortly U-differentiable, at
x if DF(z) = DF(z) € R, this common value being denoted by F/(z).

We shall use the following version of the Denjoy-Young-Saks theorem:

Theorem 3.2. Let U: [a,b] — R be any strictly increasing function. Then a
function F : [a,b] = R is U-differentiable at U-almost every point of the sets
{x €a,b] /DyF(z) > —o0} and {z € [a,b] /Dy F(z) < oo}.

PRrROOF. This is a particular case of Théoréme 7 in [2]. O

Definition 3.3. One says that a function F : [a,b] — R is of bounded varia-
tion on a set E C [a,b], or VB® on E, if one has mp(E) < co. One says that
the function F' is of generalized bounded variation, or VBG®, if there exists
a decomposition [a,b] = |, E, (not necessarily disjoint) such that F is of
bounded variation on each subset F,,.

Remark 3.4. Since a function F : [a,b] — R is continuous at z if and only if
mp({z}) = 0, it follows that the set of discontinuities of a VBG® function is
at most denumerable.

Lemma 3.5. If a function F : [a,b] — R is of bounded variation on a subset
E C [a,b], then there exist a strictly increasing function H : [a,b] — R and a
gauge § : E — R, such that

x € E and |y — x| < §(x) imply |F(y) — F(z)| < |H(y) — H(x)|.
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PROOF. There exists a gauge 0 : E — R, such that Wg(S) < mp(E) + 1 for
every d-fine system S on E. Then the function

H(z):=xz +sup{Wr(S) /S € S(E,§) and S C [a, z]}
satisfies the desired condition (easy verification). O

Lemma 3.6. A function F : [a,b] — R is of generalized bounded variation if
and only if there exists a strictly increasing function H : [a,b] — R such that

|D|g F(x) := limsup F(y) - F(z)

m s ‘H(y)—H(x) < oo for every x € [a,b].

PROOF. (=) By definition one has [a,b] = |2, E, with mp(E,) < co for
every n € N. Considering for each integer n a function H,, : [a,b] — R and a
gauge 6, : E, — R, as in the preceding lemma, one defines the function

L — 1 Hy(z) — Hy(a)
M= 20 ) Hala)

For x € E, one remarks that |D|gF(z) < 2" (H,(b) — Hy(a)).

(<) For each set E,, := {x € [a,b] / |D|gF(z) < n} one easily proves the
inequality mp(E,) < n(H(b) — H(a)). O

Remark 3.7. According to a theorem of Ward (cf. [9] page 236) it follows
that a function F': [a,b] — R is VBG? if and only if it is bounded and VBG.
in the sense of Saks.

Lemma 3.8. Let H : [a,b] — R be a strictly increasing function and let A
be a subset of [a,b] with mp(A) = 0. If the function F : [a,b] — R satisfies
|D|gF(x) < oo for every x € A, then one has mp(A) = 0.

PROOF. We show that mp(A,) =0, where A, := {z € A/|D|gF(z) < n}.
Given € > 0 there exists a gauge § : A,, — R such that Wg(S) < ¢ for every
system S € S(A,,d). We may assume that x € A,, and |y — x| < §(x) imply
|F(y) — F(z)| <n|H(y) — H(x)|. Then Wr(S) < ne for every S € S(An,9),
and this proves that mpr(4,) < ne. O

Lemma 3.9. Let H : [a,b] — R be a strictly increasing function. If a function
F: [a,b] — R satisfies F(z) =0 for every x € A, then mp(A) = 0.

PRrROOF. Easy verification (cf. Lemme 5 in [2]). O
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Proposition 3.10. Let F,U : [a,b] — R be two VBG® functions. Then F is
U-differentiable at U-almost every point of [a,b].

PROOF. Let Hp, Hy : [a,b] — R be strictly increasing functions as in 3.6 and
consider the function H(z) := Hp(z) + Hy(z). By Theorem 3.2 the interval
[a,b] can be decomposed into the disjoint union of

1) a set By where F' and U are H-differentiable, and
2) a H-null set Es.

By 3.9 the set Ey = {x € F, /Ué(x) = 0} is U-null, and by 3.8 the set Fs is
U-null. Now if z € E; \ Ey, then one has F/(z) = Fy(z) - Ug(x) L. O

4 The Fundamental Theorem

Throughout this section U : [a,b] — R is a fixed continuous VBG® function.

Definition 4.1. A function F : [a,b] — R is called U-Lipschitzian on a set
E C [a,b], or LZy on E, if there exists C' > 0 such that mp(A) < C-my(A)
for every subset A C E. The function F' is called generalized U-Lipschitzian,
or LZGy, if there exists some decomposition [a,b] = |J,—, F, such that F is
U-Lipschitzian on each subset E,,.

Similarly, a function F' : [a,b] — R is called U-absolutely continuous on
aset F, or ACy on E, if for any € > 0 there exists § > 0 such that A C F
and my(A) < ¢ imply mp(A) < e. And it is called generalized U-absolutely
continuous, or ACGy, if there exists some decomposition [a,b] = U, E,
such that F' is U-absolutely continuous on each subset F,,.

Finally, one says that a function F : [a,b] — R is U-variationally normal,
or shortly U-normal, if my(A) = 0 implies mp(A) = 0.

Lemma 4.2. If the function U is of bounded variation on the set E C [a,b],
then the function V(z) = my(E N [a,z]) is continuous.

PROOF. Since U is continuous one has my (E N [c,d]) = my(E N (c,d)) for
every subinterval [c,d] C [a,b]. Now let z,, be a strictly increasing sequence
with 2o = ¢ and lim x,, = x. We show that V(x,) converges to V(z). Using
the subadditivity of my, cf. Proposition 2.6, one obtains

V(@) < 3 mu(BN e 1,20)) = i;flmU(Erw(xn,hmn)).

n=1

And using Proposition 2.6 once again one concludes that

E;mU(E N (Zn-1,25)) =mu(ENUL_1(@n-1,2,)) = V(zs)
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for every s € N. Thus V(z) < lim V(z,) < V(z) and the assertion is proved.
The continuity on the right side of = is proved similarly, by considering the
function V(b) — V(z) = my(E N (,b]). O

Lemma 4.3. Any LZGy function is ACGy, and any ACGy function is VBG®
and U -variationally normal.

PROOF. We show that if F : [a,b] — R is ACy and the function U is VB® on
a set £ C [a,b], then F is VB® on E (the other affirmations are evident). We
consider the function V' (x) of the preceding lemma. By definition there exists
0 > 0 such that A C E and my(A) < ¢ imply mp(A) < 1. And by continuity
of the function V we can choose a partition a = zg < 21 < ... < x,, = b such
that V(z;) — V(zi—1) = mU(E n [xi,l,azi]) < 0 for every i = 1,...,n. Thus
we obtain mp(FE) < n, and the assertion is proved. O

Proposition 4.4. Let f : [a,b] — R be integrable relatively to U. Then the
indefinite integral F(x) = [ fdU is LZGy.

PRrROOF. We show that if the function U is VB® on the set E C [a,b], then F'
is LZy on each subset E, :={z € E/|f(z)| <n}. Solet A C E, be a fixed
subset. Given € > 0 there exist two gauges d1 on [a,b] and J2 on A such that

1) }S(f, U,D)— f;de’ < ¢ for every §;-fine division D of [a, b],

2) Wy(S) < my(A) + € for every system S € S(A,d2).
We consider the gauge ¢ : A — R defined by 6(x) = min (61 (z),d2(z)). Now
let S be any d0-fine system on A. By Saks-Henstock Lemma we have

Wr(S)

|F (b)) — Fa)| € 3| £(@) (Ub) - Ula)] +
_é’F(bi) -

—F(ai)

f(@i) (U(bi) = Ulai))| < n(mu(A) +e) + 2e.

Thus we obtain mp(A) < n-my(A) + (n+ 2)e, and since ¢ is arbitrary this
proves that F' is U-Lipschitzian on the set F,,. O

For the next proposition it is useful to introduce some notations. Given a
function F on [a,b] we put Ep = {z € [a,b] / F is not U-differentiable at z},
and we define the derivative Dy F : [a,b] — R by DyF(z) = F(x) ifx ¢ Ep
and DyF(x) =0if x € Ep.

Proposition 4.5. Let F : [a,b] — R be a function such that mp(Er) = 0.
Then the derivative Dy F is integrable relatively to U. Furthermore, one has
[IDyfdU = F(z) — F(a) for every x € (a,b].
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PRrROOF. We show that f;DdeU = F(b) — F(a). Let [a,b] =, E,, be a
disjoint decomposition such that my(FE,) < oo for every n € N. There exists
for each n a gauge d,,: E,, — R such that Wy (S,,) < my(E,) + 1 for every
system S,, € S(E,,d,,). Define ¢, > 0 by 2"¢, (mU(En) + 1) = ¢. For each
x € E, \ Ep there exists d,(z) > 0 such that |y — x| < §,(z) implies

|F(y) = F(x) = Fi(x) (Uy) = U(2))| < ea|U(y) = U()].

One may assume that 0,,(x) < 0, (). And by hypothesis there exists a gauge
0: Er — R4 such that Wg(S) < ¢ for every system S € S(Ep,d). One thus
gets a gauge 9§ : [a,b] = R4. Now let D be any d-fine division of the interval
[a,b]. Then one has the following inequality:

|S(DUF.U.D) = FO) + Fla)] < T, e, | F(bi) — Fla)| +
2 Y cme [Fi) (U0) = U(w) = (F) = Fa)| +
> Yo cmme ) (Ul = Ulan) - (Flai) - Fa)| <

E+ Z €nWU(Sn+) + Z gnWU(Sni) S 5+2 Z 27’”5 = 32‘:,
n=1

n=1 n=1

and this proves that Dy F' is integrable with respect to U. O

Corollary 4.6. Let F: [a,b] — R be a continuous function. If there exists a
denumerable set D C [a,b] such that F is U-differentiable on [a,b]\ D, then
F(z) =F(a)+ [ DyFdU for every x € (a,b].

PROOF. This is immediate since mp(D) = 0, cf. Remark 3.4. O
Theorem 4.7. For a function F : [a,b] — R the following are equivalent:

1) F is an indefinite integral relatively to U,
2) Fis LZGy,

3) F is ACGy,

4) F is VBG® and U-normal,

5) F is U-differentiable U-almost everywhere and U-normal.

Proor. This follows from Propositions 4.4, 4.3, 3.10 and 4.5 (another equiv-
alent condition will be given in Corollary 5.6). O

Corollary 4.8. Let f: [a,b] — R be a U-integrable function and let F(x) =
faxde be its indefinite integral. Then Fj(x) = f(x) U-almost everywhere.

PROOF. By 2.9 the set {x € [a,b]/ f(z) # DyF(z)} is U-null. O
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5 The Lusin Condition (N)

Let F : [a,b] — R be fixed. We want to compare the two following conditions
(where m denotes the Lebesgue outer measure):

1) m(A) = 0 implies mp(A) = 0 (see Definition 4.1), and
2) m(A) = 0 implies m(F(A)) =0, i.e. the Lusin condition (N).
Lemma 5.1. For any set A C [a,b] with mp(A) =0 one has m(F(A)) = 0.

PROOF. Given £ > 0 there exists a gauge 6 : A — R such that Wg(S) < ¢
for every system S € S(A4,d). By the so-called Covering Lemma (McLeod
[7] page 143) there exist two (possibly finite) sequences of non-overlapping
intervals I,, = [an, by,] and of points z,, € I,, N A such that

I, C (scn —0(zn), xn + 5(xn)) for every n, and A C |, I,

For each n we define m,, = inf(F, I,,) and M,, = sup(F,I,), and we choose a
point y,, € I,, with M,, — m,, < 3|F(y,) — F(z,)|. For every finite sum one
has Y. _ (M, —my) <3Wg(S,) < 3e. Therefore Y (M, —m,) < 3¢, and
this shows that m(F(A)) < 3¢ since F(A) C U, [mn, M,]. O

Lemma 5.2. Let Cp = {z € [a,b] /y <z < z implies F(y) < F(z) < F(2)}.
If the function F' is continuous on a subset A C Cp satisfying m(F(A)) =0,
then one has mp(A) = 0.

PROOF. Given € > 0 there exists by hypothesis a gauge 7 : F/(A) — R such
that Wia(T) < € for every system T' € S(F(A),n), cf. Remark 2.7 (one may
also work with the usual definition of sets of measure zero). By continuity of
F there exists a gauge § : A — R such that 2 € A and |y — z| < §(x) imply
|F(y) — F(z)| < n(F(z)). If S is any d-fine system on A, then one has

Wi (S) = ;1 (F(bi) — F(z) + Flx:) — F(a:)) = Wia(T1) + Wia(T2)

(use that x; € Cp for every 1 < i <r), and therefore mp(A4) < 2e. O
Proposition 5.3. For a subset A C [a,b] the following are equivalent:
1) mp(A) =0,

2) F is continuous on A, m(F(A)) =0 and mp(A) < c0.
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PROOF. (2 = 1) Since F is of bounded variation on A there exists by 3.5 a
strictly increasing function H : [a,b] — R and a gauge ¢ : A — R such that
z € Aand |y — x| < (x) imply |F(y) — F(z)| < |H(y) — H(x)|. We remark
that this implies mp(N) = 0 for every subset N C A satisfying my(N) = 0.
Since by Theorem 3.2 the set E = {:U € A/F is not H-differentiable at x} is
H-null we deduce that mp(E) < mp(N)+mp(D) =0.

By Lemma 3.9 the set Ag = {x € A/ F}j(x) = 0} satisfies mp(A) = 0. So
it remains to consider the sets Ay = {& € A/+F)(z) > 0}. Obviously, one
has A, C |J,-, Ay, where

An:{xeA/xE[y,z]g(x—%,;v—&-%) éF(y)SF(w)SF(z)}

By the preceding lemma one obtains mp(A,) = 0 for every n € N (divide the
interval [a, b] into finitely many small intervals). Therefore mg(Ay) = 0, and
similarly mp(A_) = 0, which proves the proposition. O

Question 5.4. The example of Saks ([9] p. 224) shows that the hypothesis
mp(A) < 0o cannot be released. But could one put in place of it the weaker
assumption that F' is differentiable almost everywhere? Or in other words, is
there any function satisfying the Lusin condition (N) that is continuous and
differentiable almost everywhere when not VBG® ?

Definition 5.5. Let U : [a,b] — R be a continuous VBG® function as in the
preceding section. One says that a function F' : [a,b] — R satisfies the Lusin
condition U-(N) if m(U(A)) = 0 implies m(F(A)) = 0.

Corollary 5.6. For a function F : [a,b] — R the following are equivalent;
1) F is an indefinite integral with respect to U,
6) F is continuous, VBG® and it satisfies the Lusin condition U-(N).
PROOF. Using Proposition 5.3 one obtains m(U(A)) = 0 iff my(A) = 0, and
similarly m(F(A)) = 0 iff mp(A) = 0. O

As another corollary of Proposition 5.3 we give the following substitution
theorem for the Kurzweil-Henstock integral (which might be proved also by a
more direct method):

Corollary 5.7. Let U : [a,b] — R be continuous and VBG®, and consider
the interval [c,d] = U ([a,b]). If the function f : [c,d] — R is measurable and

bounded, then foU is integrable relatively to U and f;f olU dU = fUU((ab))f.
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PROOF. Let F(y) = fcyf be the indefinite integral of f. Clearly, the function
F' is Lipschitzian, and this implies that F o U is LZGy. By the fundamental

theorem 4.7 we obtain fg((:))f =F({U®) - F(U(a) = fabDU(Fo U)dU. So

we are led to consider the following sets:

1) A={z€a,b]/FoU is not U-differentiable at z},

2) B={z¢ A/(FoU)i(z) # f(U@))},
3) C={y € [c,d]/F is not differentiable at y or F'(y) # f(y)},

One has my(A) = 0 by Theorem 3.10 (use that U is continuous). And since
U(B) C C is of measure zero one gets my(B) = 0 by Proposition 5.3. Hence
the set £ = {z € [a,b] / Dy(FoU) (z) # f(U(x))} satisfies my(E) = 0, and
the assertion follows from Proposition 2.9. O

In particular, if U is an indefinite integral, i.c. U(z) = U(a) + [ g, then

(foU)-g is integrable and f(f(f olU)-g= fg((;)) [ (left as an exercise).

References

[1] C.-A. Faure, A descriptive definition of some multidimensional gauge in-
tegrals, Czech. Math. J. 45 (1995), 549-562.

[2] C.-A. Faure, Sur le théoréme de Denjoy-Young-Saks, C. R. Acad. Sci.
Paris Série I Math. 320 (1995), 415-418.

[3] J. Jarnik and J. Kurzweil, A general form of the product integral and
linear ordinary differential equations, Czech. Math. J. 37 (1987), 642—
659.

[4] W. B. Jurkat and R. W. Knizia, A characterization of multi-dimensional
Perron integrals and the fundamental theorem, Can. J. Math. 43 (1991),
526-539.

[5] W. B. Jurkat and R. W. Knizia, Generalized absolutely continuous in-
terval functions and multi-dimensional Perron integration, Analysis 12
(1992), 303-313.

[6] J. Mawhin, Generalized multiple Perron integrals and the Green-Goursat
theorem for differentiable vector fields, Czech. Math. J. 31 (1981), 614
632.



124 CLAUDE-ALAIN FAURE

[7] R. M. McLeod, The generalized Riemann integral, Mathematical Associ-
ation of America, Washington D.C., 1980.

[8] W. F. Pfeffer, The divergence theorem, Trans. Amer. Math. Soc. 295
(1986), 665-685.

[9] S. Saks, Theory of the integral, Dover, New York, 1964.

[10] A. Szdz, The fundamental theorem of calculus in an abstract setting,
Tatra Mt. Math. Publ. 2 (1992), 167-174.



