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A NOTE ON THE DISTRIBUTION OF
DIGITS IN TRIADIC EXPANSIONS

Abstract

We estimate the Hausdorff dimension of some Borel sets determined
by the digits in triadic expansions.

1 Introduction

(&)
Let x = E’és;r), where e, (2) € {0, 1,2}, be the 3-adic expansion of z € [0, 1].
n=1

Our purpose is to estimate the Hausdorff dimension of the set

1 X
My,m(q) = {CU : &Eﬂwﬁzlgi(x)gfﬂ(x) = Q}v (1)
where k,m € {0,1,2}, k+m > 1 and ¢ € [0,2¥"™]. The proof is based on the
construction of a suitable measure. It would be desirable to see the analogous
problem for x expressed as a decimal in the scale r = 4,5, ... but we have not
been able to do this; for r = 2 see [3], extended in [4]. Similar results have
been obtained in [1], [2], [5], [7], [11], [13]. In section 3 we give a multifractal
analysis of some measures related to this work.

Let P = (pij), i,j = 0,1,2, be a stochastic irreducible matrix, P(®) =
(mo, 71, m2) be a probability vector such that P(O)P = P(©®) and Ey(z) be the
interval of the form [3%7 %TVl) containing z, K = 0,1,...,3Y — 1. We define
the measure u by its values on En(z);

N-1
M(EN(-r)) = Tgy(x) H Pe,(2)enii(x)- (2)

n=1
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It is well known [2] that if

) logu(En(z)
M—{x-&ﬂﬁo_zvmgg—dp 7 ®
where
E 1
op = 10g3 P Oﬂzpw 0g Pij,

then pu(M) =1 and the Hausdorff dimension of M, dim M, is dp.

2 The Hausdorff Dimension of M ,,(q)

In this section it is show that we can choose P in such a way that M =
My.m(q). From (2) we obtain

N—
10g M(EN(x)) = 10g Teq(x) Z Z 55,, (z),i 5,1+1(:c) J 10gng»

n=11,5=0

where 4. is the usual Kronecker symbol. We observe that

f[j'_gn( )

7=0
5;5"(1),1‘ = (—1) 5‘51 ZC]W , Cii € R. (4)

(2 —4)!

2
Let log Agm = > CriCmjlogpij. Then
%,7=0

N— 2
1ogu(EN<x>>:logwsl($>+Z Z en(x) ey (x) log Agm
n=1

and
LN
J\}gnoo N log w(En(x)) = A}E}loo N; log Ago + &n(x) log(A10An1) (5)

2
+ &2 (2) log(AspAgz) + Z el () ey (2) log Agm |-
k,m=1
Set ElO = E01 = AlOAOI; EQQ == Eog = A20A02 and Ekm = Akm for km 75 0.
We will make the following assumptions: if for some E;; the product ¢j is 0
then j = 0 and if for some Mj, ,,, the product km is 0 then m = 0.
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Theorem. Theorem Let My ., (q) be as in (1). Then dim My .,(q) = dp,
where P = (pi;), i,j = 0,1,2, is a solution of the system

2

Ey=1, (i,§) # (ksm), q=tgm= Y "7y
i,§=0

Note. We adopt the convention that 0° = 1.

PROOF. Suppose the stochastic irreducible matrix P = (p;;) is a solution of
the above system. Then from (3) and (5) it follows that

N
: -1 k m
M = {x : ngnooNlogSZ [log Ago + b (2)el 1 (z) log By | = 5p}.

n=1

Since [ e¥(x)ed*(x)du(x) = tgm, the ergodic theorem [2] shows that

M = Mk,m(tkm) = Mk,m(Q),

which is the desired conclusion. We need only show the existence of a solution
to the system. For simplicity of notation we write x; = p;o, v; = pi1, 1 =0,1,2.
By (4) it is obvious that

coo=1,cro=—3, ca0=7, co1 =0, c11 =2, co1 = —1,

2

N — DN —

co2 =0, c12 = 5 (2=

Hence in any case (with respect to k,m) we have five of the following siz
relations, (a)—(f), and the relation (g):

(a) Ero =25y (1 — zo — yo)féx%x;% =1

(b) Bz = woyy (1 -z —yo)%xflxé =1

(0) By = gy (1= w0 — yo) oy Pt (1 = 21 — )
x wiys (1= 22— o)t =1

(d) E Zxa%yo(l—xo—yo)_%éyfz(l—% —y)?

_s3 _1
X Ty Tya(l—wa—yo) * =1

_3 3 _3 _
(e) Erg =z yg (1 — o —yo) *xay; (1 — 21 — 1)
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1

[\

1 1 _
Xy tys(l—zg—y2) * =1
1 1 1 _1 _1
(f) By =x5yy > (1 —x0 —yo)*zy *yi(l — 21 —y1) 2
1 _1
X3y P (1— a0 —yo)t =1

(g) q=tkm

We give the proof only for the case & = m = 1; the other cases may be
proved in much the same way. For the convenience of the reader we write the
equations which we have in any case.

(i) k = m = 1. We have the equations (a), (b), (d), (e), (f) and (g). An

easy computation shows that we have (g) and

zo(1 — 20 — yo) _ (1l — 21 — 1) _ wo(1 — 22 — ¥2)

2 2 - 2
Yo Yy Y3
2 2
ry Ui 2
- ) iL’O = Yox1-
ToT2 Yoly2

Combining these we obtain

2 2
xy n)
T =—, 9= ——— 6
Yo' 1—20—yo )
2
ZoYo ZoYo Lo
Fi(z0,90,1) = Y5 +y1 - 1——)=0 7
( 9 9 ) 1 1—370—:(]0 1—$0—y0 yO) 9 ()
2 2
ToYo 3 o
oz :4+ 2077‘1 1———)=0 8
2(T0, Yo, Y1) = ¥ yll—xo—yo o 1— 20— yo ’ (8)
2
Y1y
y2:1—0 (9)

zo(1— 20 —yo)

From (6) we see that xg,yo must be such that 23 < yo < 1 —z¢ — 23 (and
so 2o € (0,3)). Let xo € (0,3) and yo € (x3,1 —x¢ — x3). The equation (7)
has a unique positive solution y; = h’/(X0,y0). The same holds for (8) with
vy = R (x0,90). Then for y] =y} we must have

H(x0,y0) = h'*(x0,40) — h" (X0, y0) = 0.

Since H (xg, x3) < 0 and H (xg, 1 —xo—x3) > 0, there exists yo € (x3,1—x0—

x2), such that H(xg,yo) = 0. Hence for this (xo,yo) we have y| = y{ = y1.

It is easy to check that y; € (0,1 — ;—f‘)) and y2 € (0,1 — %) The
Jacobian ?9((5;512)) (x0,Y0,Yy1) is positive (OF;/0yo(x0,¥Yo0,y1) < 0) and so the
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implicit function theorem [10, p. 168] gives that there is a neighborhood B of
xo and uniquely determined continuous functions gg, g1, defined on B such

that yo = go(wo), y1 = g1(z0) and
Fi(z0, go(0), 91(x0)) = F2(x0, go(x0), 91(w0)) = 0. (10)

Since the Jacobian is positive everywhere in our domain, we can have the
functions go, g1 defined on (0, ) and satisfy (10). Thus by (6) and (9) we get
continuous functions f;, g such that z; = f;(20), y2 = g2(x0), o € (0, 3).
From this we conclude that ¢ is also a continuous function of zy. It is obvious
that

. 1
Yo = go(wo) = —, i = fi(wo) = 1, yi = gi(x0) = 0, i =1,2 as xg — >

17
1

1
which gives 11 — 0, asxg — 5. If xo is near to 0, then H(zo,z5) >

Oroleo

x

0, H(xo, o) <0, and Fy(xo,yo, T) > 0. Therefore,
gl(xo) - 07 fz(xO) - 07 1= Oa 1a27 as ro — 0

and finally that t;; — 4 as 29 — 0. Let ¢ € (0,4). By the above there is
2o € (0,1) and so a stochastic irreducible matrix P, such that M = M 1(q)
which is our assertion.

If ¢ = 4, then by [7] we have dim M; 1(4) = 0. We can extend the proof to
assume P such that ; =0, y; =0 and dp = 0 (P is not irreducible).

If ¢ = 0, then for P such that zg = %, Yo = %, z;, =1, =0,1=1,2
we take that M is a proper subset of M; 1(0) and so dim M; ;(0) > 6p. We
apply another version of (3) (see [2, p. 144]) and use the results for ¢ € (0,4)
to obtain dim M 1(0) = dp.

(ii) k = 2, m = 1. We have the equations (a), (b), (c), (e), (f) and (g) or
equivalently (g) and
zo(l =0 —yo)  1(1—21—y1) @2(l — 22 —y2)
v - ui B %
N A
ToTy’ 338332 B ySyQ’

As in case (i), we obtain (6), (7) and

2
Ty = Yol1-

4
ToYo Lo
F — 8 407_ 71—7 :0

3(20, Y0, Y1) = Y1 +y11 — %0 — %0 2o( 1—x9— 1o 7

4
Y1Yo
Yo = —<7 - 11
$3(1*$0*y0) ( )
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We can now proceed analogously to the proof of case (i).

(iii) k = 1, m = 2. We have the equations (a), (b), (¢), (d), (f) and (g) or
equivalently (g) and

(1 —mo—yo)  ai(l—xy—y1)  23(1—xp — o)
v B yt B ys
4 2 2
Ty Ty Y1 2
= = Ty = YoT1.
x%@’ ToT2 yOyQ7 0

A simple computation gives (g), (6), (9) and

z3yo 5Y0 g
F ’ _ 4 0 _ 0 1 — 70 = 0’ ].2
4(0, Y0, Y1) y1+y11_$0_y0 1—20—190 Yo 12)
A VS 0Yo 7<1 g > 0 (13)
x 7 ) = T . T C1—20—1o - .
A 1 — o — yo

The equation (12) has a unique positive solution yj = h'(xg,y0). The same
holds for (13) with v} = h” (0, y0). We must have H(xo,y0) = h'*(x0,y0) —
R (x0,y0) = 0. The rest of the proof runs as in case (i).

(

(iv) k =2, m = 2. We have the equations (a), (b), (¢), (d), (e) and (g) or
equivalent (g) and

558(1 —To—Yo) 31—z —y1) _ 23 (1 — x2 — yo)

v vt %
4 4
1 [ 2
=3 — =5, Tp = YoT1.
wgra  yoye P
As in previous cases we obtain (6), (11), (12) and
21240 22
Fo(x0,90,51) = 41° + yf ———— — x15<1 - 70) =0
(=0, )= "T—wzo—yo ° 1 —2z0—yo

The rest of the proof is similar to that in case (iii).

(v) k=2, m=0. We have the equations (a), (¢), (d), (e), (f) and (g) or
equivalent (g) and

zo(1 — 20 — Yo) _ (1 =21 — 1) _ xo(1 — 22 — y2) _ 13
Y3 yi Y3 T3’

2 2 4 4
ry U ry Y

- ) 3. 3. °
ToT2 Yoly2 T2 Yoly2
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‘We see at once that
To =1 = T2, Yo = Y1 = Y2,
Yo — 2o(1 — 20 — yo) = 0.
The proof is immediate.

(vi) k =1, m = 0. We have the equations (b) — (f) and (g). The result is well
known, see [7, pp. 77].

Corollary. Under the hypotheses of Theorem we have

gl(iﬂo)] '

dim My, ., (q) = -

_—1[10 zo+qlo
log 3 g Lo T q10g
PrOOF. By (a)-(f) we get log B = log 2 = log gl(IO). Since log Agy =

HC 0)}7 which completes the proof.

O

log zg we obtain dp = 1775 [log zo + qlog

3 A Multifractal Analysis

The multifractal analysis of a Borel probability measure v on [0, 1], [6], [§],
[9], [12], is the study of the Hausdorff dimension of the sets

B .. logv(En(z))
EC—{$J\}E>HOO_]VIOg3—C s ceR.

Proposition. Let u be a measure as in (2), where P = (p;;) is such that
E;; =1, for (i,5) # (k,m), k,m € {0,1,2}, k+m > 1. Then

dim EC = dim Mk,m(‘])a

clog 3+1log poo

where ¢ = 5100
1 log(poopiy )

PROOF. By assumption and (5) it follows that

N
-1 "
o= {e: i, g+ oo i =

log Eym = log(p00 p11) and Agg = log poo. The proof is straightforward. It is

clear that ¢ must be such that 0 < m < 2k+™ otherwise the set E,
log(poopy )

is empty. If log(poop11 ) = 0, then our measure is that of Lebesque as is easy
to check.
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