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A NOTE ON CANTOR SETS

Abstract

The Cantor set is constructed by the iterate deletion of a middle
interval equidistant from the end points. It is well known that the sums
of points in the set cover completely the real line. It was an open problem
to know if this property was still true for the sets obtained when the
deleted interval is not any more equidistant from the end points. In this
note we answer this question positively. We give a simple proof that
reflects the geometric nature of the problem, and that is a variation on
an old idea that goes back to Steinhaus[2].

1 Introduction

Let us consider the classical Cantor ternary set C. It is obtained by first
removing from [0, 1] the middle third (1/3, 2/3), then removing the middle
thirds (1/9, 2/9) and (7/9, 8/9) of the remaining intervals, and so on. That
is, every time we leave the closed 1/3 left and right parts of each interval.
Although C has measure zero, in 1917 Steinhaus [2] proved that C+C = [0, 2].
He did so by means of a beautiful and powerful geometric idea. In what follows
we shall describe this idea, and show how it can be modified so as to prove a
suitable statement for generalized non central cantor sets.

Consider a non symmetric version of the classical Cantor set. We start by
first removing from [0, 1] the interval (1/3, 1/2), then removing the intervals
(1/9, 1/6) and (4/6, 3/4) of the remaining intervals, and so on. That is, every
time we leave the closed 1/3 left part and the closed 1/2 right part of each
interval. Note that this subdivision of [0, 1] that generates C produces a cor-
responding subdivision of [0, 1] × [0, 1] that generates C × C. Let Ck be the
collection of rectangles corresponding to step k. Given a set S ⊂ [0, 1]2, we
shall indicate by sum(S) the subset of the interval [0, 2] formed by those num-
bers which are the sums of the two coordinates of points in S. The geometric
idea of Steinhaus is to show that for every k sum(Ck) = [0, 2]. He does this
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for the classical case where the removed interval is the middle (1/3, 2/3), and
thus the rectangles are squares. In our case, the rectangles become unbound-
edly distorted, and the argument fails. However, we can still make the things
work by means of a simple but fundamental variation on the idea of Steinhaus.
Consider the collection G1 of squares, two of step 1 and one of step 2 shown
in Figure 1.

0 1/3 2/3 1 2

Figure 1.

It is clear that sum(G1) = [0, 2]. Now, each square in G1 contains three
squares (from steps 2, 3 and 4) forming a similar configuration with the same
proportions. It follows then that we also have sum(G2) = [0, 2]. We uti-
lize only squares, avoiding thus any distortion. In this way we show that
sum(Gk) = [0, 2] for every k. From this it readily follows that sum(Ck) =
[0, 2] for every k. Since the Ck form a decreasing chain of subsets whose
intersection is C ×C, it is immediate then that sum(C ×C) = C +C = [0, 2].

This argument leads to the following generalization: Let a, b be any two
real numbers, 0 < a < b, a + b < 1 (in the case above we have a = 1/3 and
b = 1/2). We start by first removing from [0, 1] the interval (a, 1 − b), then
removing the intervals (aa, a − ab) and (1 − b + ab, 1 − bb) of the remaining
intervals, and so on. That is, every time we leave the closed a-percent left part
and the closed b-percent right part of each interval. Then:

C + C + · · ·+ C︸ ︷︷ ︸
n−times

= [0, n] if (1− (a+ b))/ab ≤ (n− 1).

Thus, the sum of sufficiently many copies of the Cantor set covers a whole
interval of the line.

We shall prove now this statement. Our proof has been generalized recently
to the case of Cantor sets obtained by iterate deletion, but with a different
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proportion of the intervals cut at each step [1]. We start setting some notation
and conventions. We consider Cantor sets defined in the interval [0, 1] ⊂ R.

Definition 1. Let a, b ∈ R, 0 < a < b, a+ b < 1.

a) Consider two symbols a, b (the symbols are always different, even if the
real numbers are the same). Given an interval K = [v, w], of length
|K| = t = w − v, we define [a]K = [v, v + a/t], and [b]K = [w − b/t, w].
Given any word w in the alphabet {a,b}, we define inductively [ω]K =
[e]([ω′]K) (for ω = eω′, e = a or e = b). Given two words α and β,
of the same length, we say that they are similar if they have the same
number of a’s (thus, also the same number of b’s). Clearly, for similar
words we have |[α]K| = |[β]K|.

b) Let Is be the union of the intervals [ω][0, 1], for all the words of length
s. Thus, I0 = [0, 1], I1 = [a][0, 1]

⋃
[b][0, 1] = [0, a]

⋃
[1 − b, 1] , etc. (the

intervals in Is are the intervals of step s in the construction of the Cantor
set). Clearly Is ⊃ Is+1. The intersection Cab =

⋂
s Is is the Cantor set

of ratios a and b.

c) Given any set A ⊂ R, and a natural number n, we denote by (n)A the
sum of n copies of A. That is, (n)A = A + A + · · · + A = {x | x =
a1 + a2 + · · ·+ an, ai ∈ A}. Clearly (n)Cab =

⋂
s(n)Is.

Definition 2. a) Let I = [0, 1]n ⊂ Rn be the unit hypercube. By an
hypercube we shall understand a set H of the form H = p + tI, with
p ∈ Rn, and t ∈ R, t > 0. The set H, which has sides of length
t, is determined by the two diagonally opposed vertices v = p, and
w = p + (t, t, . . . , t). Vice versa, any pair of points v = (v1, . . . , vn),
w = (w1, . . . , wn), vi < wi, such that wi − vi = t (for some constant
value t), determine an hypercube H = p + tI, p = v. We shall denote
H = [v,w] = [v1, w1]× · · · × [vn, wn].

b) Given two finite collections of hypercubes, G = (G1, . . . Gm), H =
(H1, . . . ,Hk), we say that G is contained in H, and write G ≤ H, if
for all Gi there exists Hj such that Gi ⊂ Hj .

c) By a construction on hypercubes we mean a rule that given an hyper-
cube H as input it assigns a finite collection of hypercubes cH = H =
(H1, . . . ,Hk) as output. We extend the construction to collections of
hypercubes by defining cH = c(H1, . . . ,Hk) = (cH1, ..., cHk).

d) Given an hypercube H = [v,w], we indicate by sum(H) the interval of
length nt, sum(H) = [

∑
i vi,

∑
i wi] = {x | x =

∑
i xi, xi ∈ [vi, wi]},
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and we extend this to collections of hypercubes by defining sum(H) =⋃
j sum(Hj). Notice that this will not be in general an interval.

Proposition 3. Let c be a construction on hypercubes such that: cH ≤ H,
and sum(H) = sum(cH) for any H. Then:

1) Given any collection of hypercubes H = (H1, . . . ,Hk), we have cH ≤ H,
and sum(H) = sum(cH).

2) Given any hypercube H, let Gs be the sequence of collections of hyper-
cubes determined by iterating c. That is, G0 = (H), Gs+1 = cGs. Then,
for all s we have (H) ≥ Gs ≥ Gs+1, and sum(H) = sum(Gs).

Proof. The first part is clear. The second follows immediately by induction.

We say that a construction c is linear if given any hypercube H = p + tI,
we have cH = p + t(cI). A linear construction is completely determined by
defining it at the unit hypercube I.

Definition 4. (the construction cab). Let 0 < a < b, a+ b < 1. cab is the
linear construction defined at the unit hypercube as follows (see the figure 1
above for the case n = 2):

cab(I) = (H0, ...,Hn), Hi = [vi,wi], i = 0, 1, . . . , n, where:

v0 =(0, 0, . . . , 0).

vi =(1− b, . . . , 1− b︸ ︷︷ ︸
ithcoor.

, a− ab, . . . , a− ab), i = 1, . . . , n− 1.

vn =(1− b, 1− b, . . . , 1− b).
w0 =(a, a, . . . , a).

wi =(1− b+ ab, . . . , 1− b+ ab︸ ︷︷ ︸
ithcoor.

, a, . . . , a), i = 1, . . . , n− 1.

wn =(1, 1, . . . , 1).

Thus, H0 = v0 + aI, Hn = vn + bI, and Hi = vi + abI, for i = 1, . . . , n− 1.

Proposition 5. Given any hypercube H,

1) cabH ≤ H.

2) sum(H) = sum(cabH) if and only if (1− (a+ b))/ab ≤ (n− 1).
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Proof. It is enough to show the proposition for H = I. The fact that 1)
holds follows directly from the definition, and sum(I) = sum(cabI) will hold
if and only if ∑

j

(vi+1)j ≤
∑
j

(wi)j , for i = 0, . . . , n− 1.

But, ∑
j

(wi)j = i(1− b+ ab) + (n− i)a, and

∑
j

(vi+1)j = (i+ 1)(1− b) + (n− i− 1)(a− ab).

A simple calculation now shows that all of these conditions reduce to (1− (a+
b))/ab ≤ (n− 1).

Given a word ω of length s in the alphabet {a, b}, the interval [ω][0, 1]
is an interval of step s in the construction of the Cantor set Cab. If α1,
α2, . . . , αn are n similar words of length s, we say that the hypercube H =
[α1][0, 1] × · · · × [αn][0, 1] is a Cantor hypercube of step s. Clearly, cab(H)
consists of two Cantor hypercubes of step s+ 1, and n− 1 Cantor hypercubes
of step s + 2. Thus, if we iterate the construction cab starting at the unit
hypercube I, we obtain a sequence Gs of collections of hypercubes which are
Cantor hypercubes of steps i, with s ≤ i ≤ 2s.

We now put together Propositions 3 and 5 and have:

Theorem 6. Let Cab be the Cantor set in the interval [0, 1] of ratios a and b,
0 < a < b, a+ b < 1. If (1− (a+ b))/ab ≤ (n− 1), then (n)Cab = [0, n].

Proof. Let Fs be the collection of all Cantor hypercubes of steps i, where
s ≤ i ≤ 2s. All the sides of an hypercube in Fs are contained in some
interval of Is. It follows that sum(Fs) ⊂ (n)Is. On the other hand, if Gs

is the sequence defined by iterating the construction cab starting at the unit
hypercube I, Gs ≤ Fs, thus sum(Gs) ⊂ sum(Fs). By propositions 1 and 2,
sum(Gs) = [0, n]. It follows that [0, n] ⊂ (n)Is, for all s. Thus (see definition
1, c) (n)Cab =

⋂
s(n)Is = [0, n].
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