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A NOTE ON THE DISTRIBUTION OF
DIGITS IN TRIADIC EXPANSIONS

Abstract

We estimate the Hausdorff dimension of some Borel sets determined
by the digits in triadic expansions.

1 Introduction

Let x =
∞∑
n=1

εn(x)
3n , where εn(x) ∈ {0, 1, 2}, be the 3-adic expansion of x ∈ [0, 1].

Our purpose is to estimate the Hausdorff dimension of the set

Mk,m(q) =

{
x : lim

N→∞

1

N

N∑
n=1

εkn(x)εmn+1(x) = q

}
, (1)

where k,m ∈ {0, 1, 2}, k+m ≥ 1 and q ∈ [0, 2k+m]. The proof is based on the
construction of a suitable measure. It would be desirable to see the analogous
problem for x expressed as a decimal in the scale r = 4, 5, . . . but we have not
been able to do this; for r = 2 see [3], extended in [4]. Similar results have
been obtained in [1], [2], [5], [7], [11], [13]. In section 3 we give a multifractal
analysis of some measures related to this work.

Let P = (pij), i, j = 0, 1, 2, be a stochastic irreducible matrix, P (0) =
(π0, π1, π2) be a probability vector such that P (0)P = P (0) and EN (x) be the
interval of the form [ κ

3N
, κ+1

3N
) containing x, κ = 0, 1, . . . , 3N − 1. We define

the measure µ by its values on EN (x);

µ(EN (x)) = πε1(x)

N−1∏
n=1

pεn(x)εn+1(x). (2)
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It is well known [2] that if

M =

{
x : lim

N→∞

logµ(EN (x))

−N log 3
= δP

}
, (3)

where

δP =
−1

log 3

2∑
i,j=0

πipij log pij ,

then µ(M) = 1 and the Hausdorff dimension of M , dimM , is δP .

2 The Hausdorff Dimension of Mk,m(q)

In this section it is show that we can choose P in such a way that M =
Mk,m(q). From (2) we obtain

logµ(EN (x)) = log πε1(x) +

N−1∑
n=1

2∑
i,j=0

δεn(x),i δεn+1(x),j log pij ,

where δ·,· is the usual Kronecker symbol. We observe that

δεn(x),i = (−1)i

2∏
j=0
j 6=i

(j − εn(x))

i!(2− i)!
=

2∑
k=0

ckiε
k
n(x), cki ∈ R. (4)

Let logAkm =
2∑

i,j=0

ckicmj log pij . Then

logµ(EN (x)) = log πε1(x) +

N−1∑
n=1

2∑
k,m=0

εkn(x) εmn+1(x) logAkm

and

lim
N→∞

1

N
logµ(EN (x)) = lim

N→∞

1

N

N∑
n=1

[
logA00 + εn(x) log(A10A01) (5)

+ ε2n(x) log(A20A02) +

2∑
k,m=1

εkn(x) εmn+1(x) logAkm

]
.

Set E10 = E01 = A10A01, E20 = E02 = A20A02 and Ekm = Akm for km 6= 0.
We will make the following assumptions: if for some Eij the product ij is 0
then j = 0 and if for some Mk,m the product km is 0 then m = 0.
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Theorem. Theorem Let Mk,m(q) be as in (1). Then dimMk,m(q) = δP ,
where P = (pij), i, j = 0, 1, 2, is a solution of the system

Eij = 1, (i, j) 6= (k,m), q = tkm =

2∑
i,j=0

ikjmπipij .

Note. We adopt the convention that 00 = 1.

Proof. Suppose the stochastic irreducible matrix P = (pij) is a solution of
the above system. Then from (3) and (5) it follows that

M =

{
x : lim

N→∞

−1

N log 3

N∑
n=1

[
logA00 + εkn(x)εmn+1(x) logEkm

]
= δP

}
.

Since
∫
εk1(x)εm2 (x)dµ(x) = tkm, the ergodic theorem [2] shows that

M = Mk,m(tkm) = Mk,m(q),

which is the desired conclusion. We need only show the existence of a solution
to the system. For simplicity of notation we write xi = pi0, yi = pi1, i = 0, 1, 2.
By (4) it is obvious that

c00 = 1, c10 = −3

2
, c20 =

1

2
, c01 = 0, c11 = 2, c21 = −1,

c02 = 0, c12 = −1

2
, c22 =

1

2
.

Hence in any case (with respect to k,m) we have five of the following six
relations, (a)–(f), and the relation (g):

E10 = x−30 y20(1− x0 − y0)
− 1

2x21x
− 1

2
2 = 1(a)

E20 = x0y
−1
0 (1− x0 − y0)

1
2x−11 x

1
2
2 = 1(b)

E11 = x
9
4
0 y
−3
0 (1− x0 − y0)

3
4x−31 y41(1− x1 − y1)

−1
(c)

× x
3
4
2 y
−1
2 (1− x2 − y2)

1
4 = 1

E21 = x
− 3

4
0 y0(1− x0 − y0)

− 1
4x

3
2
1 y
−2
1 (1− x1 − y1)

1
2(d)

× x−
3
4

2 y2(1− x2 − y2)
− 1

4 = 1

E12 = x
− 3

4
0 y

3
2
0 (1− x0 − y0)

− 3
4x1y

−2
1 (1− x1 − y1)(e)
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× x−
1
4

2 y
1
2
2 (1− x2 − y2)

− 1
4 = 1

E22 = x
1
4
0 y
− 1

2
0 (1− x0 − y0)

1
4x
− 1

2
1 y1(1− x1 − y1)

− 1
2(f)

× x
1
4
2 y
− 1

2
2 (1− x2 − y2)

1
4 = 1

q = tkm(g)

We give the proof only for the case k = m = 1; the other cases may be
proved in much the same way. For the convenience of the reader we write the
equations which we have in any case.

(i) k = m = 1. We have the equations (a), (b), (d), (e), (f) and (g). An
easy computation shows that we have (g) and

x0(1− x0 − y0)

y20
=
x1(1− x1 − y1)

y21
=
x2(1− x2 − y2)

y22

=
x21
x0x2

=
y21
y0y2

, x20 = y0x1.

Combining these we obtain

x1 =
x20
y0
, x2 =

x20
1− x0 − y0

, (6)

F1(x0, y0, y1) = y21 + y1
x0y0

1− x0 − y0
− x0y0

1− x0 − y0
(1− x20

y0
) = 0, (7)

F2(x0, y0, y1) = y41 + y21
x20y0

1− x0 − y0
− x30(1− x20

1− x0 − y0
) = 0, (8)

y2 =
y21y0

x0(1− x0 − y0)
. (9)

From (6) we see that x0, y0 must be such that x20 < y0 < 1− x0 − x20 (and
so x0 ∈ (0, 12 )). Let x0 ∈ (0, 12 ) and y0 ∈ (x2

0, 1 − x0 − x2
0). The equation (7)

has a unique positive solution y′1 = h′(x0, y0). The same holds for (8) with
y′′1 = h′′(x0, y0). Then for y′1 = y′′1 we must have

H(x0, y0) = h′
2
(x0, y0)− h′′(x0, y0) = 0.

Since H(x0, x2
0) < 0 and H(x0, 1−x0−x2

0) > 0, there exists y0 ∈ (x2
0, 1−x0−

x2
0), such that H(x0,y0) = 0. Hence for this (x0,y0) we have y′1 = y′′1 = y1.

It is easy to check that y1 ∈ (0, 1 − x2
0

y0
) and y2 ∈ (0, 1 − x2

0

1−x0−y0
). The

Jacobian ∂(F1,F2)
∂(y0,y1)

(x0,y0,y1) is positive (∂F1/∂y0(x0,y0,y1) < 0) and so the
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implicit function theorem [10, p. 168] gives that there is a neighborhood B of
x0 and uniquely determined continuous functions g0, g1, defined on B such
that y0 = g0(x0), y1 = g1(x0) and

F1(x0, g0(x0), g1(x0)) = F2(x0, g0(x0), g1(x0)) = 0. (10)

Since the Jacobian is positive everywhere in our domain, we can have the
functions g0, g1 defined on (0, 12 ) and satisfy (10). Thus by (6) and (9) we get
continuous functions fi, g2 such that xi = fi(x0), y2 = g2(x0), x0 ∈ (0, 12 ).
From this we conclude that t11 is also a continuous function of x0. It is obvious
that

y0 = g0(x0)→ 1

4
, xi = fi(x0)→ 1, yi = gi(x0)→ 0, i = 1, 2 as x0 →

1

2
,

which gives t11 → 0, as x0 → 1
2 . If x0 is near to 0, then H(x0, x

1
4
0 ) >

0, H(x0, x0) < 0, and F2(x0, y0,

√
x

3
2
0

y0
) > 0. Therefore,

gi(x0)→ 0, fi(x0)→ 0, i = 0, 1, 2, as x0 → 0

and finally that t11 → 4 as x0 → 0. Let q ∈ (0, 4). By the above there is
x0 ∈ (0, 12 ) and so a stochastic irreducible matrix P, such that M = M1,1(q)
which is our assertion.

If q = 4, then by [7] we have dimM1,1(4) = 0. We can extend the proof to
assume P such that xi = 0, yi = 0 and δP = 0 (P is not irreducible).

If q = 0, then for P such that x0 = 1
2 , y0 = 1

4 , xi = 1, yi = 0, i = 1, 2
we take that M is a proper subset of M1,1(0) and so dimM1,1(0) ≥ δP . We
apply another version of (3) (see [2, p. 144]) and use the results for q ∈ (0, 4)
to obtain dimM1,1(0) = δP .

(ii) k = 2, m = 1. We have the equations (a), (b), (c), (e), (f) and (g) or
equivalently (g) and

x0(1− x0 − y0)

y20
=
x1(1− x1 − y1)

y21
=
x2(1− x2 − y2)

y22

=
x21
x0x2

,
x41
x30x2

=
y41
y30y2

, x20 = y0x1.

As in case (i), we obtain (6), (7) and

F3(x0, y0, y1) = y81 + y41
x40y0

1− x0 − y0
− x70(1− x20

1− x0 − y0
) = 0,

y2 =
y41y0

x30(1− x0 − y0)
. (11)
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We can now proceed analogously to the proof of case (i).

(iii) k = 1, m = 2. We have the equations (a), (b), (c), (d), (f) and (g) or
equivalently (g) and

x30(1− x0 − y0)

y40
=
x31(1− x1 − y1)

y41
=
x32(1− x2 − y2)

y42

=
x41
x30x2

,
x21
x0x2

=
y21
y0y2

, x20 = y0x1.

A simple computation gives (g), (6), (9) and

F4(x0, y0, y1) = y41 + y1
x30y0

1− x0 − y0
− x30y0

1− x0 − y0

(
1− x20

y0

)
= 0, (12)

F5(x0, y0, y1) = y81 + y21
x60y0

1− x0 − y0
− x70

(
1− x20

1− x0 − y0

)
= 0. (13)

The equation (12) has a unique positive solution y′1 = h′(x0, y0). The same

holds for (13) with y′′1 = h′′(x0, y0). We must have H(x0, y0) = h′
2
(x0, y0) −

h′′(x0, y0) = 0. The rest of the proof runs as in case (i).

(iv) k = 2, m = 2. We have the equations (a), (b), (c), (d), (e) and (g) or
equivalent (g) and

x30(1− x0 − y0)

y40
=
x31(1− x1 − y1)

y41
=
x32(1− x2 − y2)

y42

=
x41
x30x2

=
y41
y30y2

, x20 = y0x1.

As in previous cases we obtain (6), (11), (12) and

F6(x0, y0, y1) = y161 + y41
x120 y0

1− x0 − y0
− x150

(
1− x20

1− x0 − y0

)
= 0.

The rest of the proof is similar to that in case (iii).

(v) k = 2, m = 0. We have the equations (a), (c), (d), (e), (f) and (g) or
equivalent (g) and

x0(1− x0 − y0)

y20
=
x1(1− x1 − y1)

y21
=
x2(1− x2 − y2)

y22
=
x41y

2
0

x2x50
,

x21
x0x2

=
y21
y0y2

,
x41
x30x2

=
y41
y30y2

.
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We see at once that
x0 = x1 = x2, y0 = y1 = y2,

y40 − x30(1− x0 − y0) = 0.

The proof is immediate.

(vi) k = 1, m = 0. We have the equations (b)− (f) and (g). The result is well
known, see [7, pp. 77].

Corollary. Under the hypotheses of Theorem we have

dimMk,m(q) =
−1

log 3

[
log x0 + q log

g1(x0)

x0

]
.

Proof. By (a)–(f) we get logEkm = log y1
x0

= log g1(x0)
x0

. Since logA00 =

log x0 we obtain δP = −1
log 3

[
log x0 + q log g1(x0)

x0

]
, which completes the proof.

3 A Multifractal Analysis

The multifractal analysis of a Borel probability measure ν on [0, 1], [6], [8],
[9], [12], is the study of the Hausdorff dimension of the sets

Ec =

{
x : lim

N→∞

log ν(EN (x))

−N log 3
= c

}
, c ∈ R.

Proposition. Let µ be a measure as in (2), where P = (pij) is such that
Eij = 1, for (i, j) 6= (k,m), k,m ∈ {0, 1, 2}, k +m ≥ 1. Then

dimEc = dimMk,m(q),

where q = c log 3+log p00
log(p00p

−1
11 )

.

Proof. By assumption and (5) it follows that

Ec =

{
x : lim

N→∞

−1

N log 3

N∑
n=1

[A00 + εkn(x)εmn+1(x) logEkm] = c

}
,

logEkm = log(p−100 p11) and A00 = log p00. The proof is straightforward. It is
clear that c must be such that 0 ≤ c log 3+log p00

log(p00p
−1
11 )

≤ 2k+m, otherwise the set Ec

is empty. If log(p00p
−1
11 ) = 0, then our measure is that of Lebesque as is easy

to check.
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